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The dynamic time warping (DTW) is a popular similarity measure between time series. The DTW fails to
satisfy the triangle inequality and its computation requires quadratic time. Hence, to find closest neigh-
bors quickly, we use bounding techniques. We can avoid most DTW computations with an inexpensive
lower bound (LB_Keogh). We compare LB_Keogh with a tighter lower bound (LB_Improved). We find that
LB_Improved-based search is faster. As an example, our approach is 2–3 times faster over random-walk
and shape time series.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic time warping (DTW) was initially introduced to rec-
ognize spoken words [1], but it has since been applied to a wide
range of information retrieval and database problems: handwriting
recognition [2,3], signature recognition [4,5], image de-interlacing
[6], appearance matching for security purposes [7], whale vocal-
ization classification [8], query by humming [9,10], classification of
motor activities [11], face localization [12], chromosome classifica-
tion [13], shape retrieval [14,15], and so on. Unlike the Euclidean
distance, DTW optimally aligns or “warps” the data points of two
time series (see Fig. 1).

When the distance between two time series forms a metric, such
as the Euclidean distance or the Hamming distance, several index-
ing or search techniques have been proposed [16–20]. However,
even assuming that we have a metric, Weber et al. have shown
that the performance of any indexing scheme degrades to that of a
sequential scan, when there are more than a few dimensions [21].
Otherwise—when the distance is not a metric or that the number
of dimensions is too large—we use bounding techniques such as
the generic multimedia object indexing (GEMINI) [22]. We quickly
discard (most) false positives by computing a lower bound.

Ratanamahatana and Keogh [23] argue that their lower bound
(LB_Keogh) cannot be improved upon. To make their point, they
report that LB_Keogh allows them to prune out over 90% of all DTW
computations on several data sets.
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We are able to improve upon LB_Keogh as follows. The first
step of our two-pass approach is LB_Keogh itself. If this first lower
bound is sufficient to discard the candidate, then the computation
terminates and the next candidate is considered. Otherwise, we pro-
cess the time series a second time to increase the lower bound
(see Fig. 5). If this second lower bound is large enough, the can-
didate is pruned, otherwise we compute the full DTW. We show
experimentally that the two-pass approach can be several times
faster.

The paper is organized as follows. In Section 4, we define the
DTW in a generic manner as the minimization of the lp norm
(DTWp). Among other things, we show that if x and y are separated
by a constant (x�c�y or x�c�y) then the DTW1 is the l1 norm
(see Proposition 1). In Section 5, we compute generic lower bounds
on the DTW and their approximation errors using warping en-
velopes. In Section 6, we show how to compute the warping
envelopes quickly. The next two sections introduce LB_Keogh and
LB_Improved, respectively. Section 9 presents the application of
these lower bounds for multidimensional indexing, whereas the last
section presents an experimental comparison.

2. Conventions

Time series are arrays of values measured at certain times. For
simplicity, we assume a regular sampling rate so that time series are
generic arrays of floating-point values. Time series have length n and
are indexed from 1 to n. The lp norm of x is ‖x‖p=(

∑
i |xi|p)1/p for any

integer 0<p<∞ and ‖x‖∞=maxi |xi|. The lp distance between x and
y is ‖x−y‖p and it satisfies the triangle inequality ‖x−z‖p�‖x−y‖p+
‖y − z‖p for 1�p�∞. The distance between a point x and a set or
region S is d(x, S)=miny∈S d(x, y). Other conventions are summarized
in Table 1.
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Fig. 1. Dynamic time warping example.

Table 1
Frequently used conventions.

n Length of a time series
‖x‖p lp norm
DTWp Monotonic DTW
NDTWp Non-monotonic DTW
w DTW locality constraint
U(x), L(x) Warping envelope (see Section 5)
H(x, y) Projection of x on y (see Eq. (1))

3. Related works

Beside DTW, several similarity metrics have been proposed
including the directed and general Hausdorff distance, Pearson's
correlation, nonlinear elastic matching distance [24], edit distance
with real penalty (ERP) [25], Needleman–Wunsch similarity [26],
Smith–Waterman similarity [27], and SimilB [28].

Boundary-based lower-bound functions sometimes outperform
LB_Keogh [29]. We can also quantize [30] the time series.

Sakurai et al. [31] have shown that retrieval under the DTW can
be faster by mixing progressively finer resolution and by applying
early abandoning [32] to the dynamic programming computation.

4. Dynamic time warping

Amany-to-manymatching between the data points in time series
x and the data point in time series y matches every data point xi in
x with at least one data point yj in y, and every data point in y with
at least a data point in x. The set of matches (i, j) forms a warping
path �. We define the DTW as the minimization of the lp norm of
the differences {xi − yj}(i,j)∈� over all warping paths. A warping path
is minimal if there is no subset �′ of � forming an warping path: for
simplicity we require all warping paths to be minimal.

