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Dynamic time warping (DTW), which finds the minimum path by providing non-linear alignments

between two time series, has been widely used as a distance measure for time series classification and

clustering. However, DTW does not account for the relative importance regarding the phase difference

between a reference point and a testing point. This may lead to misclassification especially in applications

where the shape similarity between two sequences is a major consideration for an accurate recognition.

Therefore, we propose a novel distance measure, called a weighted DTW (WDTW), which is a penalty-

based DTW. Our approach penalizes points with higher phase difference between a reference point and a

testing point in order to prevent minimum distance distortion caused by outliers. The rationale

underlying the proposed distance measure is demonstrated with some illustrative examples. A new

weight function, called the modified logistic weight function (MLWF), is also proposed to systematically

assign weights as a function of the phase difference between a reference point and a testing point. By

applying different weights to adjacent points, the proposed algorithm can enhance the detection of

similarity between two time series. We show that some popular distance measures such as DTW and

Euclidean distance are special cases of our proposed WDTW measure. We extend the proposed idea to

other variants of DTW such as derivative dynamic time warping (DDTW) and propose the weighted

version of DDTW. We have compared the performances of our proposed procedures with other popular

approaches using public data sets available through the UCR Time Series Data Mining Archive for both

time series classification and clustering problems. The experimental results indicate that the proposed

approaches can achieve improved accuracy for time series classification and clustering problems.

& 2011 Published by Elsevier Ltd.
1. Introduction

There has been a long-standing interest for time series classi-
fication and clustering in diverse applications such as pattern
recognition, signal processing, biology, aerospace, finance, medi-
cine, and meteorology [1,2,8,12,14,18,23,25,26], and thus some
notable techniques have been developed including nearest
neighbor classifier with a given distance measure, support vector
machines, and neural networks [2,4,20]. The nearest neighbor
classifiers with dynamic time warping (DTW) has shown to be
effective for time series classification and clustering because of its
non-linear mappings capability [7,18,25]. The DTW technique finds
an optimal match between two sequences by allowing a non-linear
mapping of one sequence to another, and minimizing the distance
between two sequences [8,7,12,22]. The sequences are ’’warped’’
non-linearly to determine their similarity independent of any non-
linear variations in the time dimension. The technique was
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originally developed for speech recognition, but several
researchers have evaluated its application in other domains and
have developed several variants such as derivative DTW (DDTW)
[11,21,22]. Fig. 1 shows the example of process of aligning two out
of phase sequences by DTW.

The methodology for DTW is as follows. Assume a sequence A of
length m, A¼a1, a2, y, ai, y, am and a sequence B of length n,
B¼b1, b2, y, bj, y, bn. We create an m-by-n path matrix where the
(ith, jth) element of matrix contains the distance between the two

points ai and bj such that dðai,bjÞ ¼ 99ðai�bjÞ99p, where 99 � 99p

represents the lp norm. The warping path is typically subject to
several constraints such as [22]
Endpoint constraint: the starting and ending points of warping
path have to be the first and the last points of the path matrix,
that is, u1¼(a1, b1) and uk¼(am, bn).
Continuity constraint: the path can advance one step at a time.
That is, when uk¼(ai, bj), uk + 1¼(ai + 1, bj +1) where ai�ai + 1r1
and bi�bi +1r1.
Monotonicity: the path does not decrease, i.e., uk¼(ai, bj),
uk + 1¼(ai + 1, bj +1) where aiZai +1 and biZbi + 1.

www.elsevier.com/locate/pr
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Fig. 1. Alignment of sequences based on DTW: (a) two similar sequences, but out of phase and (b) alignment by DTW.

Fig. 2. Warping matrix and optimal warping path by DTW.
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The best match between two sequences is the one with the
lowest distance path after aligning one sequence to the other.
Therefore, the optimal warping path can be found by using
recursive formula given by

DTWpðA,BÞ ¼
ffiffiffiffiffiffiffiffiffiffi
gði,jÞp

p
where g(i, j) is the cumulative distance described by

gði,jÞ ¼ 9ai�bj9
p
þminfgði�1,j�1Þ,gði�1,jÞ,gði,j�1Þg ð1Þ

As seen from Eq. (1), given a search space defined by two time
series DTWp guarantees to find the warping path with the
minimum cumulative distance among all possible warping paths
that are valid in the search space. Thus, DTWp can be seen as the
minimization of warped lp distance with time complexity of O(mn).
By restraining a search space using constraint techniques such as
Sakoe–Chuba Band [22] and Itakura Parallelogram [7], the time
complexity of DTW can be reduced. Fig. 2 shows the warping
matrix and optimal warping path between two sequences by DTW.
In Fig. 2, a band with width w is used to constrain the warping.
However, the conventional DTW calculates the distance of all
points between two series with equal weight of each point
regardless of the phase difference between a reference point and
a testing point. This may lead to misclassification especially in
applications such as image retrieval where the shape similarity
between two sequences is a major consideration for an accurate
recognition, thus neighboring points between two sequences are
more important than others. In other words, relative significance
depending on the phase difference between points should be
considered.

