SOA: Beyond the hype

Anis Benyelloul
anis.benyelloul at gmail.com

July 2008

Abstract

As the business ITs of today have become more and
more demanding and challenging, Service Oriented
Architecture (SOA) is emerging as the new paradigm
that will enable software systems of tomorrow to
rapidly evolve and adapt our ever changing needs.
Along with this growing interest is a cloud of misun-
derstandings and preconceived ideas about what SOA
really is, and how does it differ from what we’ve been
doing before. This article will try to shed some light
on what’s really new about SOA, and how does SOA
relates to the previous paradigms.

1 Introduction

Summary Lack of understanding of the fundamen-
tal concepts underlying SOA is one of the most
important obstacle to its wide approval.

Nowadays, and more then ever before, business IT
is put under high competitive pressure, and software
systems are now required to adapt quickly and meet
the requirements of an ever growing and fast changing
market climate [2].

In this context, Service Oriented Architecture
(SOA) is perceived by many as the software engi-
neering paradigm for the next generation of business
software. One that will permit rapid development,
as well as fast re-configuration and re-composition of
existing software assets.

On the other hand, it seems that the most impor-
tant hurdle that could prevent wide adoption of SOA
is actually a lack of understanding about the real con-

cept behind it. The next sections will try to show
why as well as give some insight to help establish-
ing a better understanding of the most fundamental
ideas.

2 Lack of focus

Summary Most introductory material put the focus
on non-distinguishing properties of SOA that do
not set it apart from older paradigms.

It seems that the main source of misunderstandings
about SOA comes from the fact that most introduc-
tory resources on the subject put the focus on the
wrong things, or do not insist enough on the actu-
ally relevant and distinguishing concepts that under-
lie SOA.

Many resources try to define SOA by defining what
a service is, and they often end up with statements
such as:

A service is the fundamental, and primitive
component of SOA. A service fulfills a func-
tion that is well-defined, self-contained, and
does not depend on the context or state of
other services.

This is correct, but the same definition could apply
to the classical “procedure” of the procedural pro-
gramming paradigms of the 70s, and thus it does not
tell you much about what SOA is.

Other possible definitions of SOA include:

SOA is about decomposing applications into
loosely-coupled parts (called services) that



have a clearly defined interface which pro-
motes evolution, reusability and compos-
ability.

Again, this is true but not different from what Object
Oriented Programming has been trying to achieve
since its introduction in the 80s.

Other papers yet introduce Web services along
with the definition of SOA. But as many authors have
already noted [1]:

e There is nothing new about the concept of Web
services, it is just a new form of distributed com-
puting based on open standard (like CORBA).

e When it comes to SOA, Web Services are just
one possible implementation platform, and cer-
tainly not part of the concept of SOA itself.

Some resources also try to include business process
management concepts into SOA:

SOA purpose is the control business pro-
cesses, establishing corporate-wide security,
privacy, and implementation policies, and
providing auditable information trails, are
all examples of ways that SOA can reduce
several of the risks facing companies today.

The companies that actually didn’t have any form of
privacy, security and implementation policies, even
long before the advent of SOA, were very seldom.
Besides, business process modeling is just one possi-
ble application domain of SOA, and again not part
of the concept of SOA itself.

All in all, among the most common mistake we
make when trying to introduce SOA is to put the
focus on:

Properties of Service Oriented Software

such as loose-coupling, reusability, clear
interface/implementation separation, abstrac-
tion...these are actually the well known
properties of “good” software design that are
carried over to the SOA world, but they should
not be used as a foundation for understanding
SOA.

Web Services Web services is just one possible
implementation platform for SOA, and does
not bring any new ground breaking ideas
compared to existing distributed application
middlewares[1].

Business Process Management Which is one
possible application domain for SOA, and thus
should not serve as a base for explaining what
SOA is.

As a result of this confusion some authors arrived
at the conclusion that there is nothing really new
about the concept of SOA, that it is just a “hype” or
a yet another technology buzzword|[3].

3 SOA

Summary The objective of SOA is application re-
use. The approach is to expose application func-
tionality as services for other applications.

In order to precisely yet fully understand the con-
cept, it useful to split the problem into two parts:
the objective of SOA and the approach of SOA.

