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Abstract :

We review the problem of extending the applicability of support vector machines (SVM)
to graph data. Many similarity measures, generally called kernels, on graph data have
been proposed in the last decade. Yet some of them, like the optimum assignment kernel
(? ), are not positive semidefinite, which limits their application in SVM. In this paper
we recall the necessary conditions for using SVM. While the Mercer theorem gives
necessary and sufficient conditions for vectorial data, we show that for graph data an
embedding in a Hilbert space has to be defined explicitly, and that weaker conditions
do not suffice. For several kernels proposed in the literature we demonstrate that an
underlying Hilbert space does exist by specifying the corresponding basis. Our findings
are illustrated with small examples from the graph kernel literature.

1. Introduction

Comparing graphs is a problem that arises in many fields of research, such as
bio- or chemoinformatics, where large molecules with several thousands of
atoms are represented as graphs. Data mining algorithms are being applied on
databases of such graphs for purposes like drug discovery. Another important
field is the structure analysis of social networks.

In the past decade many similarity measures for graphs have been proposed
and studied, among many others (14)(18)(20). These similarity measures have
been interpreted as kernels and have been used in Support Vector Machines
(SVM). Due to what is called the “kernel trick”, positive semidefinite kernels
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defined on the input space can be used within the SVM algorithm, since they
are scalar products in some feature space. Graphs however are non-vectorial
data, so it is not evident how support vector machines can be used on them,
and whether the kernel trick can be applied.

The aim of the present paper is to clarify under which necessary und suf-
ficient condition similarity measures on graphs represent indeed scalar prod-
ucts in the feature space, i.e. are positive semidefinite kernels. We show why
some kernels on graphs from the literature fulfill positive definiteness, and
others do not. Unlike the related work of Shin et al. (11), our reasoning does
not require the introduction of any new formalism. Having the special case
of non-vectorial data in mind, a thorough look at the Mercer Theorem and
the definition of a Reproducing Kernel Hilbert Space is enough to deduce a
simple rule for checking positive semidefiniteness. The difficulty lies in the
extension of a formalism from metric data to structured objects.

The paper is organized as follows. In section 2 we briefly recall support
vector machines. In section 3, we present the two possible ways of extending
SVM to graph data, by proving positive semidefiniteness of the corresponding
kernel on graph data: either via Mercer’s theorem or through a Reproducing
Kernel Hilbert Space (RKHS) defined directly on the set of graphs. In section
4, we discuss examples from the literature of RKHS defined on graphs. Fi-
nally in section 5 we point out possible consequences of our results, then we
conclude.

2. SVM algorithm and Mercer’s theorem

Support vector machines are learning algorithms that determine a linear de-
cision function f : X → Y from a given set of m labelled training data
points {xi, yi}mi=1, where xi ∈ Rd, yi ∈ {±1} . The predicted label of a test
data point x depends on its position with respect to the separating hyperplane,
according to

f(x) = sgn [w · x + b] , (1)

where · denotes the scalar product, w is a vector perpendicular to the hyper-
plane and b is its (conveniently normalized) distance from the origin. The
function f maximizes the margin between the datapoints and the hyperplane
and is found by solving a quadratic optimization problem under constraints.
The vector w is a linear combination of vectors from the training data which
are closest to the hyperplane. They are called support vectors. Thus,
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w =
∑
i

αiyixi, (2)

summed over all support vectors, with αi > 0 for the support vectors and
αi = 0 for other training vectors. The linear decision function f can be
written as

f(x) = sgn

[∑
i

αiyi xi · x + b

]
. (3)

Since for equation 3, only scalar products between pairs of input vectors need
to be defined, the SVM algorithm can be extended to vectorial data that is
not linearly separable in the input space by means of Mercer’s theorem, also
known as “kernel trick”.