Therefore, this paper proposes a novel distance measure, called
the weighted dynamic time warping (WDTW), which weights
nearer neighbors more heavily depending on the phase difference
between a reference point and a testing point. Because WDTW
takes into consideration the relative importance of the phase
difference between two points, this approach can prevent a
point in a sequence from mapping the further points in another
one and reduce unexpected singularities, which are align-
ments between a point of a series with multiple points of the
other series. Some practical examples will be presented to graphi-
cally illustrate possible situations where WDTW clearly is a better
approach.

In addition, a new weight function, called the modified logistic
weight function (MLWF), is proposed to assign weights as a
function of the phase difference between a reference point and a
testing point. The proposed weight function extends the properties
of logistic function to enhance the flexibility of setting bounds on
weights. By applying different weights to adjacent points, the
proposed algorithm can enhance the detection of similarity
between series.

Finally, we extend the proposed idea to other variants of DTW
such as derivative dynamic time warping (DDTW) and propose the
weighted version of DDTW (WDDTW). We compare the perfor-
mances of our proposed procedures with other popular approaches
using public data sets available through UCR Time Series Data
Mining Archive [13] for both time series classification and
clustering problems. The experimental results show that the
proposed procedures achieve improved accuracy for time series
classification and clustering problems.

This remainder of the paper is organized as follows. In Section 2,
we review some related literatures on times series classification
and its methodologies. Section 3 explains the rationale of the
advantage of the proposed idea. In Section 4, we describe the
proposed WDTW and the modified logistic weight function for
automatic time series classifications. The experimental results are
presented and discussed in Section 5. The paper ends with
concluding remarks and future works in Section 6.
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2. Related works

As a result of the increasing importance of time series classifica-
tion in diverse fields, lots of algorithms have been proposed for
different applications. Husken and Stagge [6] utilized recurrent
neural networks for time series classification and Guler and
Ubeyli [4] presented the wavelet-based adaptive neuro-fuzzy
inference system model for classification of ectroencephalogram
(EEG) signals. Rath and Manmatha [21] used DTW for word
image matching and compared the performance of DTW with
other popular techniques, including affine-corrected Euclidean
distance mapping, the shape context algorithm, and correlation
using sum of squared differences. Gullo et al. [5] developed a time
series representation model, called Derivative time series Segment
Approximation (DSA), which combines the notions of derivative
estimation, segmentation and segment approximation, for
supporting accurate and fast similarity detection in time series
data. Eads et al. [2] introduced a hybrid classification algorithm that
employs evolutionary computation for feature extraction, and a
support vector machine for classification with the selected
features. They tested their algorithm on a lightning classification
task using data acquired from the Fast On-orbit Recording of
Transient Events (FORTE) satellite.

In the area of new distance measures for time series classifica-
tion and clustering, Keogh and Pazzani [11] proposed a
modification of DTW, called Derivative Dynamic Time Warping
(DDTW), which transforms an original sequence into a higher level
feature of shape by estimating derivatives. By preventing the
production of unexpected singularities, DDTW has showed
promising results for several special cases such as (1) two
sequences differ in the Y-axis as well as X-axis, (2) cases in
which there are local differences in the Y-axis, for instance, a
peak in one sequence may be higher that the corresponding peak in
the other sequences.

However, DDTW retains the assumption that all points in the
sequence are weighted equally; that is, it is possible that a point of a
series may be matched with further neighboring points of the other
series, generating a similar problem as DTW. With a similar concept
to DDTW, Xie and Wiltgen [27] recently proposed an adaptive
feature based DTW, which was designed to align two sequences
with local and global features of each point in a sequence instead of
its value or derivative.
Fig. 3. Typical defect patterns on wafer map
3. Rationale for the performance advantages of WDTW

In this section, we will present the rationale underlying the
proposed WDTW with practical examples to graphically illustrate
situations where WDTW shows better performance than conven-
tional DTW. The first example deals with automatic classification of
defect patterns on semiconductor wafer maps. Fig. 3(a)–(d) shows
four common classes of defect patterns on wafer maps. Jeong et al.
[9] presented the effectiveness of using spatial correlograms (i.e.,
time series data) as new features for the classification of wafer
maps instead of original binary input variables for each pixel where
1 represents the defective chip (black color) and 0 indicates the
good chip (white color). Fig. 3(e)–(h) shows the corresponding
spatial correlograms of Fig. 3(a)–(d), respectively. In correlograms,
X-axis represents the spatial lags and Y-axis indicates their
corresponding statistic value.

