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I. I NTRODUCTION

Feature selection is one of the fundamental problems in machine learning. Not only can its proper
design reduce system complexity and processing time, but it can also enhance system performance in
many cases. It becomes even more critical to the success of a machine learning algorithm in problems
involving a large amount of irrelevant features. One example is DNA microarray data [2], [3], where the
number of features (genes) is typically on the order of thousands or even tens of thousands, while the
number of the useful genes is believed to be in the range of tens and hundreds. Due to the high costs
of collecting a large number of patient data, one usually only has tens or at most hundreds of samples
for training. With limited training samples, selecting useful features for these kinds of problems poses a
serious challenge to the existing feature selection algorithms.

The research on feature selection is very active in the past decade [4], [5], [6], [7], [8]. The existing
feature selection algorithms can be generally categorized aswrapperor filter methods based on criterion
functions used in searching for informative features [9]. In wrapper methods, the performance of a learning
algorithm is used to evaluate the goodness of selected feature subsets, whereas in filter methods criterion
functions evaluate feature subsets by their information content, typically interclass distance or information-
theoretic measures, rather than optimizing the performance of any specified learning algorithm directly.
In most cases, filter methods are computationally much more efficient but perform worse than wrapper
methods. Given a criterion function, feature selection is reduced to a search problem. An exhaustive
search is optimal but only works when the number of features is not too large, as it quickly becomes
computationally infeasible with the increase of problem size. Some heuristic combinatorial searches, such
as forward and/or backward selection [5], are usually employed. These algorithms have shown some
successes in practical applications. However, none of them can provide any guarantee of optimality. For
more detailed discussions, interested readers can refer to [7] and the references therein.

The computational issue of combinatorial search can to some extent be alleviated by using a feature
weighting strategy. Allowing feature weights to take real-valued numbers instead of binary ones enables
the employment of some well-established optimization techniques, and thus allows for efficient algorith-
mic implementation. Among the existing feature weighting algorithms, the RELIEF algorithm [10] is
considered one of the most successful ones due to its simplicity and effectiveness [11]. The pseudo-code
of the algorithm is presented in Fig. 1. The key idea of RELIEF is to iteratively estimate feature weights
according to their ability to discriminate between neighboring patterns. In each iteration, a patternx is
randomly selected, and then two nearest neighbors ofx are found, one from the same class (termed the
nearest hitor NH) and the other from a different class (termed thenearest missor NM). The weight of
the i-th feature is then updated:wi = wi + |x(i) − NM(i)(x)| − |x(i) − NH(i)(x)|. RELIEF was extended
to handle noisy and missing data in [12], wherein a probabilistic interpretation for RELIEF was also
provided, stating that the learned weights approximate the following probability:

wi = P (different value ofi-th feature| NM)− P (different value ofi-th feature| NH) . (1)

It is, however, not easy to understand this interpretation since both probabilities in Eq. (1) are not well
defined. To further examine the problem, in Section II we present a novel interpretation for RELIEF
from the optimization perspective. We prove that RELIEF is an online algorithm that solves a convex
optimization problem with a margin-based objective function. The margin is defined based on a1-NN
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RELIEF Algorithm

(1) Initialization : givenD = {(xn, yn)}N
n=1, setwi = 0, 1 ≤ i ≤ I, number of iterationsT ;

(2) for t = 1 : T

(3) Randomly select a patternx from D;

(4) Find the nearest hit NH(x) and miss NM(x) of x;

(5) for i = 1 : I

(6) Compute:wi = wi + |x(i) − NM(i)(x)| − |x(i) − NH(i)(x)|;
(7) end

(8) end

Fig. 1. Pseudo-code of RELIEF [10]

(one-nearest-neighbor) classifier [13]. Therefore, compared with filter methods, RELIEF usually performs
better due to the performance feedback of the nonlinear classifier in search for informative features;
compared with conventional wrapper methods, by optimizing a convex problem, RELIEF avoidsany

exhaustive or heuristic combinatorial search and thus can be implemented very efficiently. These two
merits make RELIEF particularly suitable for large-scale problems such as microarray data analysis.

The new interpretation of RELIEF enables us to identify and address some weaknesses of the algorithm.
One major drawback of RELIEF is that the nearest neighbors are defined in the original feature space,
which are highly unlikely to be the ones in the weighted space. Moreover, RELIEF lacks a mechanism
to deal with outlier data. In the presence of a large number of irrelevant features and mislabeling, the
solution quality of RELIEF can be severely degraded. To mitigate these problems, in Section III, we
propose a new feature weighting algorithm, referred to as I-RELIEF, by following the principle of the
Expectation-Maximization (EM) algorithm [14]. I-RELIEF treats the nearest neighbors and identity of a
pattern as hidden random variables, and iteratively estimates feature weights until convergence. We provide
a convergence theorem for I-RELIEF, which shows that under certain conditions I-RELIEF converges to a
unique solution irrespective of initial starting points. We also extend I-RELIEF to multiclass problems. In
Section IV, by using the fact that RELIEF optimizes a margin-based objective function, we propose a new
multiclass RELIEF algorithm using a new multiclass margin definition. We also consider online learning
for I-RELIEF. The new proposed I-RELIEF algorithms are based on batch learning. In the case where
there exist a large amount of training samples, online learning is computationally much more attractive.
We develop an online I-RELIEF algorithm in Section V, wherein a convergence theorem is also provided.
To verify the effectiveness of the newly proposed algorithms and confirm the theoretical results established
in this paper, we conduct a large-scale experiment in Section VII on nine UCI datasets and six microarray
datasets. We finally conclude the paper in Section VIII.

A. Main Contributions

The main contributions of the paper are twofold:

• First, in algorithmic aspects, starting from a new interpretation of RELIEF, we propose a set of
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feature weighting algorithms. The effectiveness of those algorithms, in terms of solution quality and
computational efficiency, is experimentally demonstrated on a wide variety of datasets. Considering
the increased demand for analyzing data with large feature dimensionality in some emerging domains
such as bioinformatics, we expect widespread usage of these algorithms in these applications.

• Second, in theoretical aspects, this paper may provide a new direction of feature selection research
in addition to providing some new algorithms. Feature selection plays a critical role in machine
learning. Yet, as opposed to classifier design, it still to date lacks rigorous theoretical treatment.
This is largely due to the difficulty in defining an objective function that can be easily optimized
by some well-established optimization techniques. It is particularly true for wrapper methods that
use a nonlinear classifier to evaluate the goodness of selected feature subsets. The crisp partition of
a feature set and the nonlinearity of a classification function make the resulting objective function
non-convex and even non-differentiable. For this reason, most feature selection algorithms rely on
heuristic search. The I-RELIEF algorithms has a clearly defined objective function and can be solved
through numerical analysis instead of combinatorial search, and thus presents a promising direction
for a more rigorous treatment of feature selection problems.

Before moving on to the main body of the paper, we make a brief discussion on feature redundance.
It is reported that redundant features can deteriorate classification performance [9]. Therefore, for clas-
sification purposes, removing redundant features is necessary. However, in some applications such as
DNA microarray, some researchers have pointed out that the identification of a small gene subset with
good predictive power may not be sufficient to provide significant insight into the understanding and
modeling of the relationship between genes and certain diseases [15]. Redundant (or co-regulated) genes
may provide biologists with some useful side information. Moreover, in the presence of a huge number
of irrelevant features, removing both irrelevant and redundant features simultaneously could make the
resulting algorithm complicated. Therefore, we suggest performing the task in two stages: the first stage
tries to recover all of the relevant features, and the second stage, examining a much smaller feature subset,
performs some computationally more expensive algorithms such as wrapper methods to remove redundant
features if the ultimate goal is for classification. Designing an accurate feature weighting algorithm that
can be used in the first stage is the focus of this paper.