2.1. The Mercer theorem

The kernel trick is based on the following theorem, originally stated by J.
Mercer in 1909 (4). It states(1):

Let C be a compact subsect of Rn. To guarantee that the continuous sym-
metric kernel function (or kernel) K(x1,x2) in L2(C) has an expansion (i.e.
represents a scalar product)

K(x1,x2) =
∞∑
k=1

akΦk(x1)Φk(x2), (4)

(with positive coefficients ak >0), it is necessary and sufficient that K be
positive semidefinite, i.e. it fulfills the condition∫

C

∫
C

g(x1)g(x2)K(x1,x2)dx1 dx2 ≥ 0 (5)

for all g of integrable square, i.e. ∈ L2(C).
The Φk in equation 4 are intuitively the “features” (1), i.e. the implicit map-
ping from the input space C to the feature space.
The great usefulness of this theorem lies in the fact that the mapping to the
feature space does not need to be known explicitly, only an appropriate pos-
itive semidefinite kernel has to be defined on the entire input space1. For a
more complete introduction to kernels and the kernel trick, see (2) and (3).

1Later, Dunford and Schwartz showed that the theorem holds on a compact metric space
(5). In this article we do not consider further generalizations such as by (? ) as they are
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In practice, if the data is non-separable in the input space, we may either
define explicitly a mapping into a feature space, or a kernel. In the first case,
one needs to prove that the feature space is a vector space endowed with a
scalar product. In the second case, one must merely prove that the kernel be
positive semidefinite.

2.2. How to show positive definiteness

Showing that a function is positive semidefinite is the central difficulty when
applying the Mercer theorem. Often, the integral in equation (5) cannot be
evaluated explicitly. In that case, the proof of positive semidefiniteness often
recurs to closure properties of positive definite functions (see (7), (8)). The
following properties allow for the construction of new positive semidefinite
kernels starting from existing ones. Let X be a nonempty set. It holds (among
other properties)

− Closure under sum: For two positive-semidefinite symmetric kernels
KA, KB: X × X → R, the sum

K = KA +KB : X × X → R (6)

is a positive semidefinite symmetric kernel.

− Closure under product: For two positive-semidefinite symmetric ker-
nels KA, KB: X × X → R, the product

K = KA ·KB : X × X → R (7)

is a positive semidefinite symmetric kernel.

− Closure under tensor product: LetKA : A×A → R andKB : B×B →
R be positive-semidefinite symmetric kernels, xA ∈ A, xB ∈ B. Then
their tensor product KAKB : (A× B)× (A× B)→ R, where

KAKB((xA1, xB1), (xA2, xB2)) =

KA(xA1, xA2)∆KB(xB1, xB2) (8)

is a positive semidefinite symmetric kernel.

not relevant for our particular problem. In order to understand the reasoning of this paper,
an unfamiliar reader can imagine an Euclidean space instead of a compact metric space
as domain for the kernel.
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− Closure under concatenation of functions: For two positive-semidefinite
symmetric kernels KA: X ×X → R, KB: R×R→ R, the concatena-
tion

K = KB ◦KA : X × X → R (9)

is a positive semidefinite symmetric kernel.

These closure properties are convenient tools to show positive semidefinite-
ness of a kernelK if the positive semidefiniteness of the constituting functions
KA, KB is known. This is often the case for typical kernels defined on Rn,
since the functions KA, KB can be expressed as linear combinations of the
canonic scalar product on Rn, which obviously is positive definite. For in-
stance, this proof applies for kernel functions that can be written as a series
expansion like the Gaussian kernel,

K(x1,x2) = exp(−(‖x1 − x2‖2/2σ), (10)

or a product of kernels such as the exponential kernel

K(x1,x2) = (αx1 · x2 + c)d. (11)

Let us now address the case of learning algorithms. The calculation of a
kernel for a specific sample of datapoints yields its Gram matrix. Recall that
if a positive semidefinite kernel function is evaluated at a finite number of
points m, it gives rise to a symmetric and positive semidefinite Gram matrix
Kij satisfying

m∑
1≤i≤m,1≤j≤m

cicjKij ≥ 0 (12)

for all ci ∈ R, implying that its eigenvalues are non-negative. Positive def-
initeness of one particular Gram matrix does not imply positive definiteness
of the kernel function sampled at other points. (A positive semidefinite Gram
matrix calculated from all training points is only a valid proof for positive
semidefinitess of a kernel if in addition two assumptions hold: the kernel
function K be continuous in the input space, and the subset of m training
points be dense in the test set.)