In computing the DTW distance, we commonly require the warp-
ing to remain local. For time series x and y, we align values xi and yj
only if |i− j|�w for some locality constraint w�0 [1]. When w= 0,
the DTW becomes the lp distance, whereas when w�n, the DTW
has no locality constraint. The value of the DTW diminishes mono-
tonically as w increases. (We do not consider other forms of locality
constraints such as the Itakura parallelogram [33].)

Other than locality, DTW can be monotonic: if we align value xi
with value yj, then we cannot align value xi+1 with a value appearing
before yj (yj′ for j′<j).

We note the DTW distance between x and y using the lp norm as
DTWp(x, y) when it is monotonic and as NDTWp(x, y) when mono-
tonicity is not required.

By dynamic programming, the monotonic DTW requires O(wn)
time. A typical value of w is n/10 [23] so that the DTW is in O(n2). To
compute the DTW, we use the following recursive formula. Given an

array x, we write the suffix starting at position i, x(i) = xi, xi+1, . . . , xn.
The symbol ⊕ is the exclusive or. Write qi,j =DTWp(x(i), y(j))

p so that
DTWp(x, y)= p

√
q1,1, then

qi,j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if |x(i)| = |y(j)| = 0

∞ if |x(i)| = 0⊕ |y(j)| = 0

or |i− j|>w

|xi − yj|p
+min(qi+1,j, qi,j+1, qi+1,j+1) otherwise

For p = ∞, we rewrite the preceding recursive formula with qi,j =
DTW∞(x(i), y(j)), and qi,j=max(|xi−yj|,min(qi+1,j, qi,j+1, qi+1,j+1)) when
|x(i)|�0, |y(j)|�0, and |i− j|�w.

We can compute NDTW1 without locality constraint in O(n logn)
[34]: if the values of the time series are already sorted, the compu-
tation is in O(n) time.

We can express the solution of the DTW problem as an alignment
of the two initial time series (such as x = 0, 1, 1, 0 and y = 0, 1, 0, 0)
where some of the values are repeated (such as x′ = 0, 1, 1, 0,0 and
y′ = 0, 1,1, 0, 0). If we allow non-monotonicity (NDTW), then values
can also be inverted.

The non-monotonic DTW is no larger than the monotonic DTW
which is itself no larger than the lp norm: NDTWp(x, y)�DTWp(x, y)�
‖x− y‖p for all 0<p�∞.

The DTW1 has the property that if the time series are value-
separated, then the DTW is the l1 norm as the next proposition
shows. In Figs. 3 and 4, we present value-separated functions: their
DTW1 is the area between the curves.

Proposition 1. If x and y are such that either x�c�y or x�c�y for
some constant c, then DTW1(x, y)= NDTW1(x, y)= ‖x− y‖1.

Proof. Assume x�c�y. Consider the two aligned (and extended)
time series x′, y′ such that NDTW1(x, y) = ‖x′ − y′‖1. We have that
x′�c�y′ and NDTW1(x, y)=‖x′ −y′‖1=

∑
i |x′i−y′i|=

∑
i |x′i− c|+ |c−

y′i|=‖x′ − c‖1+‖c−y′‖1�‖x− c‖1+‖c−y‖1=‖x−y‖1. Since we also
have NDTW1(x, y)�DTW1(x, y)�‖x− y‖1, the equality follows. �

Proposition 1 does not hold for p>1: DTW2((0, 0, 1, 0), (2, 3, 2, 2))=√
17, whereas |(0, 0, 1, 0)− (2, 3, 2, 2)|2 =

√
18.

5. Computing lower bounds on the DTW

Given a time series x, define U(x)i=maxk {xk‖k−i|�w} and L(x)i=
mink {xk‖k − i|�w} for i = 1, . . . ,n. The pair U(x) and L(x) forms the
warping envelope of x (see Fig. 2). We leave the locality constraint
w implicit.
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Fig. 2. Warping envelope example.
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The theorem of this section has an elementary proof requiring
only the following technical lemma.

Lemma 1. If b ∈ [a, c] then (c−a)p� (c−b)p+ (b−a)p for 1�p<∞.

Proof. For p= 1, (c− b)p + (b− a)p = (c− a)p. For p>1, by deriving
(c−b)p+ (b−a)p with respect to b, we can show that it is minimized
when b=(c+a)/2 and maximized when b ∈ {a, c}. The maximal value
is (c− a)p. Hence the result. �

The following theorem introduces a generic result that we use
to derive two lower bounds for the DTW including the original
Keogh–Ratanamahatana result [35]. Indeed, this new result not only
implies the lower bound LB_Keogh, but it also provides a lower
bound to the error made by LB_Keogh, thus allowing a tighter lower
bound (LB_Improved).

Theorem 1. Given two equal-length time series x and y and 1�p<∞,
then for any time series h satisfying xi�hi�U(y)i or xi�hi�L(y)i or
hi = xi for all indexes i, we have

DTWp(x, y)
p
�NDTWp(x, y)

p

� ‖x− h‖pp + NDTWp(h, y)
p

For p = ∞, a similar result is true: DTW∞(x, y)�NDTW∞(x, y)�
max(‖x− h‖∞, NDTW∞(h, y)).