II. OPTIMIZATION APPROACH TORELIEF ALGORITHM

In this section, we provide a mathematical interpretation for the seemingly heuristic RELIEF algorithm.
LetD={(xn, yn)}N

n=1∈X×Y denote a training dataset, whereX ∈ RI is the pattern space,I is the feature
dimensionality andY={±1} is the label space. Following the margin definition in [16], we define the
margin for a patternxn as ρn = d(xn − NM(xn)) − d(xn − NH(xn)), where NM(xn) and NH(xn) are
the nearest miss and hit of patternxn, respectively, andd(·) is a distance function. For the moment, we
defined(x) =

∑
i |xi|, which can be extended to other distance functions. Note thatρn > 0 if and only

if xn is correctly classified by a1-NN classifier. One natural idea is to scale each feature such that the
averaged margin in a weighted feature space is maximized:

max
w

N∑
n=1

ρn(w) = max
w

N∑
n=1

(
I∑

i=1

wi|x(i)
n − NM(i)(xn)| −

I∑
i=1

wi|x(i)
n − NH(i)(xn)|

)
,

s.t. ‖w‖2
2 = 1,w > 0 ,

(2)
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whereρn(w) is the margin ofxn computed with respect tow. The constraint‖w‖2
2 = 1 prevents the

maximization from increasing without bound, andw > 0 ensures that the weight vector induces a distance
measure. By definingz =

∑N
n=1(|xn −NM(xn)| − |xn −NH(xn)|), where| · | is the point-wise absolute

operator, Eq. (2) can be simplified as:

max
w

wTz ,

s.t. ‖w‖2
2 = 1,w > 0 .

(3)

The Lagrangian of Eq. (3) is:

L = −wTz + λ(‖w‖2
2 − 1) +

I∑
i=1

ζi(−wi) , (4)

whereλ and ζ > 0 are the Lagrangian multipliers. Taking the derivative ofL with respect tow and
setting it to zero yields:

∂L

∂w
= −z + 2λw − ζ = 0 ⇒ w =

1

2λ
(z + ζ) (5)

Below, we derive a closed-form solution forw. In the derivation, we make an assumption that there exists
an i, 1 ≤ i ≤ I, such thatzi > 0. This assumption is very weak since if it does not hold (i.e.,z ≤ 0), it
simply says that on average the distance between a pattern and its nearest miss is larger than the distance
of the pattern from its nearest hit, which is very rare in real applications. In this case, machine learning
algorithms that make decisions based on neighborhood information (i.e., RBF, and SVM with RBF kernel)
will perform poorly. With the above assumption, we prove thatλ > 0 by contradiction. Supposeλ < 0.
Since there existszi > 0, then zi + ζi > 0. We would havewi < 0, which contradicts the constraint
w ≥ 0. By using the Karush-Kuhn-Tucker (KKT) condition [17], namely

∑
i ζiwi = 0, it is easy to verify

the following three cases:

• Case 1:zi = 0 ⇒ ζi = 0 andwi = 0 ;
• Case 2:zi > 0 ⇒ zi + ζi > 0 ⇒ wi > 0 ⇒ ζi = 0 ;
• Case 3:zi < 0 ⇒ ζi > 0 ⇒ wi = 0 ⇒ zi = −ζi .

It immediately follows that the optimal solution ofw can be calculated in a closed form:

wi =

{
0 if zi ≤ 0
1
2λ

zi if zi > 0

and
w∗ = w/‖w‖2 = (z)+/‖(z)+‖2 , (6)

where(z)+ = [max(z1, 0), · · · , max(zI , 0)]T .
By comparing Eq. (6) with the weight update rule of RELIEF in Fig. 1, we conclude that RELIEF is

an online algorithm that solves the optimization scheme of Eq. (2). This is true except whenw∗
i = 0 for

zi ≤ 0, which usually corresponds to irrelevant features discarded in RELIEF.
Our proof is inspired by the previous work [8] where RELIEF maximizing the averaged margin was

empirically observed, but no mathematical proof was provided. From our analysis, we find that RELIEF
is a feature weighting algorithm that utilizes the performance of a highly nonlinear classifier in search for
useful features, yet results in a simple convex problem with a closed-form solution. This clearly explains
the simplicity and effectiveness of RELIEF.
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Other distance functions can also be used. If the squared Euclidean distance is used, the algorithm will
be the RELIEF algorithm defined in [8]; if Euclidean distance is used, the resulting algorithm is Simba
[8]. One major problem with Simba is its implementation. First, Simba returns many local maxima, which
is mitigated in Simba by restarting the algorithm from several starting points. Hence, the acquisition of
the global maximum is not guaranteed through its invocation. Second, Simba is a constrained nonlinear
optimization problem which cannot be easily solved through conventional optimization techniques. There-
fore, Simba first performs gradient ascent over the objective function while ignoring the constraints, and
then projects the solution onto the constraints at the last step. It is unclear whether Simba converges.

III. I TERATIVE RELIEF ALGORITHM

A. Algorithm

The new interpretation of RELIEF as an online implementation of a convex optimization problem
provides some insights into its success in practical applications. More importantly, it enables us to identify
some weaknesses of the algorithm and to propose some solutions to fix them. Two major drawbacks of
RELIEF become clear from the objective function defined in Eq. (3). First, the nearest neighbors are
defined in the original feature space, which may not be true in the weighted feature space. Second, the
objective function optimized by RELIEF is actually the average margin. In the presence of outliers, some
margins can take large negative values. In a highly noisy data case with a large amount of irrelevant
features and/or mislabelling, the aforementioned two issues can become so severe that the performance
of RELIEF may be greatly deteriorated.

A heuristic algorithm, called RELIEF-F [12], has been proposed to address the first problem. RELIEF-F
averages K, instead of just one, nearest neighbors when computing the sample margins. Empirical studies
have shown that RELIEF-F can achieve significant performance improvement over the original RELIEF.
As for the second problem, to our knowledge, no such algorithm exists. One possible solution is to adopt
the large margin concept that is used in SVM [18] and AdaBoost [19], where slack variables are defined to
account for the very negative margins and a soft margin is maximized [20]. In order to solve the induced
optimization problem efficiently, a good linear or quadratic programming solver is needed. Moveover, one
introduces a very critical parameter that controls the trade-off between training performance and a penalty
term. Using the large margin concept for feature selection seems to be an interesting direction, which we
will pursue in our future work. In this paper, however, we will confine ourselves to the RELIEF framework.
Below, we propose an analytic solution to address the aforementioned two issues simultaneously.

We first define two setsMn = {i : 1 ≤ i ≤ N, yi 6= yn} andHn = {i : 1 ≤ i ≤ N, yi = yn, i 6= n},
associated with each patternxn. Suppose now that for each patternxn, its nearest hit and miss are known,
the indices of which are saved in the setSn = {(sn1, sn2)}, wheresn1 ∈Mn andsn2 ∈ Hn. For example,
sn1 = 1 andsn2 = 2 mean that the nearest miss and hit ofxn arex1 andx2, respectively. We also denote
o = [o1, · · · , oN ]T as a set of binary parameters, such thaton = 0 if xn is an outlier, oron = 1 otherwise.
Here, we use the term “outliers” to refer to mislabeled samples or samples highly corrupted by noise.
The objective function we want to optimize may be formulated as:

C(w) =
1

N

N∑

{n=1,on=1}
(‖xn − xsn1‖w − ‖xn − xsn2‖w) , (7)
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where‖x‖w =
∑

i wi|xi|. This objective function can be easily optimized by using the conclusion drawn
in Section II. Of course, we do not know the setS = {Sn}N

n=1 and the vectoro. However, if we assume the
elements of{Sn}N

n=1 ando are random variables, we can proceed by deriving the probability distributions
of the unobserved data. We first make a guess on the weightw. By using the pairwise distances that have
been computed when searching for the nearest hits and misses, the probability of thei-th data point being
the nearest miss ofxn can be defined as:

Pm(i|xn,w) =
f(‖xn − xi‖w)∑

j∈Mn
f(‖xn − xj‖w)

,∀i ∈Mn . (8)

Similarly, the probability of thei-th data point being the nearest hit ofxn is:

Ph(i|xn,w) =
f(‖xn − xi‖w)∑

j∈Hn
f(‖xn − xj‖w)

,∀i ∈ Hn , (9)

and the probability ofxn being an outlier can be defined as:

Po(on = 0|D,w) =

∑
i∈Mn

f(‖xn − xi‖w)∑
xi∈D\xn

f(‖xn − xi‖w)
, (10)

wheref(·) is a kernel function. One commonly used example isf(d) = exp(−d/σ), where the kernel
width σ is a user defined parameter. Throughout the paper, the exponential kernel is used. Other kernel
functions can also be used, and the descriptions of their properties can be found in [21].

Now we are ready to derive the following iterative algorithm. Although we adopt the idea of the EM
algorithm [14] that treats the unobserved data as random variables, it should be noted that the following
method is not an EM algorithm since the objective function in Eq. (7) is not a likelihood. For brevity of
notation, we defineαi,n = Pm(i|xn,w(t)), βi,n = Ph(i|xn,w(t)), γn = 1 − Po(on = 0|D,w(t)),W = {w :

‖w‖2
2 = 1,w ≥ 0},mi,n = |xn − xi| if i ∈Mn, andhi,n = |xn − xi| if i ∈ Hn.

