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Summary

Dynamic time warping (DTW) has been widely used in
various pattern recognition and time series data mining
applications. However, as examples will illustrate, both the
classic DTW and its later alternative, derivative DTW,
may fail to align a pair of sequences on their common
trends or patterns. Furthermore, the learning capability of
any  supervised learning algorithm based on
classic/derivative DTW is very limited. In order to capture
trends or patterns that a sequence presents during the
alignment process, we first derive a global feature and a
local feature for each point in a sequence. Then, a method
called feature based dynamic time warping (FBDTW) is
designed to align two sequences based on each point’s
local and global features instead of its value or derivative.
Experimental study shows that FDBTW outperforms both
classic DTW and derivative DTW on pairwise distance
evaluation of time series sequences. In order to enhance
the capacity of supervised learning based on DTW, we
further design a method called adaptive feature based
dynamic time warping (AFDBTW) by equipping the
FDBTW with a novel feature selection algorithm. This
feature selection algorithm is able to expand the learning
capability of any DTW based supervised learning
algorithm by a dual learning process.  The first-fold
learning process learns the significances of both the local
feature and global feature towards classification; then the
second-fold learning process learns a classification model
based on the pairwise distances generated by the
AFDBTW. A comprehensive experimental study shows
that the AFDBTW is able to make further improvement
over the FDBTW in time series classification.
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1. Introduction

As an algorithm for measuring similarity between time
series sequences, Dynamic Time Warping (DTW) has been
widely used in various pattern recognition applications,
such as speech recognition [3, 9], handwriting recognition
[1], gesture recognition [2], signature recognition [20],
ECG pattern recognition[21], shape recognition [7] and
others. Due to the huge amount of time series data that has
been accumulated in different domains such as finance,
manufacturing, process engineering, medicine, molecular
biology, physics, and chemistry, recent years have also
seen increasing interest in applying DTW to time series
data mining. The involved data mining tasks include, but
are not limited to, clustering [4, 22], classification [23, 24],
association mining [25], and motif discovery [8, 26].

Unlike Linear Time Warping (LTW), which compares
two sequences based on a linear match of the two temporal
dimensions, DTW uses dynamic programming to search a
space of mapping between the time axes of the two
sequences in order to determine the minimum distance
between them. Typically, certain constraints are imposed
on DTW to optimize and expedite the search of the
warping path. Major constraints outlined in [9] include
monotonic condition, continuity condition, boundary
condition, adjustment window condition, and slope
constraint condition.

More formally, given two time series sequences Rand Q
as follows: R = riraofs..ri..ry, and Q = G14Gs...qj...qn
DTW finds an optimal warping path between R and Q by
using dynamic programming to calculate the minimal
cumulative distance p(M,N), where p(i,j) is recursively
defined as:

(s )= d(r. g +min(y(i =1, j=1),y(i =1, j),y(, j=1) (1)

As can be seen from formula 1, given a search space
defined by two time series sequences and a set of
constraints, DTW guarantees to find the warping path with
the minimum cumulative distance among all possible
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warping paths that are valid in the search space.
Furthermore, according to formula 1, the determinant
factor for y(M,N) is all the d(r;, g)’s, where dr;, @)
represents the distance between the data point r; (1< i < M)
from the sequence Aand the data point g (7< j < N) from
the sequence Q. In most situations, a data point in a time
series sequence is a numerical value, so d(r;, ) is typically
defined as either | rj,- g; | or (- q,-)2. In this paper, we
refer to this type of classic DTW as value based DTW.

The fundamental problem of value based DTW is that
the numerical value of a data point in a time series
sequence is not the complete picture of the data point in
relation to rest of the sequence. We will show in section 2
that, when a data point in a sequence is compared with
another point in another sequence, its position in the
sequence and relation to its neighbors should also be taken
into consideration. In [5], a derivative DTW was
proposed that replaces the value of each data point with its
first derivation in the process of dynamic time warping.
The derivation of a data point can be viewed as a local
feature of the point that expresses its relationship with two
adjacent neighbors. However, as will also be illustrated in
section 2, only considering derivations in comparison may
make derivative DTW lose sight of the overall shapes or
significant features that occur in the involved sequences.