Proof. Suppose that 1�p<∞. Let � be a warping path such
that NDTWp(x, y)

p = ∑
(i,j)∈� |xi − yj|pp. By the constraint on h and

Lemma 1, we have that |xi − yj|p� |xi − hi|p + |hi − yj|p for any
(i, j) ∈ � since hi ∈ [min(xi, yj),max(xi, yj)]. Hence, we have that
NDTWp(x, y)

p
�

∑
(i,j)∈� |xi−hi|p+|hi−yj|p�‖x−h‖pp+

∑
(i,j)∈� |hi−yj|p.

This proves the result since
∑

(i,j)∈� |hi−yj|�NDTWp(h, y). For p=∞,
we have that

NDTW∞(x, y)= max
(i,j)∈�

|xi − yj|

� max
(i,j)∈�

max(|xi − hi|, |hi − yj|)

= max(‖x− h‖∞, NDTW∞(h, y))
concluding the proof. �

While Theorem 1 defines a lower bound (‖x−h‖p), the next propo-
sition shows that this lower bound must be a tight approximation
as long as h is close to y in the lp norm.

Proposition 2. Given two equal-length time series x and y, and
1�p�∞ with h as in Theorem 1, we have that ‖x−h‖p approximates
both DTWp(x, y) and NDTWp(x, y) within ‖h− y‖p.

Proof. By the triangle inequality over lp, we have ‖x − h‖p + ‖h −
y‖p�‖x − y‖p. Since ‖x − y‖p�DTWp(x, y), we have ‖x − h‖p +
‖h − y‖p�DTWp(x, y), and hence ‖h − y‖p�DTWp(x, y) − ‖x − h‖p.
This proves the result since by Theorem 1, we have that
DTWp(x, y)�NDTWp(x, y)�‖x− h‖p. �

This bound on the approximation error is reasonably tight. If x
and y are separated by a constant, then DTW1(x, y) = ‖x − y‖1 by
Proposition 1 and ‖x− y‖1 =

∑
i |xi − yi| =

∑
i |xi − hi| + |hi − yi| = ‖x−

h‖1 +‖h− y‖1. Hence, the approximation error is exactly ‖h− y‖1 in
such instances.

6. Warping envelopes

The computation of the warping envelope U(x), L(x) requires
O(nw) time using the naive approach of repeatedly computing the
maximum and the minimum over windows. Instead, we compute
the envelope with at most 3n comparisons between data-point
values [36] using Algorithm 1.
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Fig. 3. LB_Keogh example: the area of the marked region is LB_Keogh1(x, y).

Algorithm1. Streaming algorithm to compute thewarping envelope
using no more than 3n comparisons.

input a time series y indexed from 1 to n
input some DTW locality constraint w
return warping envelope U, L (two time series of length n)
u, l← empty double-ended queues, we append to “back”
append 1 to u and l
for i in {2, . . . ,n} do

if i�w+ 1 then
Ui−w ← yfront(u), Li−w ← yfront(l)

if yi >yi−1 then
pop u from back
while yi >yback(u) do

pop u from back
else

pop l from back
while yi <yback(l) do

pop l from back
append i to u and l
if i= 2w+ 1+ front(u) then

pop u from front
else if i= 2w+ 1+ front(l) then

pop l from front
for i in {n+ 1, . . . ,n+w} do

Ui−w ← yfront(u), Li−w ← yfront(l)
if i-front(u)�2w+ 1 then

pop u from front
if i-front(l)�2w+ 1 then

pop l from front

7. LB_Keogh

Let H(x, y) be the projection of x on y defined as

H(x, y)i =
⎧⎨
⎩
U(y)i if xi�U(y)i
L(y)i if xi�L(y)i
xi otherwise

(1)

for i = 1, 2, . . . ,n. We have that H(x, y) is in the envelope of y. By
Theorem 1 and setting h=H(x, y), we have that NDTWp(x, y)

p
�‖x−

H(x, y)‖pp+NDTWp(H(x, y), y)
p for 1�p<∞. Write LB_Keoghp(x, y)=

‖x − H(x, y)‖p (see Fig. 3), then LB_Keoghp(x, y) is a lower bound to
NDTWp(x, y) and thus DTWp(x, y). The following corollary follows
from Theorem 1 and Proposition 2.
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Corollary 1. Given two equal-length time series x and y and 1�p�∞,
then

• LB_Keoghp(x, y) is a lower bound to the DTW:

DTWp(x, y)�NDTWp(x, y)�LB_Keoghp(x, y)

• the accuracy of LB_Keogh is bounded by the distance to the envelope:

DTWp(x, y)− LB_Keoghp(x, y)�‖max{U(y)i − yi, yi − L(y)i}i‖p
for all x.