Step 1: After the t-th iteration, theQ function is calculated as1:

Q(w|w(t)) = E{S,o}[C(w)] ,

≈ 1

N

N∑
n=1

γn

( ∑
i∈Mn

αi,n‖xn − xi‖w −
∑
i∈Hn

βi,n‖xn − xi‖w
)

.
(11)

1More rigorously, even thoughxn may not be an outlier, there may be outliers present inMn andHn that should be considered in

computing theQ function. However, mislabeling ino has a much larger impact on calculating margins than that inMn andHn, which

is explained as follows: consider the term computed in Eq. (11):ρ̃n =
X

i∈Mn

αi,n‖xn − xi‖w −
X

i∈Hn

βi,n‖xn − xi‖w. Supposexn is an

outlier. Then the value of the margin is completely wrong; now supposexn is not an outlier, but one element inMn is. Since the first term

in ρ̃n is computed by averaging over the entire set ofMn, there only has a little impact on the margin value. Since I-RELIEF is a data

pre-processing algorithm and performs very well on a wide variety of datasets (c.f. Sec. VII), accounting for mislabeling inMn andHn

may not improve the performance significantly, but will complicate the algorithm implementation and the subsequent analyses substantially.
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I-RELIEF Algorithm

(1) Initialization : givenD = {(xn, yn)}N
n=1, setw(0) = 1/I, number of iterationsT , kernel widthσ, stop

criterion θ;

(2) for t = 1 : T

(3) Calculate pairwise distances with respect tow(t−1);

(4) CalculatePm, Ph andPo as Eqs. (8), (9) and (10);

(5) Update weights as Eq. (12);

(6) If ‖w(t) −w(t−1)‖ < θ, break, end

(7) end

Fig. 2. Pseudo-code of I-RELIEF

Step 2: The re-estimation ofw in the (t + 1)-th iteration is:

w(t+1) = arg max
w∈W

Q(w|w(t)) ,

≈ arg max
w∈W

1

N

N∑
n=1

γn

( ∑
i∈Mn

αi,n‖xn − xi‖w −
∑
i∈Hn

βi,n‖xn − xi‖w
)

,

= arg max
w∈W

1

N

N∑
n=1

γn

( ∑
i∈Mn

αi,n

∑
j

wjm
j
i,n −

∑
i∈Hn

βi,n

∑
j

wjh
j
i,n

)
,

= arg max
w∈W

1

N

N∑
n=1

γn




∑
j

wj

∑
i∈Mn

αi,nm
j
i,n

︸ ︷︷ ︸
m̄j

n

−
∑

j

wj

∑
i∈Hn

βi,nh
j
i,n

︸ ︷︷ ︸
h̄j

n




,

= arg max
w∈W

wT 1

N

N∑
n=1

γn(m̄n − h̄n)

︸ ︷︷ ︸
ν

= (ν)+/‖(ν)+‖2 .

(12)

The above two steps iterate alternatingly until convergence, i.e.‖w(t+1) −w(t)‖ < θ.
We name the above algorithm as iterative RELIEF, or I-RELIEF for short. The pseudo-code of I-

RELIEF is presented in Fig. 2. Since Eqs. (8), (9) and (10) return us with reasonable estimates of
Pm, Ph and Po, respectively, and the re-estimation ofw is a convex optimization problem, we expect a
good convergence behavior and reasonable performance from I-RELIEF. In the following subsection, we
provide a convergence analysis for I-RELIEF.

B. Convergence Analysis

We begin by studying the asymptotic behavior of I-RELIEF. Ifσ → +∞, then

lim
σ→+∞

Pm(i|xn,w) =
1

|Mn| (13)
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for everyw ∈ W since lim
σ→+∞

f(d) = 1. On the other hand, for a givenw, if σ → 0, by assuming that

for everyn, din , ‖xn − xi‖w 6= djn if i 6= j, we have

lim
σ→0

Pm(i|xn,w) = lim
σ→0

exp(−din/σ)/
∑

j∈Mn

exp(−djn/σ)

= lim
σ→0

1/
∑

j∈Mn

exp(−(djn − din)/σ)

=





1 if din = min
j∈Mn

djn

0 if din > min
j∈Mn

djn .

(14)

Ph(i|xn,w) andPo(n|w) can be computed similarly. From the above analysis, we observe that ifσ → 0,
I-RELIEF is equivalent to iterating the original RELIEF (NM= NH = 1) provided that outlier removal
is not considered. In our experiments, we rarely observe that the resulting algorithm converges. On the
other hand, ifσ → +∞, I-RELIEF converges in one step because the termν in Eq. (12) is a constant
vector for any initial feature weights. This suggests that the convergence behavior and convergence rates
of I-RELIEF are fully controlled by the choice of the kernel width. In the following, we present a proof by
using the well-known Banach fixed point theorem. We first state the theorem without proof. For detailed
proofs, we refer the reader to [22].

Definition 1. Let U be a subset of a norm spaceZ, and ‖ · ‖ is a norm defined inZ. An operator

T : U → Z is called a contraction operator if there exists a constantq ∈ [0, 1) such that

‖T (x)− T (y)‖ ≤ q‖x− y‖ (15)

for everyx, y ∈ U . q is called the contraction number ofT .

Definition 2. An element of a norm spaceZ is called a fixed point ofT : U → Z if T (x) = x.

Theorem 1 (Fixed Point Theorem). Let T be a contraction operator mapping a complete subsetU of a

norm spaceZ into itself. Then the sequence generated as

x(t+1) = T (x(t)), t = 0, 1, 2, · · · (16)

with arbitrary x(0) ∈ U converges to the unique fixed pointx∗ of T . Moreover, the following estimation

error bounds hold:
‖x(t) − x∗‖ ≤ qt

1−q
‖x(1) − x(0)‖ ,

and ‖x(t) − x∗‖ ≤ q
1−q
‖x(t) − x(t−1)‖ .

(17)

In order to apply the fixed point theorem to prove the convergence of I-RELIEF, the gist is to identify
the contraction operator in I-RELIEF and check if all conditions in Theorem 1 are met. To this end,
let P = {p : p = [Pm, Ph, Po]} and we specify the two steps of I-RELIEF in a functional form as
A1 : W → P , A1(w) = p; A2 : P → W , A2(p) = w. By indicating the functional composition by a circle
(◦), I-RELIEF can be written asw(t) = (A2◦A1)(w(t−1)) , T (w(t−1)), whereT : W →W . SinceW is a
closed subset of a norm spaceRI and complete,T is an operator mapping a complete subsetW into itself.
However, it is difficult to directly verify thatT is a contraction operator satisfying the condition in Eq. (15).
Noting that forσ → +∞, I-RELIEF converges with one step, we havelimσ→+∞ ‖T (w1, σ)−T (w2, σ)‖ =

0, for everyw1,w2 ∈ W. Therefore, in the limit,T is a contraction operator with contraction constant
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q = 0, that is, limσ→+∞ q(σ) = 0. Therefore, for everyε > 0, there exists āσ such thatq(σ) ≤ ε

wheneverσ > σ̄. By settingε < 1, the resulting operatorT is a contraction operator. Combining the
above arguments, we establish the convergence result for I-RELIEF, which is summarized in the following
theorem.

Theorem 2. Let D = {(xn,yn)}N
n=1 ∈ X × Y ,W = {w : ‖w‖2 = 1,w ≥ 0} and I-RELIEF be defined

in Fig. 2. There exists āσ such that

lim
t→+∞

‖w(t) −w(t−1)‖ = 0 (18)

wheneverσ > σ̄. Moreover, for a fixedσ > σ̄, I-RELIEF converges to a unique solution for any initial

feature weightsw(0) ∈ W.

Theorem 2 ensures the convergence of I-RELIEF but does not tell us how large the kernel width should
be. In our experiment (c.f. Section VII-C), we find that by using a relative largeσ value, sayσ > 0.5,
the convergence is guaranteed. Also, the error bound in Ineq. (17) tells us that the smaller the contraction
numberq, the tighter the error bound and hence the faster the convergence rate. Since it is difficult to
explicitly expressq as a function ofσ, it is difficult to prove thatq monotonically decreases withσ.
However, in general, a larger kernel width yields a faster convergence, which is experimentally confirmed
in Section VII-C. It is also worthwhile to emphasize that unlike other machine learning algorithms such as
neural networks [23], the convergence and the solution of I-RELIEF are not affected by the initial value
if the kernel width is fixed. We also experimentally find that setting the initial feature weights all to be
1/I can only lead to slight but negligible improvement of the convergence rate compared to a randomly
generated initial value.