The correlogram plots the standardized value of T(d) over the
spatial lag d where T(d) is given as follows for a given defective rate
(p) [9]:

TðdÞ ¼ pc00ðdÞþð1�pÞc11ðdÞ,

where c00(d) and c11(d) represents the total number of normal (0)-to-
normal (0) chip and defective (1)-to-defective (1) chip joins at a lag d

for a given wafer map, respectively (for more details, see [9]). Higher
value of T(d) means that defective chips or good chips exist together at
lag d. Fig. 4 shows the definition of neighbors (or joins) at lag d under a
Rook-move neighborhood (RMN) construction rule. In Fig. 4, the
black square represents a reference chip and red lines indicate
neighboring chips (i.e. neighbors of a reference chip) with spatial
lag d¼1. Similarly, blue lines present neighboring chips with
spatial lag d¼2.

If T(d) is large, the neighbors at distance d from a reference
defective chip (normal chip) include more defective chips (normal
chips) than expected. If T(d) is small, a reference defective chip
(normal chip) tends to have normal chips (defective chips) as its
neighbor at distance d. For example, in case of a cluster defect
pattern, correlogram in Fig. 3(f), shows larger value of T(d) for the
1st–5th lag, meaning that at those distances, defective chips are
clustered at certain areas. From 20th to 30th lags, statistic value is a
large negative, indicating that at that distance, defective chips
(normal chips) are joined with normal chips (defective chips).
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Thus, the comparison of statistic value at the same lag (or
neighboring lags) between two correlograms (or sequences) is
more meaningful when they are compared for defect pattern
classification and WDTW may choose higher value of g where g

is the control parameter for the penalization level in weighting
function. The higher g value, the more penalizing to points with
higher phase difference to determine the optimal weights (see
Section 4.2 for the detailed introduction of a weight function).

Figs. 5 and 6 show the classification results of a new observation
in testing data using DTW and WDTW, respectively. The red line
Fig. 4. RMN neighborhood construction rules.
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represents a new time series data that should be classified into one
of the classes, and blue and pink lines represent the training data
set. Fig. 5(a) shows the result of alignment using DTW, showing the
nearest distance among training data set. The distance is 41.31.
Fig. 5(b) shows the result of alignment using DTW, showing the
second nearest distance among training data set. The distance is
41.82. In case of DTW, some points in circle sequence (testing data,
red line) are matched with further points in cluster sequence,
distorting a minimum distance. Thus, a new testing sequence,
which should be classified into a circle class, is misclassified into a
clustering class. However, as shown in Fig. 6, our proposed distance
measure accurately classifies testing circle pattern into a same class
because it penalizes more a point with higher phase difference
between points, in other words, by preventing a point in a sequence
from matching further points in another one. Note that for this case
study, the optimal parameter g value for WDTW, which was
optimized using the validation data set, was found to be 0.4,
implicating much more penalizing for further points to increases
the classification accuracy because the matching between points
with same or neighboring lags is more meaningful for the
classification of defect patterns.

The second motivating example considers time series from
‘‘UCR Time Series Data Mining Archive.’’ The data consists of six
classes (Normal, Cycle, Increasing trend, Decreasing trend, Upward
shift, and Downward shift) [19]. Figs. 7 and 8 represent the
alignments generated by DTW and WDTW, respectively. The red
line indicates a new observation (in the test data) which is a
5 10 15 20 25 30 35 40

Circle pattern 

Cluster pattern 

g data, red line) vs. cluster pattern (an observation with the minimum distance using

vation in testing data, red line) vs. circle pattern (an observation with the second

rpretation of the references to colour in this figure legend, the reader is referred to the

5 10 15 20 25 30 35 40

ation in testing data, red line) vs. cluster pattern (an observation that showed the

b) Circle pattern (a new observation in testing data, red line) vs. circle pattern

DTW distance¼0.03. (For interpretation of the references to colour in this figure