Algorithm 2 shows how LB_Keogh can be used to find a nearest
neighbor in a time-series database. We used DTW1 for all implemen-
tations (see Appendix C). The computation of the envelope of the
query time series is done once (see line 4). The lower bound is com-
puted in lines (lines 7–12). If the lower bound is sufficiently large,
the DTW is not computed (see line 13). Ignoring the computation of
the full DTW, at most (2N + 3)n comparisons between data points
are required to process a database containing N time series.

Algorithm 2. LB_Keogh-based nearest-neighbor algorithm.

1: input a time series y indexed from 1 to n
2: input a set S of candidate time series
3: return the nearest neighbor B to y in S under DTW1
4: U, L← envelope(y)
5: b←∞ {b stores minx∈S DTW1(x, y)}
6: for candidate x in S do
7: �← 0 {� stores the lower bound}
8: for i ∈ {1, 2, . . . ,n} do
9: if xi >Ui then
10: �← �+ xi − Ui
11: else if xi < Li then
12: �← �+ Li − xi
13: if �<b then
14: t← DTW1(a, c) {We compute the full DTW.}
15: if t <b then
16: b← t
17: B← c

8. LB_Improved

In the previous section, we saw that NDTWp(x, y)
p
�LB_Keoghp

(x, y)p + NDTWp(H(x, y), y)
p for 1�p<∞. In turn, we have

NDTWp(H(x, y), y)�LB_Keoghp(y,H(x, y)). Hence, write

LB_Improvedp(x, y)
p = LB_Keoghp(x, y)

p + LB_Keoghp(y,H(x, y))
p

for 1�p<∞. By definition, we have LB_Improvedp(x, y)�
LB_Keoghp(x, y). Intuitively, whereas LB_Keoghp(x, y) measures the
distance between x and the envelope of y, LB_Keoghp(y,H(x, y))
measures the distance between y and the envelope of the projection
of x on y (see Fig. 4). The next corollary shows that LB_Improved is
a lower bound to the DTW.

Corollary 2. Given two equal-length time series x and y and
1�p<∞, then LB_Improvedp(x, y) is a lower bound to the DTW:
DTWp(x, y)�NDTWp(x, y)�LB_Improvedp(x, y).

Proof. Recall that LB_Keoghp(x, y) = ‖x − H(x, y)‖p. First apply
Theorem 1: DTWp(x, y)

p
�NDTWp(x, y)

p
�LB_Keoghp(x, y)

p +
NDTWp(H(x, y), y)

p. Apply Theorem 1 once more: NDTWp(y,H(x, y))
p

�LB_Keoghp(y,H(x, y))
p. By substitution, we get DTWp(x, y)

p
�

NDTWp(x, y)
p
�LB_Keoghp(x, y)

p + LB_Keoghp(y,H(x, y))
p thus prov-

ing the result. �
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Fig. 4. LB_Improved example: the area of the marked region is LB_Improved1(x, y).

Algorithm 3 shows how to apply LB_Improved as a two-step pro-
cess (see Fig. 5). Initially, for each candidate x, we compute the lower
bound LB_Keogh1(x, y) (see lines 8–15). If this lower bound is suf-
ficiently large, the candidate is discarded (see line 16), otherwise
we add LB_Keogh1(y,H(x, y)) to LB_Keogh1(x, y), in effect computing
LB_Improved1(x, y) (see lines 17–22). If this larger lower bound is
sufficiently large, the candidate is finally discarded (see line 23). Oth-
erwise, we compute the full DTW. If � is the fraction of candidates
pruned by LB_Keogh, at most (2N + 3)n + 5(1 − �)Nn comparisons
between data points are required to process a database containing
N time series.

Algorithm 3. LB_Improved-based nearest-neighbor algorithm.

1: input a time series y indexed from 1 to n
2: input a set S of candidate time series
3: return the nearest neighbor B to y in S under DTW1
4: U, L← envelope(y)
5: b←∞{b stores minx∈S DTW1(x, y)}
6: for candidate x in S do
7: copy x to x′ {x′ will store the projection of x on y}
8: �← 0{� stores the lower bound}
9: for i ∈ {1, 2, . . . ,n} do
10: if xi >Ui then
11: �← �+ xi − Ui
12: x′i = Ui
13: else if xi < Li then
14: �← �+ Li − xi
15: x′i = Li
16: if �<b then
17: U′, L′ ← envelope(x′)
18: for i ∈ {1, 2, . . . ,n} do
19: if yi >U′i then
20: �← �+ yi − U′i
21: else if yi < L′i then
22: �← �+ L′i − yi
23: if �<b then
24: t← DTW1(a, c) {We compute the full DTW.}
25: if t <b then
26: b← t
27: B← c