C. Relation to RELIEF-F

RELIEF-F is a special case of I-RELIEF. To see this, we first setPo = 0 since RELIEF-F has no
mechanism to handle outliers. Then we setPm(i|xn,w

(0)) andPh(i|xn,w(0)) to be1/K if xi is one of
the K nearest misses or hits ofxn and0 otherwise, respectively. Moreover, RELIEF-F only runs for one
iteration. That is, in the context of I-RELIEF, RELIEF-F first makes a guess on the weights as all equal
to 1/I, and then calculatesPm and Ph as above, and finally re-estimatesw and stops. Obviously, from
our analysis, the estimate ofPm andPh is quite rough. Kononenko [12] suggested thatK be chosen as
10, which is used as a rule in practice in comparison between RELIEF-F and other algorithms. In our
experiments, however, we observe that the performance of RELIEF-F is highly influenced by the value
of K. Therefore, we estimateK through cross-validation using training data in our experiments.

IV. EXTENSION TO MULTICLASS RELIEF

In this section, we consider feature weighting for multiclass problems. Some algorithms originally
designed for binary problems can be naturally extended to multiclass settings, while for others the extension
is not straightforward. In particular, for wrapper methods, the extension largely depends on the capability
of a classifier to handle multiclass problems [7]. In many cases, a multiclass problem is first decomposed
into several binary ones [24], [25], which further increases the computational burden of a wrapper method.
RELIEF, due to the use of a nearest neighbor classifier as shown previously, does not suffer from such a
problem.
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The RELIEF algorithm was originally designed to handle binary problems. Later, RELIEF-F was
proposed in [12] to deal with multiclass problems by modifying the weight update rule (line 6 of Fig. 1)
as:

wi = wi +
∑

{c∈Y,c6=y(x)}

P (c)

1− P (c)
|x(i) − NM(i)

c (x)| − |x(i) − NH(i)(x)| , (19)

whereY = {1, · · · , C} is the label space, NMc(x) is the nearest miss ofx from classc, and P (c) is
the a priori probability of classc. By using the conclusions drawn in Section II, it can be shown that
RELIEF-F is equivalent to defining a sample margin as:

ρ =
∑

{c∈Y,c6=y(x)}

P (c)

1− P (c)
d(x− NMc(x))− d(x− NH(x)) . (20)

Note that a positive sample margin does not necessarily imply a correct classification in 1-NN. With the
identification of the margin of RELIEF-F, the extension of RELIEF-F to the iterative version, which we
call I-RELIEF-1, can be easily done by plugging the margin of Eq. (20) into Eq. (2). We skip the detailed
derivations here due to the space limitation.

From the commonly used margin definition for multiclass problems [25], however, it is more natural
to define a margin as:

ρ = min
{c∈Y,c 6=y(x)}

d(x− NMc(x))− d(x− NH(x)) ,

= min
{xi∈D\Dy(x)}

d(x− xi)− d(x− NH(x)) ,
(21)

whereDc is a subset ofD containing only the patterns from classc. Compared to the definition in Eq. (20),
this definition regains the property that a positive sample margin corresponds to a correct classification.
The derivation of the iterative version of multiclass RELIEF using the new margin definition, which we
call I-RELIEF-2, is straightforward.

V. ONLINE LEARNING

The iterative RELIEF algorithms are based on a batch learning model. That is, feature weights are
updated after seeing all of the training data. In case the amount of training data is enormous, or we do
not have the luxury of seeing all of the data when starting training, online learning is computationally
much more attractive than batch learning. In this section, we derive an online algorithm for I-RELIEF.
Convergence analysis is also presented.

A. Online Learning

Recall in I-RELIEF, the update of feature weights requires us to calculate the following term (Eq. (12)):

ν =
1

N

N∑
n=1

γn(m̄n − h̄n) (22)

Instead of treating each observation equally, we introduce a time-dependent forgetting factorξ(t) (0 ≤
ξ(t) ≤ 1) to emphasize the most recently observed data [26] by assuming that with more observations, we
should have a more accurate estimation of feature weights:

ν(T ) = ϑ(T )

T∑
t=1

(
T∏

s=t

ξ(s))γ(t)(m̄(t) − h̄(t)) , (23)
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whereϑ(T ) = (
∑T

t=1(
∏T

s=t ξ
(s)))−1 is a normalization factor. Eq. (23) can be further manipulated:

ν(T ) = ϑ(T )

T∑
t=1

(
T∏

s=t

ξ(s)) γ(t)(m̄(t) − h̄(t))︸ ︷︷ ︸
π(t)

,

= ϑ(T )ξ(T )

(
T−1∑
t=1

(
T−1∏
s=t

ξ(s))π(t) + π(T )

)
,

=
ϑ(T )ξ(T )

ϑ(T−1)
ν(T−1) + ϑ(T )ξ(T )π(T ) ,

= ν(T−1) + ϑ(T )
(
ξ(T )π(T ) + ( ξ(T )

ϑ(T−1) − 1
ϑ(T ) )ν

(T−1)
)

.

(24)

Unravelingϑ(T ), we have:

ϑ(T ) = (
T∑

t=1

(
T∏

s=t

ξ(s)))−1 ,

= (ξ(T ) + ξ(T )

T−1∑
t=1

(
T−1∏
s=t

ξ(s)))−1 ,

= (ξ(T ) + ξ(T )/ϑ(T−1))−1 = ϑ(T−1)

ξ(T )(ϑ(T−1)+1)
.

(25)

Substituting Eq. (25) into Eq. (24) yields:

ν(T ) = ν(T−1) + ϑ(T )ξ(T )
(
π(T ) − ν(T−1)

)
,

= ν(T−1) + ϑ(T−1)

(ϑ(T−1)+1)

(
π(T ) − ν(T−1)

)
.

(26)

By definingη(T ) = ϑ(T−1)/(ϑ(T−1) + 1) as a learning rate, Eq. (26) can be rewritten as:

ν(T ) = ν(T−1) + η(T )
(
π(T ) − ν(T−1)

)
,

= (1− η(T ))ν(T−1) + η(T )π(T ) .
(27)

It states that the current estimate can be simply computed as a linear combination of the previous estimate
and the current observation.

After we obtainν(T ), the feature weightw(T ) can be calculated as:

w(T ) = (ν(T ))+/‖(ν(T ))+‖2 , (28)

where(νi)
+ = max(νi, 0). The pseudo-code of online I-RELIEF is presented in Fig. 3.

B. Convergence Analysis

In this subsection, we establish the convergence of online I-RELIEF. We also prove that under certain
conditions, online I-RELIEF does converge to I-RELIEF (based on batch learning) whent → +∞.

Theorem 3. The online I-RELIEF algorithm converges when the learning rate is appropriately selected.

Proof.The proof can be easily done by recognizing that Eq. (27) has the same form as the Robbins-Moron
stochastic approximation algorithm [27]. The conditions on the learning rateη(t):

lim
t→+∞

η(t) = 0 ,

∞∑
t=1

η(t) = ∞, and
∞∑

t=1

(η(t))2 < +∞ , (29)

ensure the convergence of online I-RELIEF.¥
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Online Version of I-RELIEF

(1) Initialization : givenD = {(xn, yn)}N
n=1, setw(0) = 1/I andν(0) = 0, number of iterationsT , kernel

width σ;

(2) for t = 1 : T

(3) Randomly select a patternx from D;

(4) Calculate pairwise distances with respect tow(t−1);

(5) CalculatePm, Ph andPo as Eqs. (8), (9) and (10);

(6) Calculateπ(t) as Eq. (24);

(7) Calculateν(t) = (1− η(t))ν(t−1) + η(t)π(t);

(8) Update weightsw(t) = (ν(t))+/‖(ν(t))+‖2;

(9) end

(10) Outputw(T ).

Fig. 3. Pseudo-code of online I-RELIEF

Eq. (27) presents a generic form for online RELIEF. However, in real applications, it is difficult to specify
a learning rate for a given dataset. The choice of learning rates is a large remaining issue in stochastic
approximation [27]. Therefore, in the following, we will only focus on a commonly used learning rate
η(t) = 1/at with a ∈ (0, 1]. It is easy to show that this learning rate satisfies the conditions in Eq. (29).
Also note that ifa = 1, Eq. (27) can be simplified as:ν(T ) = ν(T−1) + 1

T

(
π(T ) − ν(T−1)

)
= 1

T

∑T
t=1 π(t) .