3.1 The Objective

The “objective” is what SOA strive to achieve. The
visionary promise of SOA is a world were one could
develop new applications by leveraging existing ones.
This concept comes as the logical evolution of previ-
ous re-use efforts that were first trying to reuse proce-
dures, then procedure libraries (e.g numerical analy-
sis libraries), then classes and class libraries (e.g GUI
toolkits), then came the component based software
development (CBSD) paradigm which promotes the
idea of being able to build software by easily assem-
bling existing components without having to write
much code yourself. The next step in this evolution
is to be able to reuse entire applications.

Re-using applications does no mean that you
“download” them (or part of them) and link them
into your own (this would be traditional class library
or CBSD reuse). It means that the applications are
already deployed and used, that their maintenance



and evolution is under the responsibility of other peo-
ple. One just has to leverage that application (where
is it) and use its functionalities for his own purposes.

The fact that you can also reuse application across
organization boundary, means that your own soft-
ware would be composed of parts that are actively
run and under control of third parties. This means
that application development time can be dramati-
cally reduced (you now have a much larger scope of
existing software to choose from). But this obviously
comes at the cost of a lot of issues (both technical
and non-technical) that are beyond the scope of this
article.

SOA is also different from traditional distributed
computing. In the sens that, in the latter, you cre-
ate an application that you “split” across a network
of hosts. SOA adopts almost the opposite approach
where you create new applications by “assembling”
remotely available functionality.

3.2 The Approach

The “approach” defines how does SOA try to achieve
its objective. This is where the notion of “service”
come in. In order to be able to re-use existing ap-
plications they must expose their functionality as ex-
ternally visible “services”, which are simply a set of
“operations” or “functions” (function names and ar-
guments). This means that software developers must
now integrate the idea that their applications could
be remotely re-used by other ones, and thus make
their design in a such a way that they can expose key
functionalities as services.

4 Conclusion

Summary Having a good understanding of the fun-
damental concepts behind SOA is critical both
for industry adoption and for future research de-
velopment.

In order to make the definition more comprehensive
we can add the following points:

e Web services are currently the most common
and widely adopted implementation platform for

SOA software systems. They define a common
set of file and message format, that enables the
inter-operability of applications running on dif-
ferent environments/platforms (e.g integrating a
Java EE application with a .Net one)

e The most promising application domain for SOA
seems to be business process modeling. Where
each service becomes the entry point for the im-
plementation of a business process.

e The fact of having to think of applications as
composed and from different other applications
that are run and maintained by third parties
(possibly in an other organization) actually im-
plies that the interfaces between the applications
need to be designed in a way that permits the ap-
plication evolution without breaking the clients.
Which in turn means that it will most likely lead
to clean and well designed architectures: these
are the good “side effects” of SOA.

From what has been seen, it is necessary to dis-
tinguish between the different ideas revolving around
the notion of SOA if we want to be able to pin point
the essential concepts behind it, the ones that set it
aside from the previous paradigms. This is essen-
tial to form a sound base of understanding that will
enable both industry wide adoption and research de-
velopment.

References

[1] LEymMANN, F. Web services: Distributed ap-
plications without limits. In Datenbanksysteme
in Biiro, Technik und Wissenschaft - BTW2003
(February 2003), G. Weikum, H. Schoning, and
E. Rahm, Eds., vol. 26 of LNI, GI, pp. 2-23.

[2] PapAazoGLOU, M. P., TRAVERSO, P., DusT-
DAR, S., LEYMANN, F., AND KRAMER, B. J.
05462 service-oriented computing: A research
roadmap. In Service Oriented Computing
(S0C) (2006), F. Cubera, B. J. Kramer,
and M. P. Papazoglou, Eds., no. 05462 in
Dagstuhl Seminar Proceedings, Internationales



Begegnungs- und Forschungszentrum fuer In-
formatik (IBFI), Schloss Dagstuhl, Germany.
<http://drops.dagstuhl.de/opus/volltexte /2006 /524>
[date of citation: 2006-01-01].

[3] VASTERs, C. Soa doesn’t really exist, does it?
http://vasters.com/clemensv/default,month,2005-
05.aspx, 2005.