0 10 20 30 40 50 60 0 10 20 30 40 50 60

Normal pattern Normal pattern 

Upward pattern Normal pattern 

Fig. 7. Control chart pattern alignments generated by DTW (a) normal (a new observation in testing data, red line) vs. upward shift (an observation with the minimum distance

using DTW in training data, blue line); DTW distance¼17.4. (b) Normal (a new observation in testing data, red line) vs. normal (an observation with the second minimum

distance using DTW in training data, pink line); DTW distance¼18.6. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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Fig. 8. Control chart pattern alignments generated by WDTW (g¼0.3). (a) Normal (a new observation in testing data, red line) vs. upward shift (an observation that showed the

minimum distance using DTW in training data, blue line); WDTW distance¼0.134. (b) Normal (a new observation in testing data, red line) vs. normal (an observation with the

minimum distance using WDTW in training data, pink line); WDTW distance¼0.123. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)
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‘‘Normal’’ pattern, and blue and pink line represents ‘‘Upward shift’’
and ‘‘Normal’’ pattern in the training data, respectively. In order to
correctly classify a given sequence, a point in the series should be
matched with nearer neighbors of the other series because all
sequences in the same class have similar shape. As shown in Fig. 7,
which shows the alignment by DTW, DTW maps a point in the red
sequence to the points with further distance in the blue sequence.
This alignment certainly does not have a positive impact on the
similarity evaluation of these two sequences even though they
have a minimum DTW distance between them. For example,
Fig. 7(a) presents the alignments by DTW between Normal
(a new observation in the testing data, red line) and Upward
shift (training data, blue line) with 17.4 of DTW distance while
Fig. 7(b) shows the alignments by DTW between Normal (a new
observation in the testing data, red line) and Normal (training data,
pink line) with 18.6 of DTW distance. Thus, DTW selects Upward
shift sequence as the best match for a new sequence of Normal
class, causing a misclassification. Meanwhile, Fig. 8(a) presents the
alignment by WDTW between Normal (a new observation in the
testing data, red line) and Upward shift (training data, blue line)
with 0.134 of WDTW distance while Fig. 8(b) shows the alignment
by WDTW between Normal (a new observation in the testing data,
red line) and Normal (training data, pink line) with 0.123 of WDTW
distance, correctly classifying Normal sequence. For WDTW,
parameter g value was optimized using validation data set and
was set to 0.3 in this case.
4. Proposed algorithm for time series classification

This section presents the proposed WDTW measure and a new
weighting function, so called modified logistic weight function
(MLWF) for time series data.
4.1. Weighted dynamic time warping

As mentioned earlier, the standard DTW calculates the distance
of all points with equal penalization of each point regardless of the
phase difference. The proposed WDTW penalizes the points
according to the phase difference between a test point and a
reference point to prevent minimum distance distortion by out-
liers. The key idea is that if the phase difference is low, smaller
weight is imposed (i.e., less penalty is imposed) because neighbor-
ing points are important, otherwise larger weight is imposed.

In the WDTW algorithm, when creating an m-by-n path matrix,
the distance between the two points ai and bj is calculated as

dwðai,bjÞ ¼ 99w i�jj jðai�bjÞ99p where w9i� j9 is a positive weight value

between the two points ai and bj. The proposed algorithm implies
that when we calculate the distance between ai in a sequence A and
bj in a sequence B, the weight value will be determined based on the
phase difference 9i� j9. In other words, if the two points ai and bj are
near, smaller weights can be imposed. Thus, the optimal distance
between the two sequences is defined as the minimum path over all
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possible paths as follows:

WDTWpðA,BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
g�ði,jÞp

p
ð2Þ

where g�ði,jÞ ¼ 9w9i�j9ðai�bjÞ9
p
þminfg�ði�1,j�1Þ,g�ði�1,jÞ,g�ði,j�1Þg.

Based on the classical analysis of lp spaces, we present the
following propositions that show some mathematical properties of
WDTW such as WDTWp distance decreases monotonically as p

increases and the opposite can be obtained under the specific
condition on the measured space.

Proposition 1. For 0opoqrN, WDTWp(ai,bj)ZWDTWq(ai,bj).

Proposition 2. For 0opoqrN, WDTWp(si,rj)r(2n�2)(1/p)�(1/q)

WDTWq(si,rj), where n is the length of the two sequences.