Theorem 3 ensures the convergence of online I-RELIEF but does not tell us whether online I-RELIEF
converges to I-RELIEF. We prove that it is true in the following theorem. To eliminate the randomness,
instead of randomly selecting patterns fromD, we group the data into blocks, each block containing the
entire training dataset and denoted asB(m) = D. Online I-RELIEF successively performs online learning
overB(m),m = 1, 2, · · · . The order of samples within each block is fixed.

Theorem 4. Let the learning rateη(t) = 1/at with a ∈ (0, 1]. If both algorithms converge, I-RELIEF and

online I-RELIEF converge to the same solution, regardless of the learning rate (differenta in η(t) = 1/at)

in online I-RELIEF.

To prove the theorem, we need the following lemma.

Lemma 1. Let {aj} be a bounded sequence, i.e. for everyj, M1 ≤ aj ≤ M2. If lim
j→+∞

aj = a∗, then

lim
n→+∞

1

n

n∑
i=1

ai = a∗.

Proof. The proof is provided in the Appendix.

Proof of Theorem 4.For simplicity, we first considerη(t) = 1/t. For them-th block of data, denote
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(m)

x1 x2 xN

ν (mxN)

~π

ν (m−1)xN

(a) eT

x xx1 2 N

w

w (t)

(t+1)

(b) T

Fig. 4. Two constructed operators: (a)eT , and (b)T . Each square block denotes a search engine that, given a pattern and a feature weight

vector, returns the nearest neighbors of the pattern. The only difference betweeneT andT is that the former performs online learning while

the latter does not.

π̃(m) = 1
N

∑m×N
t=(m−1)×N+1 π(t). After running overM blocks of data, we have:

ν(M×N) =
1

M ×N

M×N∑
t=1

π(t) =
1

M

M∑
m=1

π̃(m) . (30)

From Theorem 3, we know that online I-RELIEF converges, i.e.lim
t→+∞

ν(t) = ν∗. It follows that lim
m→+∞

π̃(m) =

π̃∗. Since the data have compact support, the sequence{π̃(m)} is bounded. Using Lemma 1, we have:

lim
M→+∞

ν(M×N) = lim
M→+∞

1

M

M∑
m=1

π̃(m) = π̃∗ = ν∗ , (31)

where the last equality is due to the fact that a convergent sequence cannot have two limits.
We prove the convergence of online I-RELIEF to I-RELIEF by using the property that for a contraction

operator, the fixed point is unique. Recall that if the kernel width is appropriately selected,T : W →W
is a contraction operator for I-RELIEF, i.e.T (w∗) = w∗. We then construct an operator̃T : W → W
for online I-RELIEF, which, in them-th iteration, uses̃w(m−1) = (ν((m−1)×N))+/‖(ν((m−1)×N))+‖2 as
input, and then computesν(m×N) by performing online learning onB(m), and finally returnsw̃(m) =

(ν(m×N))+/‖(ν(m×N))+‖2. It follows from Eq. (31) that asm → +∞, we haveT̃ (w̃∗) = w̃∗, where
w̃∗ = (ν∗)+/‖(ν∗)+‖2. Therefore,w̃∗ is the fixed point ofT̃ . The only difference betweeñT and T is
that the former performs online learning whereas the latter does not. The two operators are plotted in Fig.
4. Since{ν(t)} is convergent, it is also a Cauchy sequence. That is, asm → +∞, the difference between
every pair ofν within one block goes to zero with respect to some norms. The operatorT̃ , therefore, is
identical toT in the limit. It follows thatw̃∗ = w∗, since otherwise there would be two fixed points for
a contraction operator, which contradicts Theorem 1.

The above arguments can also be applied to the case wherea ∈ (0, 1). The only difference is that
lim

m→+∞
π̃(m) = (π̃∗)/a where π̃∗ is defined fora = 1. However, this will not change the final solution

since the feature weights are calculated as(ν∗)+/‖(ν∗)+‖2. ¥

VI. COMPUTATIONAL COMPLEXITY

One major advantage of RELIEF and its variations over other algorithms is their computational effi-
ciency. The complexity of RELIEF, I-RELIEF and online I-RELIEF areO(TNI),O(TN2I) andO(TNI),
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respectively, whereT is the total number of iterations,I is the feature dimensionality andN is the number
of data points. If RELIEF runs over the entire dataset, i.e.T = N , then the complexity isO(N2I). In the
following section, we empirically show that online I-RELIEF can attain similar solutions to I-RELIEF
after one pass of the training data. Therefore, the computational complexity of online I-RELIEF is of the
same order as that of RELIEF.

VII. E XPERIMENTS

A. Experimental Setup

We conduct large-scale experiments to demonstrate the effectiveness of the proposed algorithms and
to study their behavior. Since in most practical applications one typically does not know the true feature
set, it is necessary to conduct experiments in a controlled manner. We perform experiments on two test-
beds. The first test-bed is composed of 9 datasets:twonorm, waveform, ringnorm, diabetics, flare-solar,
thyroid, heart, segmentationandyeast, all publicly available at the UCI Machine Learning Repository [28].
The data information is summarized in Table I. We add50 independently Gaussian distributed irrelevant
features to each pattern, representing different levels of signal-to-noise ratios2. In real applications, it
is also possible that some patterns are mislabeled. To evaluate the robustness of each algorithm against
mislabeling, we introduce noise to training data but keep testing data intact. The level of noise represents
a percentage of randomly selected training data for which its class labels are changed. The second test-
bed contains six microarray datasets:9-tumors[29], Brain-tumor2[30], Leukemia-1[2], prostate-tumors

[31], DLBCL [32] andSRBCT[33]. Except forprostate-tumorsandDLBCL, the remaining four datasets
are multiclass problems (from 3 to 9 classes). One characteristic of microarray data, different from most
classification problems we encounter, is the extremely large feature dimensionality (from 2308 to 10509)
compared to the small sample sizes (from 60 to 102). The data information is presented in Table I. For
more detailed information on these data, interested readers can refer to [2], [29], [30], [31], [32], [33].
For all of the datasets, except for a simple scaling of each feature value to be between0 and1 as required
in RELIEF, no other preprocessing is performed. The scaling operation was justified in [10] as to clamp
each feature weight into the interval between−1 and1. From our analysis, we note that scaling can also
improve the performance of both RELIEF and I-RELIEF by noting that KNN usually uses this simple
heuristic to improve its performance.

We use two metrics to evaluate the performance of the feature weighting algorithms. In most applica-
tions, feature weighting is performed for selecting a small feature subset to defy the curse of dimensionality.
Therefore, a natural choice for a performance metric is classification errors. The classification-error
metric, however, may not be able to fully characterize algorithmic performance. In some cases, we find
experimentally that including a few irrelevant features may not change classification errors significantly.
Indeed, improving classification performance sometimes is not the only purpose for performing feature
weighting. In applications where the acquisition of data is quite expensive, including some useless features
is highly undesirable. For microarray data, including irrelevant genes may complicate subsequent research.
This consideration is the main motivation for us to add50 useless features to original feature sets in the
UCI datasets. We treat feature selection as a target recognition problem. Though features in original feature
sets may be weakly relevant or even useless, it is reasonable to assume that the original features contain

2The signal-to-noise ratio refers to the ratio between the number of original features and that of the artificially added useless ones.
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TABLE I

DATA SUMMARY OF 9 UCI AND 6 MICROARRAY DATASETS

Dataset Train Test Feature Class

twonorm 400 7000 20 2

waveform 400 4600 21 2

ringnorm 400 7000 20 2

diabetics 468 300 8 2

heart 170 100 13 2

flare-solar 666 400 9 2

thyroid 140 75 5 2

segmentation 210 2100 19 7

yeast 500 984 8 10

9-tumors 60 / 5726 9

Brain-tumor2 60 / 10367 4

Leukemia-1 72 / 5327 3

Prostate-tumors 83 / 2308 4

SRBCT 102 / 10509 2

DLBCL 77 / 5469 2

at least the same or more information than the useless ones that are added artificially. By changing a
threshold, we can plot a receiver operating characteristic (ROC) curve [13] that gives us a direct view
on the capabilities of each algorithm to identify useful features and at the same time rule out useless
ones. However, as the classification-error metric, the ROC metric is not exclusive. Some algorithms are
down-biased and tend to assign zero weights to not only useless features but also some presumably useful
features in original feature sets (c.f. Fig. 8), resulting in a small area under a ROC curve. Since we do not
know the true identities of features in original feature sets, in this case, we need to check classification
errors to see if the studied algorithm does select all of the useful features.