3. Extension of SVM to graph data

For data in a metric space, we have the tools to prove positive semidefinite-
ness of a kernel and thus to apply SVM. Since both the training data and the
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(unknown) test data are in a metric space (the input space), for any chosen
continuous kernel function we can prove via closure properties its positive
semidefinitess on the entire input space and then apply the Mercer theorem.
The kernel evaluated at any set of test points yields a positive semidefinite
Gram matrix. Now the challenge is to prove positive semidefiniteness for
graph kernels. Is the Mercer theorem a useful tool for kernel functions de-
fined on the set of graphs? A priori no, since the set of graphs is not a metric
space. Indeed, without any underlying metric, continuity of a kernel function
is not defined, and thus cannot serve as a means to extend positive semidefi-
niteness from training data onto unknown test data. The purpose of this sec-
tion is to try to embed the set of graphs in a metric space, such that positive
semi-definiteness of kernels can be shown (e.g. by using closure properties),
and extended to unknown data because of their continuity with respect to the
defined metric. We present in sections 3.1. - 3.3. three different approaches to
that aim, of which two are erroneous, and one solves indeed our problem.

3.1. Haussler’s extension of Mercer kernels to non-vectorial data.

Haussler’s convolution kernel has received much attention since it is a pos-
sible way of extending positive semidefinite kernels to structured data such
as trees, strings and graphs. In his introductory technical report (10), Haus-
sler also furnishes an attempt to define a metric on any set for the purpose
of defining a continuous positive-semidefinite kernel on it (p. 30). A solu-
tion to this would exempt us from any further study of generalizing positive
semidefiniteness to test data. The approach is as follows:

− Definition of a metric on the set, rendering it a separable metric space

− Choice of a symmetric positive semidefinite kernel function on a space

− Demonstration that the kernel is continuous on the set with respect to
the defined metric

− Conclusion: all other datapoints in the set are vectors in the Hilbert
space defined by the kernel

The reasoning – like the Mercer theorem – exploits the fact that continuity
of the kernel function guarantees its positive semidefiniteness on the entire
set (i.e. its domain). Haussler defines the metric d(x1, x2) = δ(x1, x2). His
application shows that he intends d(x1, x2) = 0 if x1 6= x2 and d(x1, x2) = 1
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if x1 = x2. This is clearly not a metric, since it does not fulfil d(x1, x1) = 0.
Yet, it seemingly allows to define a real continuous function on that metric
space, fulfilling the following definition:

A function f : X→ Y (X , Y ⊂ R) is continuous if for all ε > 0 there exists
a ρ > 0 such that d(x1, x2) < ρ⇒ d(f(x1), f(x2)) < ε.

Trivially, if the distance between two distinct elements x1 and x2 is set
to zero, d(x1, x2) < ρ is true for any ρ, independently of ε, so the continuity
criterion is always true. Haussler uses this argument to prove continuity of any
kernel function defined on a set with that metric. As soon as a valid distance
is used (e.g. what is commonly called discrete metric), his reasoning does not
work any more, so we discard this proof. (However, Haussler’s convolution
kernel can nevertheless be positive semidefinite.)

3.2. Definition of a discrete metric on the set of graphs.

Let us pursue Haussler’s basic idea and try a well-defined discrete metric. Any
arbitrary countable set can be endowed with the discrete metric, such that for
two elements x1, x2 the distance d between them is d(x1, x2) = 1 if x1 6= x2
and d(x1, x2) = 0 if x1 = x2. In such a space, all distinct objects have
the same distance to each other. To be able to apply the Mercer theorem, also
compactness is required, which intuitively gives the notion of closeness of two
elements. Compactness guarantees that if one takes infinitely many sample
points, one will find at least one of them which is arbitrarily close to some
other point of the space. This can be fulfilled for two reasons: because one
finds a neighbourhood of the chosen point in which there are infinitely many
sample points, or because the chosen point is itself sampled a second time
(while taking infinitely many samples). The latter case necessarily happens if
the space is finite. Thus, finite sets with a discrete metric are compact.

One may argue that in the domain of machine learning, all data sets are
necessarily finite, so we only have to do with compact metric spaces. To
understand why this answer is too simple consider the task that support vector
machines shall solve: to learn a linear classifier from a training set in order
to predict class labels for test data. When the kernel function is defined, the
test data is completely unknown, so both training and test set together must
be considered as infinite. The kernel needs to be positive semidefinite for any
Gram matrix, arising from both training and test data.