Given the lengths of two sequences are m and n, respectively, the
time complexity of WDTW is the same as DTW, which is O(mn).
There are weight factors to a distance calculation in WDTW, but each
cell in an m-by-n path matrix should be filled in with the same time.
Also, the best distance measure is related to the selection of p

because WDTWp can be seen as the minimization of the warped lp
weighed distance. Even though optimal p depends on applications, l1
and l2 are usually good choices to classify time series data set [15,17].

4.2. Modified logistic weight function

The next issue is how to systematically assign weights as a
function of the phase difference between two points. In this section,
we present our proposed modified logistic weight function (MLWF).
One of the most popular classical symmetric functions that use only
one equation is the logistic function. However, the standard form of
logistic function is not flexible in setting bounds on weights.
Therefore, in this paper, we propose modified logistic weight
function (MLWF), which extends the properties of logistic function.

The weight value w(i) is defined as

wðiÞ ¼
wmax

1þexpð�gði�mcÞÞ

� �
ð3Þ

where i¼1, y, m, m is the length of a sequence and mc is the
midpoint of a sequence. wmax is the desired upper bound for the
weight parameter, and g is an empirical constant that controls the
curvature (slope) of the function; that is, g controls the level of
penalization for the points with larger phase difference. The value
of g could range from zero to infinity, but we investigate the
characteristics of MLWF for four special cases. The characteristics of
these four cases are summarized as follows: (1) Constant weight:
This is the case in which all points are given the same weight. This
can be achieved when g¼0. (2) Linear weight: This is applicable to
cases in which the weight is linearly proportional to the extent of
the distance. This is the case when g¼0.05, then the value of w(i) is
nearly a linearly increasing relationship. (3) Sigmoid weight:
Different sigmoid pattern can be achieved using different values
of g. For example, the weight function follows a sigmoid pattern
when g¼0.25. (4) Two distinct weights: In this case, the first one-half
is given one weight and the second one-half is given another
weight. This is possible when g¼3. The pictorial representations of
the different weights for these g values are shown in Fig. 9. Fig. 9
also shows that the profile for MLWF is symmetric around the
midpoint (mc) of the total length of a sequence. For Fig. 9, the m and
wmax are set to 100 and 1, respectively. It has been shown that a
linear weighting profile and a sigmoidal pattern of weighting
profile can be obtained by setting g¼0.05 and g¼0.25,
respectively. Setting g¼3 results in two distinct weights.

Remark 1. Conventional DTW and Euclidean distance measures
are special cases of the proposed WDTW. For example, when w9i� j9

is constant, i.e., g¼0 in MLWF, with regard to phase 9i� j9, WDTW is
equivalent to DTW. However, as w9i� j9 becomes smaller, i.e., g

becomes larger, for the points in nearer phase 9i� j9, WDTW will be
closer to Euclidean distance because it does not allow non-linear
alignments of one point to another. By choosing the appropriate g

value, WDTW can achieve improved performance in diverse
situations.
Remark 2. Based on our empirical study, the range of optimal g is
distributed from 0.01 to 0.6. Smaller g means the less penalty for
further points in the sequence, thus WDTW performance is similar
to DTW. For example, in case of the signals with common initial
phase shift, smaller penalty (or g) will be selected. For larger g,
WDTW considers higher penalty for further points, leading to a
similar performance of Euclidean distance.
4.3. Weighted derivative dynamic time warping (WDDTW)

The proposed weighted concept can be extended to variants of
DTW. In this subsection, we extend the proposed idea to derivative
dynamic time warping (DDTW) [11], which is one popular variant of
DTW, and propose the weighted version of DDTW (WDDTW). Because
DTW may try to explain variability in the Y-axis by warping the X-axis,
this may lead to the unexpected singularities, which are alignments
between a point of a series with multiple points of the other series,
and unintuitive alignments. In order to overcome those weaknesses of
DTW, DDTW transforms the original points into the higher level
features, which contain the shape information of a sequence. The
estimate equation for transforming data point ai in the sequence A is
given by [11]

DAðd
a
i Þ ¼
ðai�ai�1Þþððaiþ1�ai�1Þ=2Þ

2
, 1o iom

where m is the length of sequence A. Because the first and last

estimates are not defined, it is considered that da
1 ¼ da

2 and da
m ¼ da

m�1.