B. Experiments on UCI Datasets

We first perform experiments on the UCI datasets. For binary problems, we compare I-RELIEF with
RELIEF-F and Simba. For multiclass problems, we compare RELIEF-F with I-RELIEF-1 and I-RELIEF-2.

To make the experiment computationally feasible, we use KNN to estimate classification errors for
each feature weighting algorithm. KNN is certainly not an optimal classifier for each dataset. However,
the focus of the paper is not on the optimal classification but on feature weighting. KNN provides us
with a platform where we can compare different algorithms fairly with a reasonable computational cost.
The number of the nearest neighborsK is estimated through a stratified 10-fold cross validation using
training data. We do not spend extra effort on re-estimatingK when only a subset of features are used
in training and testing, rather opting to use the one estimated in the original feature space. Though the
value ofK is surely not optimal, we find that it is fair for each algorithm.

The kernel widthσ is the only free parameter in I-RELIEF. We show in Section VII-C thatσ is not
a critical parameter. Nevertheless, we estimate it through 10-fold cross validation in the experiment. One
problem associated with the estimation with cross validation using classification errors as criterion is that
it requires us to specify the optimal number of features used in KNN. To overcome this difficulty, the
following heuristic method is used: for a given candidate ofσ, feature weights are estimated, and then
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KNN is performed in the induced weighted feature space [34]. The optimalσ is then chosen as the one
with the smallest classification error. Likewise, we find the number of NH and NM in RELIEF-F through
cross validation, rather than presetting it to10 as suggested in [12]. The code of Simba used in the study
is downloaded from [8]. As we have seen in Section II, there are some local maxima in Simba’s objective
function. Simba tries to overcome this problem by performing a gradient ascent from serval different
starting points. We set the number of stating points to be5, which is the default value of Simba. Also,
we set the number of passes of the training data to be5, the default value of which is1. In summary, we
try to make the comparison among different algorithms as fairly as possible.

To eliminate statistical variations, each algorithm is run20 times for each dataset. In each run, a dataset
is randomly partitioned into training and testing, and50 irrelevant features are added. The averaged
testing errors of KNN as a function of the number of the top ranked features are plotted in Fig. 5. (In
the notation 50/10, the first number refers to the number of irrelevant features and the second one the
percentage of mislabeled samples.) The ROC curves of the algorithms are plotted in Fig. 6. As a reference,
the classification errors of KNN on the clean data (without irrelevant features and mislabeling) and noisy
data are reported in Table II. From these experimental results, we arrive at the following observations.

(1) The performance of KNN is degraded significantly in the presence of a large amount of irrelevant
features, as reported in the literature, while mislabeling has less influence on the performance of KNN
than irrelevant features.

(2) From Fig. 5, we can see that with respect to classification errors, in nearly all of datasets, I-RELIEF
performs the best, RELIEF-F the second and Simba the worst. For a more rigorous comparison between
I-RELIEF and RELIEF-F, a Student’s paired two-tailed t-test is also performed. The p-value of the t-
test reported in each row in Table II represents the probability that two sets of compared samples come
from distributions with equal means. The smaller the p-value, the more significant the difference of the
two average values is. The optimal number of features used in KNN is estimated through 10-fold cross
validation using training data. At the0.03 p-value level, I-RELIEF wins on nine cases (ringnorm (50/10),
twonorm(50/10), thyroid (50/0), waveform, f-solar andyeast), and ties with RELIEF-F on the remaining
nine cases. As we argued before, the classification-error metric may not fully characterize algorithmic
performance. Therefore, we check the ROC curves plotted in Fig. 6. In almost all datasets, I-RELIEF has
the largest area under a ROC curve, RELIEF-F the second, and Simba the smallest. For five (ringnorm

(50/0),heart (50/10),thyroid (50/10) anddiabetics) out of nine cases that have no significant differences
in classification errors, it is clear from Fig. 6 that I-RELIEF performs much better than RELIEF-F with
respect to the ROC metric.

To further demonstrate the performance of each algorithm, we particularly focus on two datasets:
ringnorm and waveform. We plot the learned feature weights of one realization in Figs. 7 and 8. For
ease of comparison, the maximum value of each feature weight vector is normalized to be1. Without
mislabeling, the weights learned in RELIEF-F are similar to those of I-RELIEF but the former have larger
weights on the useless features than the latter. It is interesting to note that, for both datasets, Simba assigns
zero weights to not only useless features but also to some presumably useful ones. In these cases, we
need to go back to the classification-error metric. Particularly, forwaveform(50/0), we observe that the
testing error of Simba becomes flat after the tenth features since, except for these 10 features, the weights
of the remaining features are all zero. This implies that Simba in effect does not identify all of the useful
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Fig. 5. Comparison of three algorithms using the classification error metric on9 UCI datasets.
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Fig. 6. Comparison of three algorithms using the ROC metric on 9 UCI datasets.
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TABLE II

THE TESTING ERRORS AND STANDARD DEVIATIONS(%) ON 9 UCI DATASETS. THE LAST COLUMN SUMMARIZES THE P-VALUES OF

STUDENT’ S T-TESTS COMPARING THE RESULTS OFRELIEF AND I-RELIEF FOR EACH DATASET. THE LAST ROW (W/L/T)

SUMMARIZES WIN /LOSS/TIE IN COMPARING RELIEF AND I-RELIEF BASED ON A SIGNIFICANCE LEVEL0.03.

Dataset KNN Mislabelling KNN I-RELIEF RELIEF P-value
(clean data) (noisy data) (I-RELIEF/RELIEF)

Ringnorm 39.2(1.3) 0% 45.1(1.2) 22.0(1.2) 21.7(1.1) 0.47
10% 44.2(1.1) 28.1(1.5) 34.0(4.5) 0.00

Twonorm 3.1(0.2) 0% 4.8(0.6) 3.1(0.7) 3.2(0.5) 0.96
10% 6.4(0.7) 3.7(0.7) 6.2(1.3) 0.00

Waveform 12.6(0.7) 0% 14.2(1.7) 10.5(1.1) 11.2(1.1) 0.03
10% 14.7(1.6) 11.2(1.2) 12.2(1.3) 0.00

Heart 17.9(3.1) 0% 19.2(2.9) 18.8(3.4) 19.6(3.2) 0.45
10% 19.8(3.9) 19.5(3.9) 20.9(3.6) 0.26

Thyroid 4.4(2.4) 0% 24.1(3.8) 5.8(3.2) 8.7(4.3) 0.02
10% 26.0(4.1) 9.8(3.8) 11.3(3.6) 0.20

Diabetics 28.9(1.5) 0% 31.6(2.6) 27.1(1.7) 27.0(2.1) 0.80
10% 31.7(2.5) 27.2(2.2) 27.3(1.8) 0.77

F-solar 34.8(2.4) 0% 34.5(2.6) 34.5(3.3) 37.1(3.8) 0.03
10% 36.1(1.7) 35.1(2.1) 38.7(3.7) 0.00

Segment 12.5(1.4) 0% 27.9(1.7) 17.0(1.4) 17.7(1.7) 0.17
10% 29.2(1.8) 17.3(1.4) 17.4(1.2) 0.92

Yeast 43.8(0.9) 0% 65.8(1.5) 45.0(1.8) 47.8(1.4) 0.00
10% 66.2(1.4) 45.5(1.7) 49.0(1.9) 0.00

W/T/L=9/9/0

features. With10% mislabeling, the weight quality of both RELIEF-F and Simba degrades significantly,
whereas I-RELIEF performs similarly as before. For example, forwaveform(50/10), Simba mistakenly
identifies an irrelevant feature as the top feature. These observations imply that both Simba and RELIEF-F
are not robust against label noise.

We finally focus on the datasetdiabetics, for which the statistical test shows that there is no significant
difference in classification errors between RELIEF-F and I-RELIEF (p-value≈ 0.8). However, from Figs.
6 and 9, I-RELIEF is the clear winner in terms of solution quality. One possible explanation is that the
datasetdiabeticscontains some weakly relevant features, and these features contribute insignificantly to
classification performance though having more information than random noise. This example demonstrates
the effectiveness of I-RELIEF in ranking features according to their relevance. Similar results are also
observed on the datasetsringnorm (50/0), heart (50/10) andthyroid (50/10). From this experiment, we
conclude that when comparing feature selection and weighting algorithms, using classification errors as
the only performance metric may not be enough.