Based upon these observations of the essential problems
of value based DTW and derivative DTW, we propose in
this paper a novel approach called Feature Based Dynamic
Time Warping (FBDTW) as a better technique for
evaluating the similarity between two given time series
sequences. When comparing two points coming from each
of the two sequences in the process of dynamic time
warping, FBDTW takes into consideration both the local
and global features of the two points. By doing this, our
algorithm gains a vision of not only the overall shapes of
the sequence but also the local trend around the points.
Experimental studies on the UCR time series
classification/clustering test bed [6] with twenty different
time series data sets show that FBDTW outperforms both
value based (the classic) DTW and derivative DTW.

The second contribution presented in this paper is the
enhancement of the supervised learning capacity of DTW
through a learning algorithm. It is well known that time
series classification has numerous important applications
in different domains. Although a wide range of time series
classification algorithms were proposed in the past decade,
X. Xi, E. Keogh, C. Shelton, and L. Wei [10] claimed
based on their experimental studies that the combination of
one-nearest-neighbor (1-NN) with Dynamic Time Warping
(DTW) distance “has proven exceptionally difficult to
beat”. Nevertheless, despite its superior performance over
other alternatives, the combination of INN and DTW has
limited learning capacity. In other words, in this
combination, the pairwise distance evaluated by DTW is

domain and application independent. In the study of the
proposed FBDTW, we found that the pairwise distance
between two time series sequences may be domain or
application dependent. For instance, in some domains or
applications, time series sequences are classified primarily
based on the global trends of the sequences; while in others,
the local trends of the sequences may carry more weights.
Therefore, a learning capacity should be equipped to a
time series classification approach to learn an optimized
way to calculate pairwise distances from the training data.
The proposed FBDTW, which aligns sequences based on
both the local feature and global feature of each point,
provides an excellent instrument for such an adaptive
distance measure. The accumulative effect of the local
features of all points in a sequence reflects local trends of
that sequence; whereas the accumulative effect of the
global features of points in a sequence reflects the global
trend of the same sequence. Hence, we design the adaptive
FBDTW (AFBDTW) where the contributions of global
features and location features are leveraged by weighting
factors. The weighting factors are learned from the
training data by a newly designed feature selection
algorithm. The AFBDTW, therefore, enhance the capacity
of supervised learning for time series data, such that the
combination of 1-NN and AFBDTW contains a dual
learning process. The first-fold learning derives an
optimized pairwise distance function for time series data;
then, the second-fold learning is carried by 1-NN based on
the learned distance. Our experimental study shows that
the enhancement of learning capacity brought by
AFBDTW makes further improvement on the classification
accuracy for time series data.

The rest of the paper will be organized as follows. In
section 2, we study the limitations of value based DTW
and derivative DTW. Subsequently, our proposed
FBDTW algorithm is presented in section 3. Next, in
section 4, we describe the AFBDTW and the
corresponding feature selection algorithm. In section 5 we
conduct comprehensive experimental and comparative
studies on AFBDTW, FBDTW, value based DTW, and
derivative DTW. The time complexity of FBDTW and
AFBDTW is given in section 6. Finally, we conclude our
contributions and envision further development on
FBDTW in section 7.