The weighted version of DDTW is given as follows:

WDDTWpðDA,DBÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
x�ði,jÞp

q
ð4Þ

where x�ði,jÞ ¼ 9w9i�j9ðd
a
i �db

j Þ9
p
þminfx�ði�1,j�1Þ, x�ði�1,jÞ,x� ði,j�1Þg,

and DA and DB are the transformed sequences from sequence A and
B, respectively.
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5. Experimental results

5.1. Performance comparison for time series classification

In this section, we perform extensive experiments to verify the
effectiveness of the proposed algorithm for time series classifica-
tion and clustering. All data sets, which include real-life time series,
synthetic time series, and generic time series, come from different
application domains and are obtained from ‘‘UCR Time Series Data
Mining Archive’’ [13]. For the detailed descriptions of the data sets,
please see Ratanamahatana and Keogh [20].

Euclidean distance, conventional DTW, and DDTW techniques are
selected for comparison with the proposed algorithm. In addition, for
comparison with state-of-art for time series similarity search, we
implement the Longest Common Subsequence (LCSS), which is one of
the popular methods for time series similarity because of its robust-
ness to noise [24]. LCSS measure has two parameters, d and e, which
should be optimized using validating data set. The constantd, which is
usually set to less than 20% of the sequence length, controls the
window size in order to match a given point from one sequence to a
point in another sequence. The constant e, where 0oeo1, is the
matching threshold (please refer to [24] in details). In this paper, we
use 1-nearest neighbor classifier because the 1-nearest neighbor
classifier with DTW showed very competitive performance and has
been widely used for time series classification [26].

For WDTW, two parameters should be fixed prior to the
evaluation of testing performance. Different wmax does not affect
its performance, thus, we set wmax to 1 in this work. In addition,
because an optimal g value is different depending on the applica-
tion domains, we choose the optimal g value using the validation
data set after we divide the given data set into training, validating,
and testing sets.

Table 1 shows the classification accuracy of the four different
procedures for each data set. In this work, the error rate is
calculated as follows:
Table 1
Summary of classification performance.

Data name Number

of

classes

Size of

training

set

Size of

validating

set

Size of

testing

set

Time

series

length

Synthetic

control

6 300 150 150 60

Gun-point 2 50 75 75 150

CBF 3 30 450 450 128

Face (all) 14 560 845 845 131

OSU leaf 6 200 121 121 427

Swedish leaf 15 500 313 312 128

50 words 50 450 228 227 270

Trace 4 100 50 50 275

Two patterns 4 1000 1000 3000 128

Wafer 2 1000 1000 5164 152

Face (four) 4 24 44 44 350

Lightning-2 2 60 31 30 637

Lightning-7 7 70 37 36 319

ECG 2 100 50 50 96

Adiac 37 390 196 195 176

Yoga 2 300 1000 2000 426

Fish 7 75 88 87 463

Beef 5 30 15 15 470

Coffee 2 28 14 14 286

Olive oil 4 30 15 15 570

a ED: Euclidean distance, d: % of sequence length.

Error rate¼
ðtotal number of testing dataÞ�ðtotal number of correctly

ðtotal number of testing dataÞ
As seen in Table 1, our proposed distance measures, WDTW and
WDDTW, clearly outperform standard DTW, DDTW, and LCSS
measures. In most of cases, the accuracies of WDTW and
WDDTW is better (or equal in a few cases) than those of DTW
and DDTW. In addition, we can see that depending on the
application domains, DDTW results in better accuracy than
DTW. The experimental results indicate that our proposed
procedures are quite promising for automatic time series
classifications in diverse applications. Note that when g becomes
smaller, the error rate for WDTW becomes similar to that of DTW.
5.2. Effect of parameter values in WDTW

For WDTW, two parameters should be considered prior to the
evaluation of testing performance. The wmax, which is used to set
the maximum of weight values, does not influence on the accuracy
of experimental results in this study because weight is positive and
wmax represents the full scale of weights in MLWF. For example,
Fig. 10 presents the MLWF with different wmax values. Regardless of
wmax value, MLWF retains its shape, implying that MLWF assigns
weights with constant ratios to points in a sequence.

In addition, WDTW should choose the optimal g value depend-
ing on the application domains. Fig. 11 shows the effect of g to the
error rates of the validation data for the ‘‘Swedish Leaf’’ data set.
‘‘Swedish Leaf’’ data set was split into a training set of 500 samples,
a validation set of 313 samples, and a test set of 312 samples. As
shown in Fig. 11, at the beginning, as g value increases, error rate
decreases because nearer points are heavily weighed so that it is
highly possible that sequence with a similar shape is chosen with
minimum distance. However, as g value increases continuously,
error rate increases after reaching the minimum error rate (0.115)
because too large g value does not allow non-linear alignments of
one point to another. In order words, WDTW with large g value will
achieve similar performance to Euclidean distance measure as
Error rates