9. Using a multidimensional indexing structure

The running time of Algorithms 2 and 3 may be improved if we
use a multidimensional index such as an R∗-tree [37]. Unfortunately,
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Fig. 5. Computation of LB_Improved as in Algorithm 3. (a) We begin with y and its envelope L(y);U(y). (b) We compare candidate x with the envelope L(y);U(y). (c) The
difference is LB_Keogh(x, y). (d) We compute x′ , the projection of x on the envelope L(y);U(y). (e) We compute the envelope of x′ . (f) The difference between y and the
envelope L(x′);U(x′) is added to LB_Keogh to compute LB_Improved.

the performance of such an index diminishes quickly as the num-
ber of dimensions increases [21]. To solve this problem, several di-
mensionality reduction techniques are possible such as piecewise
linear [38–40] segmentation. Following Zhu and Shasha [10], we
project time series and their envelopes on a d-dimensional space us-
ing piecewise sums: Pd(x)=(

∑
i∈Cj xi)j where C1,C2, . . . ,Cd is a disjoint

cover of {1, 2, . . . ,n}. Unlike Zhu and Shasha, we do not require the
intervals to have equal length. The l1 distance between Pd(y) and the
minimum bounding hyperrectangle containing Pd(L(x)) and Pd(U(x))
is a lower bound to the DTW1(x, y):

DTW1(x, y)�LB_Keogh1(x, y)=
n∑

i=1
d(xi, [L(y)i,U(y)i])

�

d∑
j=1

d(Pd(x)j, [Pd(L(y))j, Pd(U(y))j])

For our experiments, we chose the cover Cj= [1+ (j−1)
n/d�, j
n/d�]
for j= 1, . . . , d− 1 and Cd = [1+ (d− 1)
n/d�,n].

We can summarize the Zhu–Shasha R∗-tree algorithm as follows:

(1) for each time series x in the database, add Pd(x) to the R∗-tree;
(2) given a query time series y, compute its envelope E =

Pd(L(y)), Pd(U(y));
(3) starting with b =∞, iterate over all candidate Pd(x) at a l1 dis-

tance b from the envelope E using the R∗-tree, once a candidate
is found, update b with DTW1(x, y) and repeat until you have
exhausted all candidates.

This algorithm is correct because the distance between E and
Pd(x) is a lower bound to DTW1(x, y). However, dimension-
ality reduction diminishes the pruning power of LB_Keogh :
d(E, Pd(x))�LB_KEOGH1(x, y). Hence, we propose a new algorithm
(R∗ -TREE+LB_KEOGH) where instead of immediately updating b with
DTW1(x, y), we first compute the LB_Keogh lower bound between x
and y. Only when it is less than b, do we compute the full DTW. Fi-
nally, as a third algorithm (R∗ -TREE+LB_IMPROVED), we first compute
LB_Keogh, and if it is less than b, then we compute LB_Improved,
and only when it is also lower than b do we compute the DTW, as
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in Algorithm 3. R ∗ -TREE+ LB_IMPROVED has maximal pruning power,
whereas Zhu–Shasha R∗-tree has the lesser pruning power of the
three alternatives.

10. Comparing Zhu–Shasha R∗-tree, LB_Keogh, and LB_Improved

In this section, we benchmark algorithms Zhu–Shasha R∗-tree,
R ∗ -TREE + LB_KEOGH, and R ∗ -TREE + LB_IMPROVED. We know that
the LB_Improved approach has at least the pruning power of the
other methods, but doesmore pruning translate into a faster nearest-
neighbor retrieval under the DTW distance?

We implemented the algorithms in C + + using an external-
memory R∗-tree. The time series are stored on disk in a binary flat
file. We used the GNU GCC 4.0.2 compiler on an Apple Mac Pro, hav-
ing two Intel Xeon dual-core processors running at 2.66GHz with
2GiB of RAM. No thrashing was observed. We measured the wall-
clock total time. In all experiments, we benchmark nearest-neighbor
retrieval under the DTW1. By default, the locality constraint w is
set at 10% (w = n/10). To ensure reproducibility, our source code is
freely available [41], including the script used to generate synthetic
data sets. We compute the full DTW using an O(nw)-time dynamic
programming algorithm.
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The R∗-tree was implemented using the Spatial Index library [42].
In informal tests, we found that a projection on an eight-dimensional
space, as described by Zhu and Shasha, gave good results: substan-
tially larger (d>10) or smaller (d<6) settings gave poorer per-
formance. We used a 4096-byte page size and a 10-entry internal
memory buffer.

For R∗-TREE + LB_KEOGH and R∗-TREE + LB_IMPROVED, we experi-
mented with early abandoning [32] to cancel the computation of
the lower bound as soon as the error is too large. While it often im-
proved retrieval time slightly for both LB_Keogh and LB_Improved,
the difference was always small (less than ≈ 1%). One explanation is
that the candidates produced by the Zhu–Shasha R∗-tree are rarely
poor enough to warrant efficient early abandoning.

We do not report our benchmarking results over the simple Algo-
rithms 2 and 3. In almost all cases, the R∗-tree equivalent—R∗-TREE+
LB_KEOGH or R∗-TREE + LB_IMPROVED—was at least slightly better and
sometimes several times faster.