2. Limitation of Value Based DTW and
Derivative DTW

In this section we show that both value based DTW and
derivative DTW may lose sight of overall shapes of the
involved sequences. First, Figure 1(a) presents two time
series sequences that develop similar trends at almost the
same pace. These two sequences are the first one third of
the two sequences that belong to the same class of a data
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set called Beef that is one of the UCR time series data sets
[6]. Intuitively, little time warping is needed when
aligning these two sequences. However, as shown in
Figure 1(b), value based DTW maps almost the whole first
sequence (the one with the highest peak) to one single
point denoted as P in the second sequence. This alignment
most certainly does not have a positive impact on the
similarity evaluation of these two sequences. The reason
why value based DTW generates this abnormal alignment
is simply because P is the closest point of the second
sequence towards any point in the first sequence in terms
of value. In other words, this pure value-oriented
comparison makes value based DTW ignore the context of
points, such as their positions in local features and their
relations to overall trends. One may ask if normalization
of these two sequences could solve this problem. Figure
1(C) shows the alignment result after normalization of
these two sequences. The problem is lessened a little but
fundamentally still exists, i.e., the alignment is blind to the
common trends developed by both sequences.  Better
alignments of these two sequences by methods proposed in
this paper can be seen in figure 3.

Derivative DTW was proposed in [5] to remedy the
weakness of value oriented mapping. However, the
following example will illustrate that derivative oriented
comparison may also neglect significant features of the
involved sequences. The two time series sequences shown
in Figure 2(a) belong to the same class of a data set called
CBF that is one of UCR time series data sets [6]. These
two sequences share a common feature, which is a
significant drop of value from point A to B in the first
sequence or from A’ to B’ in the second sequence. An
ideal time warping would match the point A to A’ and B to
B’. However, this significant common feature is not
detected by derivative DTW, which generates the
alignment shown in Figure 2(b). Better alignments of
these two sequences by methods proposed in this paper can
be seen in figure 4.

These two examples suggest that in order to be able to
identify and match common trends and patterns presented
by a pair of sequences in the warping process, more
features are needed to describe each point rather than just
using pure value or only the first derivative.

g M&‘:ﬁi *

B :
\J L B
b. Alignment generated
by derivative DTW

a. Two time series sequences from
the same class of CBF

Figure 2 visualizing the limitation of derivative DTW

3. Feature Based Dynamic Time Warping

Given two time series sequences Rand Q as follows: R
= Iyfots...ri...ry, and Q = §1Q2Gs...qj...qn. A Nx M Matrix
is created to find an optimal warping path by using
dynamic programming. The node (ij) of the matrix is
assigned with the distance between the data point r; and g,
which is denoted as disi(r;, g). By the FBDTW algorithm,
dist(r;, q) is evaluated based upon both the local and
global features of r; and g

3.1 Local Feature of a Data Point

The local feature of the data point r;, which is denoted
as f__,(r), is defined as a vector of two components:
fom(F)=(r—r_,r—r,). We feel that this definition can
better reflect the local trend on the point r; than the first
derivation of r; used in [5], which is defined as a single
value Deur)=((r—r )+, —r,)/2)/2 . For example,
consider the following two groups of curves, where each
curve has 3 points. All the middle points within each
group have the same deviation despite the fact that the
local trends on them are very different. By using our
definition of local features, the different trends related to
the middle points can be correctly expressed.

Group 1: (1,5, 3) vs. (1, 3.5, 6) vs. (8/3, 6, 6)
Group2: (3,1,7) vs. (1, 1,1) vs. (1,3, -3)

3.2 Global Feature of a Data Point

The global feature of a data point in the given sequence
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a. Two time series sequences with similar trends

b. Alignment generated by value based DTW

c. Alignment generated by value based DTW
after normalization

Figure 1 visualizing the limitation of value based DTW
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should reflect the position of that point in the global shape
of the sequence. As illustrated in section 2, the derivation
of a data point contains no global information of the data
point. The value of a data point can be viewed as a global
feature; however it may not be in the same scale as the
components of the local feature, so as to make it difficult
to combine the global and local features. In this paper, we
define the global feature of a data point r; in a sequence R
= rirols...rj...ry as a vector of two
components:

i-1 i M .

o 1)= (1= > 1JG=D.F =D r/(M~D).  That
is, the first component of the vector is the difference
between the value of r;and the average value of the first j-7
points in the sequence R while the second component of

the vector is the difference between the value of r; and the
average value of the last M-i points in R