EDa DTW WDTW (g) DDTW WDDTW (g) LCSS (d*, e)

0.153 0.007 0.002 (0.3) 0.433 0.433 (0.01) 0.033 (5, 0.6)

0.093 0.080 0.040 (0.2) 0 0 (0.1) 0.027 (6, 0.1)

0.136 0.002 0.002 (0.08) 0.418 0.418 (0.01) 0.004 (6, 0.3)

0.319 0.258 0.257 (0.01) 0.144 0.131 (0.1) 0.300 (2, 0.1)

0.438 0.388 0.372 (0.6) 0.116 0.091 (0.01) 0.231 (11, 0.2)

0.218 0.210 0.138 (0.03) 0.115 0.096 (0.6) 0.122 (5, 0.2)

0.352 0.317 0.194 (0.1) 0.330 0.216 (0.1) 0.255 (6, 0.1)

0.240 0 0 (0.01) 0 0 (0.01) 0.100 (2, 0.2)

0.09 0 0 (0.01) 0.002 0.003 (0.1) 0.002 (14, 0.1)

0.005 0.004 0.002 (0.3) 0.023 0.006 (0.1) 0.004 (3, 0.5)

0.182 0.136 0.136 (0.1) 0.273 0.250 (0.1) 0.023 (2, 0.1)

0.200 0.100 0.100 (0.1) 0.367 0.133 (0.03) 0.167 (4, 0.1)

0.472 0.222 0.200 (0.1) 0.278 0.228 (0.1) 0.277 (5, 0.3)

0.180 0.180 0.140 (0.5) 0.220 0.160 (0.6) 0.16 (2, 0.2)

0.390 0.390 0.364 (0.1) 0.426 0.333 (0.4) 0.569 (3, 0.1)

0.174 0.165 0.165 (0.1) 0.176 0.175 (0.1) 0.141 (4, 0.1)

0.184 0.1379 0.126 (0.01) 0.126 0.023 (0.1) 0.057 (6, 0.1)

0.600 0.600 0.600 (0.2) 0.400 0.333 (0.1) 0.800 (1, 0.1)

0.200 0.133 0.133 (0.01) 0.071 0 (0.4) 0.2667 (1, 0.4)

0.188 0.188 0.188 (0.01) 0.313 0.313 (0.01) 0.857 (1, 0.3)

classified dataÞ
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shown in Table 1. This example indicates that WDTW can adjust the
level of penalization of the phase difference on each point by using
different g value depending on applications.
5.3. Performance comparison for time series clustering

Since WDTW is essentially a distance measure that can be
generally used with different data mining tasks that consider the
distance between two observations, we can extend the applications
of WDTW to different tasks such as a clustering problem. Following
the procedures of several literatures [10,18,25], which presented
DTW-based K-means method for time series clustering, we
compare the performance of WDTW with that of DTW. As
evaluation measures for validating a clustering quality, we used
entropy and F-measure for external cluster validity and average
within-cluster-distance (the intra-cluster compactness) and
average between-cluster-distance (the inter-cluster separation)
for internal cluster validity [16,28].

Given data set belonging to I classes and partitioning them into J

clusters using clustering algorithms, let n be the size of data set, ni

be the size of class i, nj be the size of cluster j, and nij be the number
of data belonging to both class i and cluster j. Then, Entropy and
F-measure can be calculated as follows [16]:

Entropy¼
XJ

j ¼ 1

nj

n
�
XI

i ¼ 1

Pði,jÞlog2 Pði,jÞ

 !

F-measure¼
XI

i ¼ 1

ni

n
max

0o jo J

2� Rði,jÞ � Pði,jÞ

Rði,jÞþPði,jÞ

� �

where R(i,j)¼nij/ni and Pði,jÞ ¼ nij=nj. The lower the value of entropy,
the higher the clustering quality, on the contrary, the higher the
value of F-measure, the better the clustering quality. For internal
cluster criteria, average within-cluster-distance (dave_within) and
average between-cluster-distance (dave_bet) are calculated by [10]

dave_within ¼
1

KNi

XK

i ¼ 1

XNi

j ¼ 1

dðCi,XjÞ

dave_bet ¼
1

M

XK

i ¼ 1

XK

j4 i

dðCi,CjÞ



Table 2
Summary of clustering performance.