10.1. Synthetic data sets

We tested our algorithms using the cylinder–bell–funnel [43] and
control charts [44] data sets, as well as over two databases of random
walks. We generated 256-sample and 1000-sample random-walk
time series using the formula xi = xi−1 + N(0, 1) and x1 = 0.
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Fig. 10. Nearest-neighbor retrieval for the heterogeneous shape data set. (a) Average retrieval time. (b) Pruning power.

For each data set, we generated a database of 50000 time series
by adding randomly chosen items. Figs. 6–9 show the average tim-
ings and pruning ratio averaged over 20 queries based on randomly
chosen time series as we consider larger and large fraction of the
database. LB_Improved prunes between 2 and 4 times more candi-

dates than LB_Keogh. R∗-TREE+LB_IMPROVED is faster than Zhu–Shasha
R∗-tree by a factor between 0 and 6.

We saw almost no performance gain over Zhu–Shasha R∗-tree
with simple time series such as the cylinder–bell–funnel or the con-
trol charts data sets. However, in these cases, even LB_Improved has
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Fig. 11. Nearest-neighbor retrieval for the arrow-head shape data set. (a) Average retrieval time. (b) Pruning power.
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Fig. 13. Average nearest-neighbor retrieval time for the arrow-head shape data set. (a) w= 5%. (b) w= 20%.

modest pruning powers of 40% and 15%. Low pruning means that
the computational cost is dominated by the cost of the full DTW.

10.2. Shape data sets

We also considered a large collection of time series derived from
shapes [45,46]. The first data set is made of heterogeneous shapes

which resulted in 5844 1024-sample times series. The second data
set is an arrow-head data set with 15000 251-sample time series.
We extracted 50 time series from each data set, and we present
the average nearest-neighbor retrieval times and pruning power
as we consider various fractions of each database (see Figs. 10
and 11). The results are similar: LB_Improved has twice the prun-
ing power than LB_Keogh, R∗-TREE + LB_IMPROVED is twice as fast as
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R∗-TREE + LB_KEOGH and over 3 times faster than the Zhu–Shasha
R∗-tree.

10.3. Locality constraint

The locality constraint has an effect on retrieval times: a large
value ofwmakes the problemmore difficult and reduces the pruning
power of all methods. In Figs. 12 and 13 , we present the retrieval
times for w = 5% and 20%. The benefits of R∗-TREE + LB_IMPROVED

remain though they are less significant for small locality constraints.
Nevertheless, even in this case, R∗-TREE + LB_IMPROVED can still be 3
times faster than Zhu–Shasha R∗-tree. For all our data sets and for
all values of w ∈ {5%, 10%, 20%}, R∗-TREE+ LB_IMPROVED was always at
least as fast as the Zhu–Shasha R∗-tree algorithm alone.

11. Conclusion

We have shown that a two-pass pruning technique can im-
prove the retrieval speed by 3 times or more in several time-
series databases. In our implementation, LB_Improved required
slightly more computation than LB_Keogh, but its added pruning
power was enough to make the overall computation several times
faster. Moreover, we showed that pruning candidates left from the
Zhu–Shasha R∗-tree with the full LB_Keogh alone—without dimen-
sionality reduction—was enough to significantly boost the speed
and pruning power. On some synthetic data sets, neither LB_Keogh
nor LB_Improved were able to prune enough candidates, making all
algorithms comparable in speed.
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Appendix A. Some properties of DTW

The DTW distance can be counterintuitive. As an example, if
x, y, z are three time series such that x�y�z pointwise, then it does
not follow that DTWp(x, z)�DTWp(z, y). Indeed, choose x= 7, 0, 1, 0,
y=7, 0, 5, 0, and z=7, 7, 7, 0, then DTW∞(z, y)=5 and DTW∞(z, x)=1.
Hence, we review some of the mathematical properties of the DTW.

The warping path aligns xi from time series x and yj from time
series y if (i, j) ∈ �. The next proposition is a general constraint on
warping paths.

Proposition 3. Consider any two time series x and y. For any minimal
warping path, if xi is aligned with yj, then either xi is aligned only with yj
or yj is aligned only with xi. Therefore the length of a minimal warping
path is at most 2n− 2 when n>1.

Proof. Suppose that the result is not true. Then there is xk, xi and
yl, yj such that xk and xi are aligned with yj, and yl and yj are aligned
with xi. We can delete (k, j) from the warping path and still have a
warping path. A contradiction.

Next, we show that warping path is no longer than 2n−2. Let n1
be the number of points in x aligned with only one point in y, and
let n2 be the number of points in y aligned with only one point in x.
The cardinality of a minimal warping path is bounded by n1 + n2. If
n1=n or n2=n, then n1=n2=n and the warping path has cardinality
n which is no larger than 2n− 2 for n>1. Otherwise, n1�n− 1 and
n2�n− 1, and n1 + n2<2n− 2. �

The next lemma shows that the DTW becomes the lp distance
when either x or y is constant.

