Machine Learning on temporal data

Learning Dissimilarities on Time Series

Ahlame Douzal (Ahlame.Douzal@imag.fr) AMA, LIG, Université Joseph Fourier Master 2R - MOSIG (2011)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

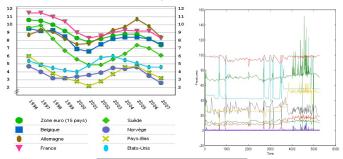
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Plan

- Time series structure and sources
- Motivations of Learning from time series
- Values-based dissimilarities
- Behavior-based dissimilarities
- Adaptive dissimilarities
- Unified formalism for time series dissimilarities

Time series structure

• A set of observations made sequentially in time:



▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨー のへで

• Multidimensional time series

Patients	Time	Pressure	 Temperature
pat ₁	t_1	<i>x</i> ₁₁	 x _{1p}
	t _{n1}	x _{n1}	 x _{np}
pat ₂	t_1	<i>x</i> ₁₁	 x _{1p}
	t _{n2}	x _{n1}	 x _{np}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Time series sources

- Physicians, biologists, physicists, computer scientists, ...
- generate, measure, observe, ...
- parameters, indicators, statistics, characteristics,...
- progress over times

Motivations for mining time series

Objectives

- Clustering time series: building groups from unlabeled time series prototype extraction, dimensionality reduction, ...
- Time series classification: time series assignments to known classes
- discriminating times series: finding models (functions, rules,...) to differentiate time series classes, localizing discriminant sub-sequences
- Multidimensional exploration of time series datasets *estimating relative* proximities, optimizing a given criterion in a lower dimensionality space

General approaches

- Multidimensional exploration: MDS, factorial approaches,...
- Supervised approaches, semi-supervised (time series totally, partially) labeled,...
- Unsupervised approaches (unlabeled time series)

Need of appropriate time series proximity measures !!

Internships on machine learning from temporal data

- Schneider Electric, the global specialist in Energy Management has launched an e-learning website Energy University to provide the latest information and professional training on Energy Efficiency concepts and best practice.
 - HOMES project experiments a method to know the effective performance of buildings:
 - Installation of sensors (temperature, humidity, presence detection) in buildings
 - Integration of sensors in the electrical panel
 - Establishment of a point of communication (phone transmitter box or ADSL box) to transfer information and sensor measurements
 - Transformation of electrical panels to add controllers
 - Integration of display systems in the building (screen display in the rooms)
 - Homes project objective: Machine learning and data analysis of consumption and conditions of the building (comfort, weather, structure and orientation of the building) to evaluate the energy savings potential.

• CEA (Research Center on Atomic Energy): on biological data

Categories of proximity measures

- Values-based proximity measures
 - without time warping: all Lp norm
 - with time warping: dynamic time warping, String edits, Fréchet distance (L_∞ norm or Chybechev-norm)

- Behavior-based proximity measures
- · Behavior and values based proximity measures

Notations

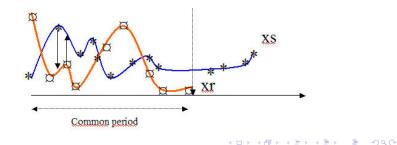
$$S_1 = (u_1, ..., u_p)$$
 and $t_1 = (t_{11}, ..., t_{p1})$

$$S_2 = (v_1, ..., v_q)$$
 and $t_2 = (t_{12}, ..., t_{q2})$

 $\delta_2 = (t_{q2} - t_{12})$ the duration of **S**₂ and *q* its length

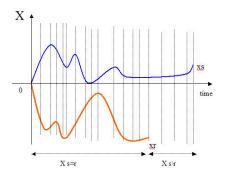
General assumptions

- $\delta_1 < \delta_2$
- $p \neq q$
- t₁ and t₂ are irregular



Preprocessing time series

- Centering
- re-sampling



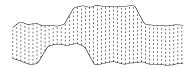
◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

Values-based proximity measures

Mappings without time warping

$$f{S}_1 = (u_1, ..., u_p) \ {
m and} \ {f t}_1 = (t_1, ..., t_p) \ {f S}_2 = (v_1, ..v_p, v_{p+1}, ..., v_q) \ {
m and} \ {f t}_2 = (t_1, ..., t_p, t_{p+1}, ..., t_q)$$

Example: Euclidean distance (L_2 norm) $\delta_E(S_1, S_2) = \left(\sum_{i=1}^p (u_i - v_i)^2\right)^{\frac{1}{2}}$



- Invariance over time permutations
- Closeness on values
- Time series of the same duration and length