C. Choice of Kernel Width

The kernel widthσ in I-RELIEF can be estimated through cross validation on training data. It is well-
known that the cross-validation method may result in an estimate with a large variance. Fortunately, this
problem does not pose a serious concern. In this subsection, we show thatσ is not a critical parameter.
In Fig. 10, we plot the feature weights learned ontwonormand waveformusing differentσ values. We
observe that for relatively largeσ values, the resulting feature weights do not have much difference. This
indicates that the performance of I-RELIEF is not sensitive to the choice ofσ values, which makes model
selection easy in practical applications.
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Fig. 7. Feature weights learned in three algorithms onringnorm dataset. The first20 features are presumably useful.

We also conduct some experiments to confirm the convergence results established in Section III-B.
Plotted in Fig. 11(a) are the convergence rates of I-RELIEF with differentσ values onwaveformdataset.
We observe that the algorithm diverges whenσ = 0.05 but converges in all other cases. Moreover, with
the increase ofσ values, the convergence becomes faster. In Fig. 11(b), we plot the convergence rates of
I-RELIEF with different initial values for a fixed kernel width. The line with stars is for the uniformly
distributed initial value, and the line with circles for randomly generated initial values, both averaged
from 10 runs. This experimental result confirms that I-RELIEF converges fromany starting point, and
using the uniform initial value does improve convergence but the improvement is negligible.

D. Online Learning

In this subsection, we perform some experiments to verify the convergence properties of online I-
RELIEF established in Section V. The feature weights learned in I-RELIEF are used as a target vector.
The stopping criterionθ (line 1 in Fig. 2) is set to be10−5 to ensure that the target vector is a good
approximation of the true solution (c.f. Eq.(17)). The convergence results with different learning rates
(different a in η(t) = 1/at), averaged from20 runs, are plotted in Fig. 12. We only present the results of
waveformand ringnorm since the results for other datasets are almost identical. From the figure, we first
observe that online I-RELIEF, regardless of the learning rates, converges to I-RELIEF, which confirms the
theoretical findings in Theorem 4. We also find that after400 iterations (both datasets have400 training
samples), the feature weights are already very close to the target vectors. In Fig. 13, we plot the target
vector and the feature weights of online I-RELIEF (after400 iterations). For comparison, the feature
weights of RELIEF-F forringnorm are also plotted.

The choice of learning rates is an open issue in stochastic approximation. From Fig. 12, we find that
appropriate selection of a learning rate does accelerate convergence. However, the impact on the final
solution is quite small. From this experiment, we may conclude that in practical applications we can
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Fig. 8. Feature weights learned in three algorithms onwaveformdataset. The first21 features are presumably useful.

simply set the learning rateη(t) = 1/t without sacrificing much in performance.

E. Experiments on Microarray

We finally compare RELIEF to I-RELIEF with two margin definitions on six microarray datasets. Due
to the limited sample numbers, the leave-one-out method is used to evaluate the performance of each
algorithm.

The classification errors of KNN as a function of the500 top ranked features are plotted in Fig.
14. SinceProstate-Tumorand DLBCL are binary problems, I-RELIEF-1 is equivalent to I-RELIEF-2.
From the figure, we observe that except forDLBCL, in which I-RELIEF performs similar to RELIEF,
for the remaining five datasets, I-RELIEF-2 is the clear winner compared to RELIEF and I-RELIEF-1.
For 9-Tumorsand Brain-Tumor2, I-RELIEF-2 outperforms RELIEF over all ranges by5% − 20%. For
Leukemia-1and SRBCT, though the performance of three algorithms all converge after 100 genes, it is
clear that I-RELIEF is much more accurate than RELIEF in ranking genes. For example, inSRBCT, with
5 genes, the error for I-RELIEF-2 is about7% compared to about17% for RELIEF. Also note that in
SRBCT, I-RELIEF-2 almost reaches a zero error with about15 genes, compared to about60 genes in
RELIEF (The x-axis is log-scaled.). For comparison, we also report the classification errors of KNN using
all genes. We can see that gene selection can significantly improve the performance of KNN .

We note that the numbers of genes found by I-RELIEF that correspond to the minimum classification
errors are all less than200. With these small gene sets, oncologists may be able to work on them
directly to infer molecular mechanisms underlying disease causes. Also, if for classification purposes,
some computationally expensive methods such as wrapper methods, can be used to further filter out some
redundant genes. By using some sophisticated classification algorithms such as SVM, much improvement
on classification performance is expected. One important issue in using feature weighting algorithms for
microarray data analysis is to determine where to cut in a ranked gene list. It may be difficult to derive an
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Fig. 9. Feature weights learned in three algorithms ondiabeticsdataset. The first8 features are presumably useful.
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Fig. 10. Feature weights learned using differentσ values ontwonormandwaveformdatasets.
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Fig. 12. Convergence rates of online I-RELIEF using difference learning rates on (a)waveform, and (b)ringnorm datasets.
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Fig. 13. Feature weights learned in I-RELIEF and online I-RELIEF (after 400 iterations) onwaveformand ringnorm datasets.
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Fig. 14. Classification errors of three feature weighting algorithms on six microarray datasets.
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analytical solution. One commonly used method is through cross validation that first estimates classification
parameters, including cut-off thresholds, based on training data, and then uses the estimated parameters
to classify the held-out testing samples (also called the two-loop protocol). Detailed descriptions of the
experimental protocols is beyond the scope of the paper. Interested readers may refer to [35].

VIII. C ONCLUSION

In this paper, we have proposed a set of new feature weighting algorithms, all stemming from a simple
yet informative interpretation of RELIEF. We have proven that RELIEF implements an online algorithm
that solves a convex optimization problem with a margin based objective function. This new interpretation
enables us to identify some weaknesses of RELIEF and to propose some solutions to fix them. Following
the principle of the EM algorithm that treats unobserved data as random variables, we have proposed
an iterative RELIEF (I-RELIEF) algorithm. Using a new multiclass margin definition, we have proposed
a new multiclass RELIEF algorithm. In order to speed up the learning process of I-RELIEF, we have
also developed an online I-RELIEF algorithm. We have established some convergence theorems for the
proposed I-RELIEF algorithms.

Large-scale experiments have been conducted on nine UCI and six microarray datasets to demonstrate
the effectiveness of the proposed algorithms and to verify the theoretical results established in this paper.
We have experimentally shown that: (1) I-RELIEF performs significantly better than the RELIEF-F and
Simba algorithms in terms of the capability to recover useful features and rule out useless ones, and is
robust against mislabeling noise; (2) I-RELIEF has a nice convergence property. If the parameter is properly
selected, I-RELIEF converges to a unique solution regardless of the initial starting points. Moreover, the
performance of I-RELIEF is not sensitive to the choice of the tuning parameter, which makes model
selection easy in practical applications; (3) with online learning, I-RELIEF can be implemented with the
same computational cost as RELIEF.

We outline several directions we will pursue in the future:

1) Although we have shown that the kernel width is not a critical parameter in I-RELIEF, it would
be highly desirable to estimate the kernel width during the learning process, making I-RELIEF a
parameter-free algorithm.

2) The correct identification of relevant genes lays solid foundation for subsequent research (e.g. breast
cancer prognosis). The effectiveness of I-RELIEF in ranking features according to their relevance
has been clearly demonstrated in the UCI datasets but only partially in the microarray datasets by
using the classification-error metric. We are currently working closely with oncologists to determine
the biological significance of the top ranked genes identified by our algorithms. Also, encouraged by
the superior performance of I-RELIEF over RELIEF-F, we intend to develop a classification system
for microarray data by combining I-RELIEF with some sophisticated classifiers such as SVM.
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X. A PPENDIX – PROOF OFLEMMA 1

Lemma 1. Let {aj} be a bounded sequence, i.e. for everyj, M1 ≤ aj ≤ M2. If lim
j→+∞

aj = a∗, then

lim
n→+∞

1

n

n∑
i=1

ai = a∗.