The problem becomes clear if one imagines the training set embedded in
an Euclidean space such that every element of the set constitutes the unit
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vector of one dimension, i.e. for this set the Euclidean metric coincides with
the discrete metric. Any separating hyperplane computed by SVM is only
defined in the dimensions in which are the training set points. By definition
the test set points are in its own dimensions, on which the classifier function
is not defined, so for the function all test points appear at to be ’at the origin’,
and the hyperplane cannot classify the test data.

The only solution to this discrepancy would be to know all possible test
data beforehand, and the positive semidefinite kernel could be defined on the
entire data. The metric space would be finite and compact, yet no classifica-
tion task would be left where support vector machines are needed.

We conclude from this and the preceding subsection that it is not possible
to make a compact metric space out of the set of graphs for the purpose of
supervised learning in a way that is universally valid. Yet, there is remaining
the possibility of defining a Reproducing Kernel Hilbert Space (RKHS) on
any arbitrary set in a less general way. We will show how such a space can be
defined on the set of graphs in the following.

3.3. Defining a Reproducing Kernel Hilbert Space by the explicit map-
ping Φ

This approach is convenient if we cannot identify an underlying metric, since
a kernel that defines a Reproducing Kernel Hilbert Space (RKHS) (9)(3) can
be defined on any set – for example the set of graphs. It can be defined as
follows:

Let X be a nonempty set, x its elements, and F be the set of functions f:
X → R. F is called a Reproducing Kernel Hilbert Space (RKHS) endowed
with a scalar product 〈., .〉 if there exists a function K : X × X → R such
that K has the so-called reproducing property

〈f,K(x, .)〉 = f(x) (13)

for all f ∈ F (and also K(x, .) ∈ F). This implies in particular

〈K(x1, .), K(x2, .)〉 = K(x1, x2). (14)

The definition states that for any positive semidefinite kernel on some set
there exists an associated RKHS in which the kernel function is a scalar prod-
uct. Therefore the kernel can be used in SVM. We know that a positive-
semidefinite Gram matrix spans the space in which the matrix is diagonal.
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As stated before, there is no representation of all datapoints of the set in that
RKHS unless the kernel is positive semidefinite on the entire set.

How do we show positive semidefiniteness of kernels on an arbitrary set?
We cannot formulate a kernel in terms of a continuous function if it only de-
fined on a discrete set of points. The closure properties are not useful in this
case. The only possibility left is to know explicitly the mapping Φ: X → Rn

from the set to the feature space, which is equivalent to saying that the basis of
the RKHS is known, not just the kernel that defines it. The extracted descrip-
tors can be seen as basis vectors of a space in which each element of the set is
represented as a vector (e.g. the examples in (14)), the scalar product of that
space being directly in the SVM algorithm. Finding meaningful descriptors
(or features) is the central difficulty in this approach, since other information
about the elements gets lost. This proof of positive semidefiniteness applies to
many graph kernels that have been proposed. Either the scalar product in the
RKHS itself is used as the similarity measure, or another positive semidefinite
kernel is defined in that space, using closure properties.

The essential fact that positive semidefiniteness of a kernel is fulfilled once
the basis of the feature space is known (and the kernel is the scalar product in
that space), has been formalised by Shin et Kuboyama (11) in a different way:
their necessary and sufficient requirements for a positive definite kernel is that
what they term mapping system be symmetric and transitive, implying that for
any sample of data the same comparison criteria need to be used. Phrasing
it in terms of the definition of SVM, these criteria are the extracted features,
which span the dimensions of the feature space2.

4. Examples of graph kernels

Here, for some classes of proposed graph kernels we prove their positive
semidefiniteness by showing that the kernel is indeed a scalar product in the
feature space, by explicitly enunciating its basis. In most cases this turns out
to be possible. However, some graph kernels have been introduced without a
proof of its positive semidefiniteness or with an invalid proof (15). We con-
sider a graph to be a set of nodes (or vertices) and edges between nodes. In a
labelled graph, both nodes and edges have labels. To simplify matters we will
use examples in which only the nodes of the graphs carry labels.