Lemma 2. For any 0<p�∞, if y=c is a constant, then NDTWp(x, y)=
DTWp(x, y)= ‖x− y‖p.

When p = ∞, a stronger result is true: if y = x + c for some
constant c, then NDTW∞(x, y) = DTW∞(x, y) = ‖x − y‖∞. Indeed,
NDTW∞(x, y)� |max(y) −max(x)| = c = ‖x − y‖∞�‖x − y‖∞ which
shows the result. This same result is not true for p<∞: for x=0, 1, 2
and y=1, 2, 3, we have ‖x−y‖p= p

√
3, whereas DTWp(x, y)= p

√
2. How-

ever, the DTW is translation invariant: DTWp(x, z)=DTWp(x+b, z+b)
and NDTWp(x, z)=NDTWp(x+b, z+b) for any scalar b and 0<p�∞.

In classical analysis, we have that n1/p−1/q‖x‖q�‖x‖p [47] for
1�p<q�∞. A similar results is true for the DTW and it allows us to
conclude that DTWp(x, y) and NDTWp(x, y) decrease monotonically
as p increases.

Proposition 4. For 1�p<q�∞, we have that (2n − 2)1/p−1/qDTWq

(x, y)�DTWp(x, y) where n is the length of x and y. The result also holds
for the non-monotonic DTW.

Proof. Assume n>1. The argument is the same for the monotonic
or non-monotonic DTW. Given x, y consider the two aligned (and ex-
tended) time series x′, y′ such that DTWq(x, y)= ‖x′ − y′‖q. Let nx′ be
the length of x′ and ny′ be the length of y′. As a consequence of Propo-
sition 3, we have nx′ = ny′�2n− 2. From classical analysis, we have

n1/p−1/qx′ ‖x′ −y′‖q�‖x′ −y′‖p, hence |2n−2|1/p−1/q‖x′ −y′‖q�‖x′ −y′‖p
or |2n− 2|1/p−1/qDTWq(x, y)�‖x′ − y′‖p. Since x′, y′ represent a valid
warping path of x, y, then ‖x′ − y′‖p�DTWp(x, y) which concludes
the proof. �

Appendix B. The triangle inequality

The DTW is commonly used as a similarity measure: x and y
are similar if DTWp(x, y) is small. Similarity measures often define
equivalence relations: A ∼ A for all A (reflexivity), A ∼ B ⇒ B ∼ C
(symmetry) and A ∼ B ∧ B ∼ C ⇒ A ∼ C (transitivity).

The DTW is reflexive and symmetric, but it is not transitive.
Indeed, consider the following time series:

X = 0, 0, . . . , 0, 0︸ ︷︷ ︸
2m+1 times

Y = 0, 0, . . . , 0, 0︸ ︷︷ ︸
m times

, �, 0, 0, . . . , 0, 0︸ ︷︷ ︸
m times

Z = 0, �, �, . . . , �, �︸ ︷︷ ︸
2m−1 times

, 0

We have that NDTWp(X,Y) = DTWp(X,Y) = |�|, NDTWp(Y , Z) =
DTWp(Y , Z) = 0, NDTWp(X, Z) = DTWp(X, Z) = p

√
(2m− 1)|�| for

1�p<∞ and w = m − 1. Hence, for � small and n?1/�, we have
that X ∼ Y and Y ∼ Z, but X /∼ Z. This example proves the following
lemma.

Lemma 3. For 1�p<∞ and w>0, neither DTWp nor NDTWp satis-
fies a triangle inequality of the form d(x, y)+d(y, z)�cd(x, z) where c is
independent of the length of the time series and of the locality constraint.

This theoretical result is somewhat at odd with practical ex-
perience. Casacuberta et al. found no triangle inequality violation
in about 15 million triplets of voice recordings [48]. To deter-
mine whether we could expect violations of the triangle inequal-
ity in practice, we ran the following experiment. We used three
types of 100-sample time series: white-noise times series defined
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by xi = N(0, 1) where N is the normal distribution, random-walk
time series defined by xi = xi−1 + N(0, 1) and x1 = 0, and the
cylinder–bell–funnel time series proposed by Saito [43]. For each
type, we generated 100000 triples of time series x, y, z and we
computed the histogram of the function

C(x, y, z)= DTWp(x, z)
DTWp(x, y)+ DTWp(y, z)

for p=1 and 2. The DTW is computed without time constraints. Over
the white-noise and cylinder–bell–funnel time series, we failed to
find a single violation of the triangle inequality: a triple x, y, z for
which C(x, y, z)>1. However, for the random-walk time series, we
found that 20% and 15% of the triples violated the triangle inequality
for DTW1 and DTW2.

The DTW satisfies a weak triangle inequality as the next theorem
shows.

Theorem 2. Given any three same-length time series x, y, z and
1�p�∞, we have

DTWp(x, y)+ DTWp(y, z)�
DTWp(x, z)

min(2w+ 1,n)1/p

where w is the locality constraint. The result also holds for the non-
monotonic DTW.