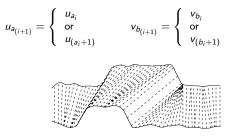
Values-based proximity measures

Mappings including time warping

L: a set of all possible mapping between S_1 and S_2 , $r \in L$ defined by a sequence of m pairs:

$$\begin{aligned} r &= \left((u_1, v_1), ..., (u_{a_i}, v_{b_i}), (u_{a_{(i+1)}}, v_{b_{(i+1)}}), ..., (u_p, v_q)\right) \\ &\text{with } a_i \in \{1, ..., p\}, \ b_i \in \{1, ..., q\}, \\ &a_1 = b_1 = 1 \text{ and } a_m = p, \ b_m = q \end{aligned}$$

and verifying for $i \in \{1, .., m-1\}$ (ordering constraint):



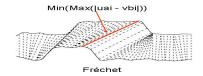
Values-based proximity measures

Fréchet distance

We note |r| the mapping length representing the maximum span between coupled observations (L_{∞} norm):

$$|r| = \max_{i=1,..,m} |u_{a_i} - v_{b_i}|$$

$$\delta_{F}(S_{1}, S_{2}) = \min_{r \in L} |r| = \min_{r \in L} (\max_{i=1,...,m} |u_{a_{i}} - v_{b_{i}}|)$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

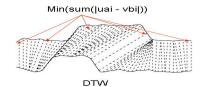
Values-based proximity measures

Dynamic Time Warping (DTW)

Let us consider a new definition of the mapping length:

$$|r| = \sum_{i=1,\ldots,m} |u_{a_i} - v_{b_i}|$$

$$\delta_{\text{DTW}}(S_1, S_2) = \min_{r \in L} |r| = \min_{r \in L} (\sum_{i=1,...,m} |u_{a_i} - v_{b_i}|)$$



The DTW implementation

$$\mathbf{S}_1=(u_1,...,u_p),\ \mathbf{S}_2=(v_1,...,v_q)$$
 and $c(u_i;v_j)$ a cost function

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

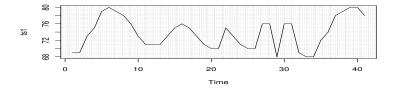
- Basic steps of the DP algorithm of the $DTW(S_1, S_2)$

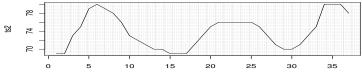
●
$$D(1;j) = \sum_{k=1}^{j} c(u_1; v_k); j \in [1;q]$$

● $D(i;1) = \sum_{k=1}^{i} c(u_k; v_1); i \in [1;p]$
● $D(i;j) = min\{D(i-1;j-1), D(i-1;j), D(i;j-1)\} + c(u_i; v_j)$
 $i \in [1;p]; j \in [1;q].$

The time cost of building this matrix is O(pq)

Illustration (1)

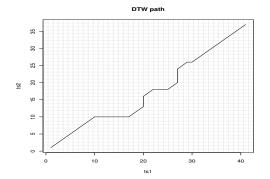




Time

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

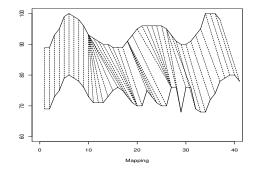
DTW path



・ロト ・回ト ・ヨト ・ヨト

æ.

Obtained alignment



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Illustration (2)

• 15 synthetic time series

• 3 classes:
$$F_1 = \{1, ..5\}$$
, $F_2 = \{6, ..10\}$ and $F_3 = \{11, ..15\}$

$$F_1 = \{f_1(t)/f_1(t) = g(t) + 2t + 3 + \epsilon\}$$

$$F_2 = \{f_2(t)/f_2(t) = \mu - g(t) + 2t + 3 + \epsilon\}$$

$$F_3 = \{f_3(t)/f_3(t) = 4g(t) - 3 + \epsilon\}$$

- g(t): a random discrete function,
- $-\mu = E(g(t))$
- $\epsilon \rightsquigarrow N(0,1)$,
- 2t + 3: a linear trend effect.

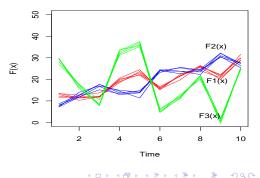
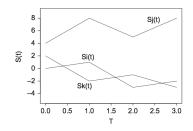


Illustration (2)

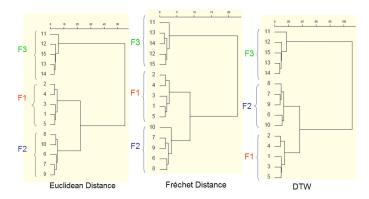


• Both the Euclidean distance and the dynamic time warping give S_i closer to S_k than to S_i,

- $d_E(S_i, S_k) = 4.24 < d_E(S_i, S_j) = 15.13 < d_E(S_j, S_k) = 16.15$
- $d_{dtw}(S_i, S_k) = 6 < d_{dtw}(S_i, S_j) = 29 < d_{dtw}(S_j, S_k) = 29$

Clustering time series

Hierarchical clustering



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Behavior definition prior to the proximity measure proposition !