The following graph kernels have been proposed for applications in chemoin-

2Shin and Kuboyama studied the particular case of tree kernels in (12).
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formatics, where a graph corresponds to a molecule, a node to an atom or a
functional group, and the different labels are the different chemical elements
or names of the functional groups3.

Generally speaking, the condition that a kernel has a basis in the feature
space is fulfilled whenever the features extracted by the kernel are the number
of common substructures. The features become the unit vectors of the feature
space. Every graph has a representation in that space.4

4.1. Kernels where the extracted features are paths

These kernels typically count the number of common paths in pairs of graphs,
i.e. sequences of node labels of a certain length (here 3). Consider the graphs
in figure 4.1..

  

A

B

D

C

  

B

C

E

D

Figure 1: Two labelled graphs: ex.(1) and ex.(2)

The set of these two graphs contains the following paths of length three:
ABC, ADC, BAD, BCD, BED, CDE, CBE. If each of these 7 paths are con-
sidered as defining a dimension of the feature space, the graphs can be rep-
resented as vectors. Example (1) becomes (1, 1, 1, 1, 0, 0, 0), example (2)
(0, 0, 0, 1, 1, 1, 1).

Larger graphs with repeated occurrence of a sequence can have integers
> 1 as respective vector entries. The canonic scalar product of that space is
clearly positive semidefite and can thus be used in SVM.

3We do not focus on differences in the implementation, e.g. whether a product graph for-
malism as in (? ) is used or not.

4To be precise, the graphs are elements in a semiring (endowed with the Euclidean metric),
since their vector representations have only positive integer components. Nevertheless,
the hyperplane can have noninteger vector entries and thus lies in a semifield. The feature
space is thus a half-space restricted to positive vector entries. An unfamiliar reader can
think of a vector space in order to fully understand the reasoning.
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A positive semidefinite graph kernel which has been widely used (e.g.
(16)) is the “Tanimoto kernel” introduced by (14). The basis of its feature
space is the one defined above. If K(., .) is the scalar product in this space,
the Tanimoto kernel is defined as

Kt(x1, x2) =
K(x1, x2)

K(x1, x1) +K(x2, x2)−K(x1, x2)
. (15)

(The Tanimoto kernel is the same as the so-called Jaccard similarity coeffi-
cient, yet the distance calculated by the Tanimoto kernel in the feature space
is not the Jaccard distance (17)).

4.2. Kernels where the extracted features are walks of varying length

Another common kernel is the Random Walk Kernel (e.g. (13)), which counts
the number of common walks (i.e. paths with repeated visits) on two graphs.
The possible walks (of varying length) constitute the basis vectors of the
feature space. For the example above these are A, B, C, D, E, AB, AD,
BC, BE, CD, DE, ABA, ABC, ADA, ADC, BAB, BAD, BCB, BEB, BED,
CBC, . . . . In this basis ex.1 becomes the vector (1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, ...), ex.2 becomes (0, 1, 1 , 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 1, ...). For an unanimous representation of each graph several
choices need to be taken, e.g. whether walking back and forth is allowed (then
the components in the dimensions AB and ABA are necessarily the same) or
whether only nonredundant paths are allowed (14). In this space, the random
walk kernel resembles the standard scalar product, but the components in the
dimensions spanned by walks of length k are downweighted by a decay fac-
tor λk > 0. It is important that the decay factor is chosen such that the scalar
product converges.5

Another class of kernels represent graphs as vectors by extracting com-
mon subgraphs (10) (? ). All possible subgraphs become the respective basis
vectors of the feature space.

4.3. The Optimum Assignment Kernel

The optimum assignment kernel has been introduced in (15) as follows:

5However in practice, this is a minor problem, since any algorithm can only consider walks
up to a certain length.
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Let X be the set of graphs x, Y the set of nodes y. Let k : Y × Y → R
be some nonnegative, symmetric and positive semidefinite kernel, and π the
permutation operator. Then K : X × X → R with

K(x1, x2) = max
π

|x2|∑
i=1

k(y1i, y2π(i)) (16)

is called an optimum assignment kernel. |x| denotes the cardinality of the
graph x, i.e. the number of its nodes, and we set x2 to be graph with lower
cardinality, i.e. |x2| ≤ |x1|. The graph x2 is constituted by the nodes {y2i}.