3.3 Evaluation of dist(r;, qj)

Based on the global feature and local feature we defined
in section III. A and III. B, a point p is described by two
vectors f,(p) and f,, (p) . Given two time series

sequences Rand Q as follows: R= rqfors...r...7y, and Q =
§1Q2Qs...q,...gn, We define the distance between the point r;
and ¢ as follows:

dist(ri, ) = distioca(ris G) + distyoval(Fis G, 2)

where disl(r;, ) is the overall distance between r; and g,
distioca(ri, @) is the distance between r; and g based on
their local features, and diStyopa(ri, @) is the distance
between r; and g based on their local features. We further
design two methods to evaluate both diStica(r;, ¢) and
diStg/obal(r is qj)

By method 1, we have the following:

o distocalri, §) = | (fou(r)), - (fou(q)), | +
[ (Foca ()5 - (o (G)), | (3.1
o dislgoallis q) = | (Foopalr), - (Fopa(@)), | +
[ Fo5a1)) 2 = (Foopal( @), | (3.2)

where V, represents the i component of vector .

Method 2 uses vector operations to calculate local and
global distances, where

i diSt/ocal(ris CI/) = | flozzl(r;') f/ozz/(qj) |
4.1)

e di Styioval(ris Q@) = | f global(ri ) f globa/( q; ) |
4.2)

The DTW algorithm where the disi(r;, @) is evaluated
based on method 1 is called Feature Based DTW with
Distance Function 1 (FBDTWI1 for short), and the DTW
algorithm where disi(r;, q) is evaluated based on method
two is called the Feature Based DTW with Distance
Function 2 (FBDTW2 for short). As with value based
DTW and derivative DTW, both FBDTW1 and FBDTW2
find an optimal warping path between R and Q by using
dynamic programming to calculate the minimal cumulative
distance p(M,N), where y(i,j) is recursively defined as is
recursively defined in equation 1. Finally, the distance
between sequence R and sequence Q is expressed as
y(M,N)/(M+N), where M and N are sizes of R and Q
respectively. Please note that the local feature and global
feature have no definition for the first and last points in a
sequence, therefore, both FBDTWI and FBDTW2
calculate the optimal warping path starting with the second
points of the two sequences and ending at their penultimate
points. The time complexity of FBDTW is the same as
value based DTW and derivative DTW, which is O(MN).

3.4 Visually Comparing FBDTW with Value Based
DTW and Derivative DTW

First we visually show that that FBDTW1 and FBDTW2
are able to remedy both the problem caused by value based
DTW on the two sequences shown in Figure 1(a), and the
problem caused by derivative DTW on the two sequences
shown in Figure 2(a). As Figure 3 presents, both
FBDTW1 and FBDTW?2 align the two sequences shown in
Figure 1(a) along their common track of feature
development in general. Furthermore, as Figure 4 shows,
both FBDTW1 and FBDTW?2 are able to detect and match
the common significant features embedded in the two
sequences shown in Figure 2(a).

Next, we visually compare these four DTW methods on
another pair of time series sequences from a data set called
Wafer, which is also part of the UCR time series
classification and clustering test bed. These two sequences
are in different type than the sequences shown in Figure
1(a) & 2(a). As illustrated in Figure 5(b), the stable line
parts of these two sequences are similar to each other,
whereas the unstable parts of the two sequences are the
major source of their dissimilarity. However, both value
based DTW and especially derivative DTW generate two
large singularities on the straight line part, as shown in
Figure 5(c) & (d). That is, by these two methods, a large
group of consecutive data points from one sequence match
with one single point from the other sequence. This
example shows again that value based or derivative DTW
may have the tendency of overlooking overall shapes or
global features of the involved sequences. On the contrary,
both the proposed FBDTW1 and FBDTW?2 generate more
reasonable warping results by matching the stable line part
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of the first sequence to the stable line part of the second
sequence, as shown in Figure 5(¢) and (f).

b. Alignment generated by FBDTW2

Figure 3 Alignments generated by FBDTW1&2
on the two sequences shown in Figure 1(a)

b. Alignment generated by FBDTW2

Figure 4 Alignments generated by
FBDTW1&2 on the two sequences shown in
Figure 2(a)