- S_1 , S_2 are of similar behavior $\Leftrightarrow \forall [t_i, t_{i+1}]$ they increase or decrease simultaneously (monotonicity) with the same growth rate - S_1 , S_2 are of opposite behavior $\Leftrightarrow \forall [t_i, t_{i+1}]$ when S_1 increases, S_2 decreases and vice-versa with a same growth rates (in absolute value)

Main techniques to recover time series behaviors

- Slopes, derivatives, ... comparison
- Ranks comparison (Kendall, Spearman coefficients)
- Pearson correlation coefficient

• slopes, derivatives, ... comparison

$$\delta_{\mathit{deriv}}(\mathit{S}_1, \mathit{S}_2) ~=~ \left(\sum_{i=1}^p (rac{u_{i+1}-u_i}{t_{i+1}-t_i}-rac{v_{i+1}-v_i}{t_{i+1}-t_i})^2
ight)^{rac{1}{2}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Kendall and Spearman conventional similarity between ordered variables

$$Kendall(S_1, S_2) = cor(S_1^*, S_2^*)$$

Remark: i = 1, ..., p assumed independent, overestimation of the behavior proximity, ignores growth intensity

(ロ)、(型)、(E)、(E)、 E) の(の)

Let $r(u_i)$ be the rank of u_i

$$\begin{array}{lll} S_1^* & = & (r(u_1), ..., r(u_p)) \\ S_2^* & = & (r(v_1), ..., r(v_p)) \end{array}$$

$$Spearman(S_1,S_2) = cor(S_1^*,S_2^*)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Remark: i = 1, ..., p assumed independent, overestimation of the behavior proximity.

Pearson correlation coefficient

$$Cor(S_1, S_2) = \frac{\sum_{i,i'} (u_i - u_{i'}) (v_i - v_{i'})}{\sqrt{\sum_{i,i'} (u_i - u_{i'})^2} \sqrt{\sum_{i,i'} (v_i - v_{i'})^2}}$$

- Overestimate the behavior proximity (involves all pairs of observations)
- tendency effect sensitive
- generally used for a mapping not involving time distortion, but easily generalized to mapping *r* including time distortion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

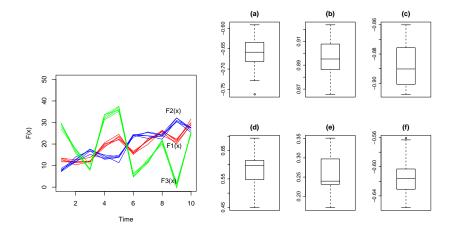
Temporal correlation coefficient

$$cort(S_1, S_2) = \frac{\sum_{i=1}^{p-1} (u_{a_{(i+1)}} - u_{a_i})(v_{b_{(i+1)}} - v_{b_i})}{\sqrt{\sum_{i=1}^{p-1} (u_{a_{(i+1)}} - u_{a_i})^2} \sqrt{\sum_{i=1}^{p-1} (v_{b_{(i+1)}} - v_{b_i})^2}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- $cort = 1 \Leftrightarrow$ Similar behaviors,
- $cort = -1 \Leftrightarrow \text{Opposite behaviors}$,
- $cort = 0 \Leftrightarrow Different behaviors$
- Noise sensitive

Illustration of cor vs cort distribution



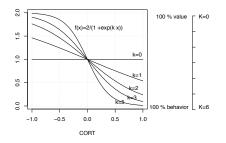
(a) $CORT(F_1, F_2)$, (b) $CORT(F_1, F_3)$) (c) $CORT(F_2, F_3)$, (d) $COR(F_1, F_2)$, (e) $COR(F_1, F_3)$, (f) $COR(F_2, F_3)$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Behavior and values based proximity measures

- Basic behavior and values proximity measure: a weighted linear function combining values and behavior proximity measure
- Adaptive proximity measure

$$D_k(S_1,S_2) = f(B(S_1,S_2)) \cdot V(S_1,S_2) ext{ with } f(x) = rac{2}{1+\exp(k\,x)} \ , \ k \geq 0$$