Proof. Let � and �′ be minimal warping paths between x and y
and between y and z. Let �′′ = {(i, j, k)|(i, j) ∈ � and (j, k) ∈ �′}. Iter-
ate through the tuples (i, j, k) in �′′ and construct the same-length
time series x′′, y′′, z′′ from xi, yj, and zk. By the locality constraint
any match (i, j) ∈ � corresponds to at most min(2w + 1,n) tuples
of the form (i, j, ·) ∈ �′′, and similarly for any match (j, k) ∈ �′.
Assume 1�p<∞. We have that ‖x′′ − y′′‖pp =

∑
(i,j,k)∈�′′ |xi − yj|p�
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Fig. C.1. Classification accuracy versus the number of instances of each class in four data sets. (a) Cylinder–bell–funnel. (b) Control charts. (c) Waveform. (d) Wave+noise.

min(2w + 1,n)DTWp(x, y)
p and ‖y′′ − z′′‖pp =

∑
(i,j,k)∈�′′ |yj − zk|p�

min(2w+ 1,n)DTWp(y, z)
p. By the triangle inequality in lp, we have

min(2w+ 1,n)1/p(DTWp(x, y)+ DTWp(y, z))

�‖x′′ − y′′‖p + ‖y′′ − z′′‖p
�‖x′′ − z′′‖p�DTWp(x, z)

For p=∞, max(i,j,k)∈�′′ ‖xi − yj‖pp =DTW∞(x, y)p and max(i,j,k)∈�′′ |yj −
zk|p=DTW∞(y, z)p, thus proving the result by the triangle inequality
over l∞. The proof is the same for the non-monotonic DTW. �

The constant min(2w+1,n)1/p is tight. Consider the example with
time series X,Y , Z presented before Lemma 3. We have DTWp(X,Y)+
DTWp(Y , Z)= |�| and DTWp(X, Z)= p

√
(2w+ 1)|�|. Therefore, we have

DTWp(X,Y)+ DTWp(Y , Z)= DTWp(X, Z)

min(2w+ 1,n)1/p
.

A consequence of this theorem is that DTW∞ satisfies the traditional
triangle inequality.

Corollary 3. The triangle inequality d(x, y) + d(y, z)�d(x, z) holds for
DTW∞ and NDTW∞.

Hence the DTW∞ is a pseudometric: it is a metric over equiva-
lence classes defined by x ∼ y if and only if DTW∞(x, y) = 0. When
no locality constraint is enforced (w�n), DTW∞ is equivalent to the
discrete Fréchet distance [49].

Appendix C. Which is the best distance measure?

The DTW can be seen as the minimization of the lp distance un-
der warping. Which p should we choose? Legrand et al. reported best
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results for chromosome classification using DTW1 [13] as opposed
to using DTW2. However, they did not quantify the benefits of
DTW1. Morse and Patel reported similar results with both DTW1 and
DTW2 [50].

While they do not consider the DTW, Aggarwal et al. [51] argue
that out of the usual lp norms, only the l1 norm, and to a lesser
extend the l2 norm, express a qualitativelymeaningful distancewhen
there are numerous dimensions. They even report on classification-
accuracy experiments where fractional lp distances such as l0.1 and
l0.5 fare better. François et al. [52] made the theoretical result more
precise showing that under uniformity assumptions, lesser values of
p are always better.

To compare DTW1, DTW2, DTW4 and DTW∞, we considered four
different synthetic time-series data sets: cylinder–bell–funnel [43],
control charts [44], waveform [53], and wave+noise [54]. The time
series in each data sets have lengths 128, 60, 21, and 40. The control
charts data set has six classes of time series, whereas the other three
data sets have three classes each. For each data set, we generated
various databases having a different number of instances per class:
between 1 and 9 inclusively for cylinder–bell–funnel and control
charts, and between 1 and 99 for waveform and wave+noise. For a
given data set and a given number of instances, 50 different databases
were generated. For each database, we generated 500 new instances
chosen from a random class and we found a nearest neighbor in the
database using DTWp for p = 1, 2, 4,∞ and using a time constraint
of w = n/10. When the instance is of the same class as the nearest
neighbor, we considered that the classification was a success.

The average classification accuracies for the four data sets, and
for various number of instances per class is given in Fig. C.1. The
average is taken over 25000 classification tests (50 × 500), over 50
different databases.

Only when there are one or two instances of each class is DTW∞
competitive. Otherwise, the accuracy of the DTW∞-based classifica-
tion does not improve as we addmore instances of each class. For the
waveform data set, DTW1 and DTW2 have comparable accuracies.
For the other three data sets, DTW1 has a better nearest-neighbor
classification accuracy than DTW2. Classification with DTW4 has
almost always a lower accuracy than either DTW1 or DTW2.

Based on these results, DTW1 is a good choice to classify time
series, whereas DTW2 is a close second.
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