4. Feature Based Dynamic Time Warping

The experimental studies showed that the combination
of one-nearest-neighbor (1-NN) with Dynamic Time
Warping (DTW) distance ‘“has proven exceptionally
difficult to beat” [10]. Nevertheless, despite its superior
performance over other alternatives, the combination of
INN and DTW has limited learning capacity. In other
words, in this combination, the pairwise distance evaluated
by DTW is domain and application independent; the only
learning ability comes from INN. In the study of the
proposed FBDTW, we found that the pairwise distance
between two time series sequences may be domain or
application dependent. In other words, in some domains or
applications, time series sequences may be classified

primarily based on the global trends of the sequences;
while in others, the local trends of the sequences may carry
more weights. Taking one of the UCR time series data sets
Snthetic Control as example, if we conduct dynamic
wrapping solely based on local features of points, the
classification accuracy is only around 50%; whereas the
accuracy rate is above 90% if dynamic warping is based on
only global features of points. This example implies that
the classification labels were assigned to training
sequences much more based on global trends of sequences
than their local features. Conversely, for the UCR time
series data set Coffeg the classification solely based on
local features leads to accuracy rate close to 90%; whereas
classification solely based on global features leads to
accuracy rate only close to 80%. This implies that, for this
data set, local feature of sequences are more important
factors for classification.

Therefore, a learning capacity should be equipped to a
time series classification approach to learn an optimized
way to calculate pairwise distances from the training data.
The proposed FBDTW, which aligns sequences based on
both the local feature and global feature of each point,
provides an excellent instrument for such an adaptive
distance measure. The accumulative effect of the local
features of points in a sequence reflects local trends of that
sequence; whereas the accumulative effect of the global
features of points in a sequence reflects the global trend of
the same sequence. Hence, we design the adaptive
FBDTW (AFBDTW) where the contributions of global
features and local features are leveraged by weighting
factors.

More specifically, given two time series sequences R
and Q as follows: R = ryos..ri...ry, and Q =
§192Qs...q,...qn We define the adaptive distance between
the point r; and g; as follows:

dist(ri, ) = Wy-AliStiocal(ri, ) + WodiStyoba(ri, ), )

where disl(r;, ) is the overall distance between r; and g
distioca(ri, @) is the distance between r; and g based on
their local features; diStyona(ri, @) is the distance between
ri and @; based on their local features; and wi+ wy = 1, 0<
W1§ ], OS ng 1.

Then, the AFBDTW find an optimal warping path
between R and Q by using dynamic programming to
calculate the minimal cumulative distance p(M,N), where
y(i,j) is recursively defined in equation 1. Finally, the
distance between sequence Rand sequence Q is expressed
as y(M,N)/(M+N), where M and N are sizes of Rand Q
respectively.

Given that two methods were designed to evaluate both
distioca(ri, @) and diStgopa(ri, Gj) in section 3.C, we denote
the AFBDTW that uses the first method (equation 3.1 &
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3.2) as AFBDTWI, and the AFBDTW that uses the
second method (equation 4.1 & 4.2) as AFBDTW2.
Comparing equation 5 that is used by AFBDTW with
equation 2 that is used by FBDTW, we can see that both
AFBDTW and FBDTW take advantages of the local
feature and the global feature of each point; however,
AFBDTW further leverages the contributions of global
features and local features by using weighting factors. The
weighting factors used in equation 5 can be learned from
the training data, which makes the evaluation of distances
between time series sequences no longer domains and
applications irrelevant. We design the following
algorithms called /n-Class-Range Weighting Algorithm to

learn the weighting factors w; and W, from the training data.

This algorithm evaluates the distinguishability of the local
feature and the global feature one at a time by setting the
corresponding weighting factor in equation 5 to be 1 and
the other weighting factor to be 0. The algorithm defines
an in-class range for each sequence in the training set as
the distance between this sequence and the farthest
sequence in the same class. Then, for each training
sequence, it calculates the difference between the number
of same-class sequences within the in-class range and the
number of different-class sequences within the in-class
range. Finally, the value of the normalized accumulated
differences among all the training sequences is used as the
value of the weighting factor for the corresponding feature.
The algorithm is presented in details as follows.