- k: the contribution of values and of behavior to D (to be learned)
- B: the behavior based proximity
- V : the values based proximity

Behavior and values based proximity measures

Example:

- Let $r = ((u_1, v_1), ..., (u_p, v_q))$ (without time warping)
- δ_E the proximity on values and *cort* the proximity on behavior

The adaptive proximity measure between S_1 and S_2 :

$$D_k(S_1, S_2) = f(cort(S_1, S_2)) \cdot \delta_E(S_1, S_2)$$

(日) (日) (日) (日) (日) (日) (日) (日)

Remark: V and B should be evaluated on the same mapping r

Unified formalism

Table 1					
A unified	formalism	for	time	series	metrics.

Туре	R	c(r)	Co(r)	Metric
Values	$R \subset M$	$\sum_{i=1}^{m} u_{a_i} - v_{b_i} $	-	$d_{Dtw} = \min_{r \in R} \left(\sum_{i=1}^{m} u_{a_i} - v_{b_i} \right)$
	$R = \{r_0\}$	$\left(\sum_{i=1}^m (u_i - v_i)^2\right)^{1/2}$	-	$d_E = c(r_0) = \left(\sum_{i=1}^{m} (u_i - v_i)^2\right)^{1/2}$
Behavior	$R = \{r_0\}$	-	Cor(r)	$d_{Cor} = 1 - Cor(r_0)$
	$R = \{r_0\}$	-	Cort(r)	$d_{Cort} = 1 - Cort(r_0)$
	$R \subset M$	-	Cor(r)	$dtw_{Cor} = \min_{r \in R} (1 - Cor(r))$
	$R \subset M$	-	Cort(r)	$dtw_{Cort} = \min_{r \in R} (1 - Cort(r))$
Val. &	$R = \{r_0\}$	$\left(\sum_{i=1}^{m} (u_i - v_i)^2\right)^{1/2}$	Cor(r)	$DE_k^{Cor} = \frac{2}{1 + \exp(k \operatorname{Cor}(r_0))} \left(\sum_{i=1}^m (u_i - v_i)^2 \right)^{1/2}$
	$R = \{r_0\}$	$\left(\sum_{i=1}^{m} (u_i - v_i)^2\right)^{1/2}$	Cort(r)	$DE_{k}^{Cort} = \frac{2}{1 + \exp(k \ Cort(r_{0}))} \left(\sum_{i=1}^{m} (u_{i} - v_{i})^{2}\right)^{1/2}$
Beh.	$R \subset M$	$\sum_{i=1}^{m} u_{a_i} - v_{b_i} $	Cor(r)	$DTW_k^{Cor} = \min_{r \in \mathbb{R}} \left(\frac{2}{1 + \exp(k \operatorname{Cor}(r))} \sum_{i=1}^m u_{a_i} - v_{b_i} \right)$
	$R \subset M$	$\sum_{i=1}^{m} u_{a_i} - v_{b_i} $	Cort(r)	$DTW_{k}^{Cort} = \min_{r \in R} \left(\frac{2}{1 + \exp(k \operatorname{Cort}(r))} \sum_{i=1}^{m} u_{a_{i}} - v_{b_{i}} \right)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

References

 J. Kruskall, M. Liberman, The symmetric time warping algorithm: From continuous to discrete. In Time Warps, String Edits and Macromolecules., Addison-Wesley., 1983.
 G. Navarro, A guided tour to approximate string matching, ACM Com- puting Surveys 33 (1) (2001) 31–88.

[3] D. Sankoff, J. Kruskal, Time warps, string edits, and macromolecules: the theory and practice of sequence comparison, Addison-Wesley, 1983.

[4] D. Yu, X. Yu, Q. Hu, J. Liu, A. Wu, Dynamic time warping constraint learning for large margin nearest neighbor classification, Information Sci- ences 181 (2011) 27872796.

[5] H. Sakoe, S. Chiba, Dynamic programming algorithm optimization for spo- ken word recognition, IEEE Transactions on Acoustics, Speech, and Signal Processing 26 (1) (1978) 4349.

[6] C. A. Ratanamahatana, E. Keogh, Making time-series classification more accurate using learned constraints, in: SIAM International Conference on Data Mining, 2004, pp. 1122.

[7] R. Gaudin, N. Nicoloyannis, An adaptable time warping distance for time series learning, in: the 5th International Conference on Machine Learning and Applictions., 2006, pp. 213218.

[8] Y. Jeong, M. Jeong, O. Omitaomu, Weighted dynamic time warping for time series classification, Pattern Recognition 44 (2011) 22312240.