Data name Number of

classes

Data

size

Length External cluster validity Internal cluster validity

Entropy F-measure Average within-cluster-distance Average between-cluster-distance

EDa DTW WDTW EDa DTW WDTW EDa DTW WDTW EDa DTW WDTW

Gun-point 2 200 150 1.012 0.999 0.336 0.5 0.505 0.886 3.989 3.865 3.797 7.223 7.384 7.549
Trace 4 200 275 1.807 1.621 1.621 0.482 0.588 0.588 4.399 4.391 4.806 15.969 18.080 17.901

Face (four) 4 112 350 0.925 0.877 0.916 0.758 0.797 0.778 13.566 13.653 12.108 11.957 12.021 16.274
Lighting 2 2 121 637 0.953 0.943 0.868 0.579 0.595 0.612 20.112 18.112 18.693 8.297 14.335 16.566
ECG 2 200 96 0.807 0.807 0.752 0.737 0.737 0.769 5.809 4.909 4.461 2.533 7.523 8.079
Beef 5 60 470 1.916 1.917 1.906 0.503 0.504 0.542 0.394 0.384 0.354 1.667 1.878 2.069
Coffee 2 56 286 0.891 0.719 0.719 0.631 0.773 0.773 35.769 34.817 32.722 82.319 79.539 83.561
Olive oil 4 60 570 1.319 1.235 1.214 0.636 0.669 0.685 0.079 0.079 0.053 0.126 0.125 0.183

a ED: Euclidean distance.
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where M¼
PK�1

m ¼ 1 m is the number of pairs of cluster centers,

d(Ci,Xj) is the distance between time series j in the cluster i and the
cluster center of cluster i, and d(Ci,Cj) is the distance between
cluster centers of cluster i and cluster j. In addition, K and Ni the
number of clusters and the number of items in cluster i,
respectively. The smaller the value of average within-cluster-
distance, the more compact each cluster, and the bigger the
value of average between-cluster-distance, the more separate
the clusters.

Table 2 shows the clustering results of 8 data sets out of 20 data
sets. The cluster validity measures in Table 2 present the average
values of 5 runs with the same data set. As for the value of g for
WDTW, we used the selected value in Table 1 instead of optimizing
it for a clustering purpose. As shown in Table 2, in most cases,
WDTW outperforms both Euclidean distance and DTW even
though we did not optimize the value of g for WDTW in terms of
both external and internal cluster validity measures. Even though
we used only data sets that have either small number of
observations or low dimension of an input vector due to the
limitation of computational time, similar conclusion can be made
for the remaining data sets.
6. Conclusion

A new distance measures for time series data, WDTW and
WDDTW, are proposed to classify or cluster time series data set in
diverse applications. Compared with the conventional DTW and
DDTW, the proposed algorithm weighs each point according to the
phase difference between a test point and a reference point. The
proposed method is the generalized distance measure of Euclidean
distance, DTW, and DDTW, and maximizes its effectiveness with
optimal g value depending on different applications. A new
weighting function, called modified logistic weight function, is
developed to systematically assign weights depending on the
distance between time series points.

The extensive experimental results using public data sets from
diverse applications indicate that WDTW and WDDTW with optimal
weights have great potential for improving the accuracy for time
series classification and clustering. As a part of future research, our
proposed algorithm could be combined with some of the pruning
techniques such as LB_Keogh and warping-window-DTW to reduce
computational time for more massive time series data sets.
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Appendix

Proof of Proposition 1

By classical analysis of lp spaces [3, pp. 181–186], for
0opoqrN, we obtain that 99x99pZ99x99q where x is a sequence.
Let a and b denote two sequences with the same length, respec-
tively. Given the two aligned sequences a* and b*, it is true

99a��b�99pZ99a��b�99q, so 99wða��b�Þ99pZ99wða��b�Þ99q due to

w40. Therefore, WDTWpða�,b
�
ÞZWDTWqða�,b

�
Þ.

Proof of Proposition 2

By classical analysis of lp spaces [3, pp. 181–186], given x sequence
with n length, 99x99pr9(n)(1/p)�(1/q)99x99q for 0opo
qrN. In addition, the length of a minimal warping path in DTW
is at most 2n�2 when n41 [15]. Given the two aligned sequences a*

and b*, it is true that 99a��b�99prð2n�2Þð1=pÞ�ð1=qÞ99 a��b�99qr .

Thus, 99wða��b�Þ99prð2n�2Þð1=pÞ�ð1=qÞ99wða��b�Þ99q due to w40.

Therefore, WDTWpða�,b
�
Þr ð2n�2Þð1=pÞ�ð1=qÞ WDTWqða�,b

�
Þ.
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