Algorithm: /n-Class-Range Weighting Algorithm

Input: training data set consisting of
- A set of time series sequences S={S,, S, ..., §}
- A set of class labels C= {c;, C5, ..., Cn}
- A mapping from Sto C.

Output: w;y and W,

for each W, = 10r 5 in { Wy, W} //i.e., i=1 for the first
iteration, and =2 for the second iteration.
set W;=1and Wiy j=10-2= 0 ; //i.e., j=2 for the first
iteration, and =1 for the second iteration.
for any two sequences S, S, (x#))in S
use AFBDTW to calculate the distance between S
and §, by using equation 5.
end for
for each sequence S;in S
let inClass; store all the sequences in Sthat have
the same class label as S.
calculate maxDistInClass, , which is the maximum
of all the distances between S and a sequence in inClass,
calculate numSameClass,, which is the total
number of sequences with the same class label as Si
calculate numDiffClassinRange, , which is the total
number of sequences with different class label than Si and

with distance to S smaller than or equal to
maxDistinClass,.

w = Z]:(numSameCIassX — numDiffClassinRange,)

end for
end for
normalize(w;, Wa).

Procedure: normalize (wy, ws)

it (W0 && W2>0) w=w/w+w);

W =w, /(W + W)

else if (W>0 && Wo<=0) wy=1; w,=0;

else if (wy <=0 && W>>0) w=0; wy=1;

elseif (W <0 && W2<0) w=—w/—(W+Ww),
W, =—w /= (W + W)

else wy= w, =0.5;

| un.'s;a.ble parts

stable lines ™

d. Alignment by derivative DTW

o

. Alignment by value based DTW

f. Alignment by FBDTW2

e. Alignment by FBDTW1

Figure 5 Visually compare value based DTW,
derivative DTW, FBDTW1&2 based on two curves
from Wafer.

5. Experimental Results

In order to test the effectiveness of applying FBDTW to
evaluate the similarity between time series sequences as
well as the capacity of AFBDTW in time series supervised
learning, we used all the 20 data sets published on UCR
Time Series Classification/Clustering Page (as of
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12/28/2009) as our test bed [6]. These 20 data sets contain
time series data in different domains, such as
electrocardiogram, control  chart, microelectronics
fabrication, video surveillance, and various contour data [6,
27]. Each data set is divided into training set and test set.
Some characteristics of the 20 data sets, which are copied
from the UCR webpage are listed in table 1 for easy
reference.

Table 1. Characteristics of the 20 Data Sets (directly from [6])

1-NN Classification algorithms are implemented on the
following DTW algorithms: value based DTW, FBDTW1
& FBDTW2, and AFBDTW1 & AFBDTW2 (Since 1NN
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+ derivative DTW has much worse performance than 1NN
+ value based DTW on most of the 20 data sets based on
our experimental results, we don’t include it in our further
comparison). We use the accuracy rate of the
classification results as the performance measure. The
accuracy rate for INN + value based DTW is calculated by
1- error_rate, where error_rate for INN + value based
DTW is directly obtained from UCR Time Series
Classification/Clustering web page.