The idea is to find the best matching of the smaller of the two graphs on
the bigger one, and then calculate the sum of the kernels k between the vertex
labels.

Figure 2: Two matching possibilities: How should the assignment be done?

Here, it is not possible to identify a basis as in the previous examples. The
features used for comparison between two graphs are not the same for the
entire dataset, but depend on each pair of graphs sampled for comparison. It
has been shown that the optimum assignment kernel is not always positive
semidefinite. (21) proves this by giving a counter-example, where the Gram
matrix has indeed one negative eigenvalue.

Now, having the theory of RKHS in mind, it is easy to understand that
the problem stems from the fact that the feature space is not well-defined.
In the proof given by (15) of the positive semidefiniteness of the optimum
assignment kernel, they use the closure property given in equation (9), stating
that the sum K = K1 + K2 of two positive semidefinite kernels is again a
positive semidefinite function.

This is only true if K, K1 and K2 are defined in the same space. This
means, either
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− they are all three kernels between nodes, or

− they are all three kernels between graphs.

In the latter case, the kernel k between nodes could be interpreted as being a
kernel between graphs, whose extracted feature is the number of occurrence of
a particular node label. In that case every different node label would span one
dimension of the feature space, and information of the edges would be lost,
and no matching would be performed. In contrast, in the optimum assignment
kernel, there are as many addends to the kernel function as the number of
nodes of the smaller of the two graphs x1 and x2, say n. One could imagine
it as an n-dimensional space, where each node, not each node label, spans
one dimension. But then it is clear that there exists a different space for every
pair of compared graphs, and only by great chance one common feature space
exists.

4.4. Indefinite kernels

Sometimes kernel functions that are not positive-semidefinite are used any-
way, as the similarity measure “makes sense” for a specific application. They
can yield good classification results (15)(22). To be able to use a non-positive
kernel, it needs to be regularized, which means that it is modified such that it
becomes positive definite. One way of doing this is to add a constant value
to every eigenvalue in order to shift them to positive values, for instance done
by (22). Another approach is to zeroize the negative eigenvalues (21). Often
the algorithm is also used as it is, but stopped before convergence. This works
particularly as long as the negative eigenvalues are few and have small abso-
lute values, as it is often the case for the optimum assignment kernel. In fact,
algorithms similar to the optimum assignment kernel yield very good clas-
sification results (23) without claiming to be a positive semidefinite kernel.
Regularization methods generally flaw the classification results, yet the sig-
nificance of the error depends on how many eigenvalues of the Gram matrix
are negative, as well as on their absolute value.

Finally, questionable approaches such as pursued by (24) try to establish
a mathematical trick that allows the application of indefinite kernels in sup-
port vector machines, but at some late step in their reasoning treat negative
eigenvalues as positive ones. This is fatal and leads to the same paradoxes as
encountered in special relativity in physics, where the bilinear form in space-
time has the eigenvalues 1 and−1. As its name already tells, the theory states
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that no common reference frame exists, which in our case of SVM is explicitly
needed. The visualized examples in (24) only work despite nonzero entries in
the direction associated with the negative eigenvalue, not because of.

5. Conclusion

In this paper, we investigated the different approaches how to define a positive
semidefinite kernel on the set of graphs in order to apply SVM. We recalled
the SVM algorithm and Mercer’s theorem, and tried to extend its applicability
to graphs by defining a general metric on them, in an approach similar to (10).
Our conclusion is that this cannot work in a general way, only at the price of
losing some information about the graphs. We show that it is nevertheless
possible to define a Reproducing Kernel Hilbert Space on the set of graphs
by defining a basis consisting of the extracted features. With this method
we showed positive semidefiniteness for many graph kernels introduced in
the last decade. In the conflicting case of the optimum assignment kernel, this
approach cannot work because no features are extracted, and thus no basis of a
feature space can be identified. Phrasing it in terms of logic, our conclusion is
that it is possible to show positive semidefiniteness only for a dataset that can
be expressed in propositional logic, whereas working directly with a predicate
logic representation, as the optimum assignment kernel did, is not sufficient.
Finally we briefly discuss different approaches how in practice the problem
of negative eigenvalues is dealt with.
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