We need to prove that for everyε > 0, there exists a positive integerN(ε) such that| 1
n

∑n
i=1 ai−a∗| < ε

for everyn > N(ε). We first consider1
n

∑n
i=1 ai− a∗ < ε. Since{aj} is a convergent sequence, for every

ε, we can find anε1 ∈ (0, ε) and a positive integerN(ε1) such that|aj − a∗| < ε1 for every j > N(ε1).
SinceM1 ≤ aj ≤ M2 for every j, we have

1

n

n∑
i=1

ai − a∗ ,

=
1

n




N(ε1)∑
i=1

(ai − a∗) +
n∑

i=N(ε1)+1

(ai − a∗)


 ,

<
1

n




N(ε1)∑
i=1

(M2 − a∗) +
n∑

i=N(ε1)+1

ε1


 ,

= 1
n
N(ε1)(M2 − a∗ − ε1) + ε1 .

(32)

It immediately follows that ifn > max{N(ε1)(M2− a∗− ε1)/(ε− ε1), N(ε1)}, 1
n

∑n
i=1 ai− a∗ < ε holds.

Similarly, we can prove that ifn > max{N(ε1)(a
∗ −M1 − ε1)/(ε− ε1), N(ε1)}, 1

n

∑n
i=1 ai − a∗ > −ε

holds. Therefore, for everyε, there existsN(ε) = max{N(ε1)(M2 − a∗ − ε1)/(ε− ε1), N(ε1)(a
∗ −M1 −

ε1)/(ε− ε1), N(ε1)} such that| 1
n

∑n
i=1 ai − a∗| < ε for everyn > N(ε), which proves the lemma. ¥

REFERENCES

[1] Y. Sun and J. Li, “Iterative RELIEF for feature weighting,” inProc. 23rd International Conference on Machine Learning. ACM Press,

2006, pp. 913–920.

[2] T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov, H. Coller, M. Loh, J. Downing, M. Caligiuri, C. Bloomfield,

and E. Lander, “Molecular classification of cancer: class discovery and class prediction by gene expression monitoring,”Science, vol.

286, no. 5439, pp. 531–537, October 1999.

[3] S. Ramaswamy, P. Tamayo, R. Rifkin, S. Mukherjee, C. Yeang, M. Angelo, C. Ladd, M. Reich, E. Latulippe, J. Mesirov, T. Poggio,

W. Gerald, M. Loda, E. Lander, and T. Golub, “Multiclass cancer diagnosis using tumor gene expression signatures,”Proc. Natl. Acad.

Sci. USA, vol. 98, no. 26, pp. 15 149–15 154, December 2001.

[4] A. Jain and D. Zongker, “Feature selection: evaluation, application, and small sample performance,”IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 19, no. 2, February 1997.

[5] P. Pudil and J. Novovicova, “Novel methods for subset selection with respect to problem knowledge,”IEEE Intelligent Systems, vol. 13,

no. 2, pp. 66 – 74, March 1998.

[6] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik., “Feature selection for SVMs,” inAdvances in Neural

Information Processing Systems, 2001, pp. 668–674.

[7] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,”Journal of Machine Learning Research, vol. 3, pp. 1157

– 1182, 2003.

[8] R. Gilad-Bachrach, A. Navot, and N. Tishby, “Margin based feature selection - theory and algorithms,” inProc. 21st International

Conference on Machine Learning. ACM Press, 2004, pp. 43–50.

[9] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”Artificial Intelligence, vol. 97, no. 1-2, pp. 273–324, 1997.

[10] K. Kira and L. A. Rendell, “A practical approach to feature selection,” inProc. 9th International Conference on Machine Learning.

Morgan Kaufmann, 1992, pp. 249 – 256.

[11] T. G. Dietterich, “Machine learning research: Four current directions,”AI Magazine, vol. 18, no. 4, pp. 97–136, 1997.

[12] I. Kononenko, “Estimating attributes: Analysis and extensions of RELIEF,” inProc. European Conference on Machine Learning, 1994,

pp. 171–182.



27

[13] R. Duda, P. Hart, and D. Stork,Pattern Classification. New York: J. Wiley, 2000.

[14] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,”Journal of the Royal

Statistical Society B, vol. 39, no. 1, pp. 1–38, 1977.

[15] T. Jenssen and E. Hovig, “Gene-expression profiling in breast cancer,”Lancet, vol. 365, pp. 634–635, 2005.

[16] K. Crammer, R. Gilad-Bachrach, A. Navot, and N. Tishby, “Margin analysis of the LVQ algorithm,” inAdvances in Neural Information

Processing Systems, 2002, pp. 462–469.

[17] E. K. P. Chong and S. H. Zak,An Introduction to Optimization. New York: John Wiley and Sons Inc., 2001.

[18] V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.

[19] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,”Journal of

Computer and System Sciences, vol. 55, no. 1, pp. 119–139, 1997.

[20] A. Demiriz, K. P. Bennett, and J. Shawe-Taylor, “Linear programming boosting via column generation,”Machine Learning, vol. 46,

pp. 225–254, 2002.

[21] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted learning,”Artificial Intelligence Review, vol. 11, no. 15, pp. 11–73,

1997.

[22] R. Kress,Numerical Analysis. New York: Springer-Verlag, 1998.

[23] C. Bishop,Neural Networks for Pattern Recognition. Oxford, UK: Oxford University Press, 1995.

[24] T. G. Dietterich and G. Bakiri, “Solving multiclass learning problems via error-correcting output codes,”Journal of Artificial Intelligence

Research, vol. 2, pp. 263–286, 1995.

[25] Y. Sun, S. Todorovic, J. Li, and D. Wu, “Unifying error-correcting and output-code AdaBoost through the margin concept,” inProc.

22nd International Conference on Machine Learning. ACM Press, 2005, pp. 872 – 879.

[26] M. Sato and S. Ishii, “On-line EM algorithm for the normalized Gaussian network,”Neural Computation, vol. 12, no. 2, pp. 407–432,

Feb. 2000.

[27] H. Kushner and G. Yin,Stochastic Approximation and Recursive Algorithms and Applications, 2nd ed. New York: Springer-Verlag,

2003.

[28] C. Blake and C. Merz, “UCI repository of machine learning databases,” 1998.

[29] J. Staunton, D. Slonim, H. Coller, P. Tamayo, M. Angelo, J. Park, U. Scherf, J. Lee, W. Reinhold, J. Weinstein, J. Mesirov, E. Lander,

and T. Golub, “Chemosensitivity prediction by transcriptional profiling,”Proc. Natl. Acad. Sci. USA, vol. 98, no. 19, pp. 10 787–10 792,

September 2001.

[30] C. Nutt, D. Mani, R. Betensky, P. Tamayo, J. Cairncross, C. Ladd, U. Pohl, C. Hartmann, M. McLaughlin, T. Batchelor, P. Black,

A. von Deimling, S. Pomeroy, T. Golub, and D. N. Louis, “Gene expression-based classification of malignant gliomas correlates better

with survival than histological classification,”Cancer Research, vol. 63, no. 7, pp. 1602–1607, April 2003.

[31] D. Singh, P. Febbo, K. Ross, D. Jackson, J. Manola, C. Ladd, P. Tamayo, A. Renshaw, A. D’Amico, J. Richie, E. Lander, M. Loda,

P. Kantoff, T. Golub, and W. Sellers, “Gene expression correlates of clinical prostate cancer behavior,”Cancer Cell, vol. 1, no. 2, pp.

203–209, March 2002.

[32] M. Shipp, K. Ross, P. Tamayo, A. Weng, J. Kutok, R. Aguiar, M. Gaasenbeek, M. Angelo, M. Reich, G. Pinkus, T. Ray, M. Koval,

K. Last, A. Norton, T. Lister, J. Mesirov, D. Neuberg, E. Lander, J. Aster, and T. Golub, “Diffuse large b-cell lymphoma outcome

prediction by gene-expression profiling and supervised machine learning,”Nature Medicine, vol. 8, no. 1, pp. 68–74, 2002.

[33] J. Khan, J. Wei, M. Ringner, L. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C. Antonescu, C. Peterson, and P. Meltzer,

“Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks,”Nature Medicine,

vol. 7, no. 6, pp. 673–679, 2001.

[34] D. Wettschereck, D. W. Aha, and T. Mohri, “A review and empirical evaluation of feature weighting methods for a class of lazy

learning algorithms,”Artificial Intelligence Review, vol. 11, no. 1-5, pp. 273–314, 1997.

[35] L. Wessels, M. Reinders, A. Hart, C. Veenman, H. Dai, Y. He, and L. van’t Veer, “A protocol for building and evaluating predictors

of disease state based on microarray data,”Bioinformatics, vol. 21, pp. 3755–3762, 2005.