The experimental results on each data set are recorded in

Data # of |[Training |Testing [Time Series table 1 (111 thls table, we denote Value based DTW as DTW
Set___|Classes| size | size | Length for simplicity). We have the following observations on
50words 50 450 455 270 .
adinc 37 | 390 | 301 | 176 the experimental results:
Beef s 30 | 30 470 1) All of the proposed methods including FBDTW 1&2
CBF 3 30 | o00 | 128 and AFBDTW 1&2 get better results on majority of the 20
b — data sets than the value based DTW.
ECG200 2 100 100 96 .
Facenl 2 | se0 | 1600 | 131 2) FBDTWI1 gains better results on 14 out of 20 data
FaceFour 24 | 24 88 350 sets over the value based DTW; ties with value based
fish_ 7 | 175 | 175 | 463 DTW on 3 data sets; and gets worse results on 3 data sets.
T T T T o Among the 14 data sets where FBDTWI gains
Lighting? 7 70 | 73 219 improvements, there are 9 data sets with accuracy
Oliveoil a 30 | 30 570 improvement great than 5 percent; 5 data sets with
OsULeaf 6 | 200 | 242 | 427 accuracy improvement greater than 10 percent; 2 data sets
SwedishLeaf 15 500 6.25 128 . .
, with accuracy improvement greater than 20 percent; and 1
ISynthetic Contro 6 300 300 60 A .
Trace 2 | 100 | 100 | 275 data set with accuracy improvement greater than 30
Two_Patterns 4 1000 4000 128 percent.
wafer 2 | 1000 | o174 | 152 3) AFBDTWI1 makes further improvement over
yoga 2 300 3000 426

FBDTWI1 on 8 data sets, ties with FDBTW1 on 10 data
sets, and gets worse results than FBDTW1 on 2 data sets.
4) FBDTW?2 gains better results on 12 out of 20 data
sets over the value based DTW; ties with value based
DTW on 2 data sets; and gets worse results on 6 data sets.

Accuracy Rate of Classification

Data Set 1NN + 1NN + Accuracy 1NN + Accuracy 1NN + Accuracy 1NN + Accuracy

DTW FBDTW1 Improved | FBDTW2 Improved | AFBDTW1 Improved | AFBDTW2 Improved
50words 0.69 0.787 14.06% 0.802 16.23% 0.787 14.06% 0.807 16.96%
Adiac 0.604 0.657 8.77% 0.683 13.08% 0.66 9.27% 0.683 13.08%
Beef 0.5 0.667 33.40% 0.633 26.60% 0.667 33.40% 0.633 26.60%
CBF 0.997 0.9 -9.73% 0.919 -7.82% 0.996 -0.10% 0.979 -1.81%
Coffee 0.821 0.857 4.38% 0.857 4.38% 0.821 (0] 0.864 5.24%
ECG200 0.77 0.87 12.99% 0.88 14.29% 0.88 14.29% 0.88 14.29%
FaceAll 0.808 0.81 0.25% 0.803 -0.62% 0.811 0.37% 0.802 -0.74%
FaceFour 0.83 0.875 5.42% 0.875 5.42% 0.875 5.42% 0.875 5.42%
Fish 0.833 0.903 8.40% 0.943 13.21% 0.903 8.40% 0.949 13.93%
Gun_Point 0.907 0.973 7.28% 0.98 8.05% 0.98 8.05% 0.98 8.05%
Lighting2 0.869 0.885 1.84% 0.869 0 0.885 1.84% 0.885 1.84%
Lighting7 0.726 0.726 (0] 0.699 -3.72% 0.712 -1.93% 0.699 -3.72%
OliveOil 0.867 0.833 -3.92% 0.833 -3.92% 0.833 -3.92% 0.8 -7.73%
OSUlLeaf 0.591 0.719 21.66% 0.711 20.30% 0.731 23.69% 0.756 27.92%
Swedishleaf 0.79 0.883 11.77% 0.883 11.77% 0.891 12.78% 0.886 12.15%
Synthetic Control 0.993 0.89 -10.37% 0.827 -16.72% 0.977 -1.61% 0.947 -4.63%

Trace 1 1 0 0.99 -1% 1 0 1 (0]
Two_Patterns 1 1 o 1 o 1 [0} 1 [0}

wafer 0.98 0.993 1.33% 0.993 1.33% 0.993 1.33% 0.994 1.43%
yoga 0.836 0.868 3.83% 0.865 2.90% 0.868 3.83% 0.866 3.59%

Table 2. Experimental results on the UCR time series classification/clustering test bed
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Among the 12 data sets where FBDTW2 gains
improvement, there are 9 data sets with accuracy
improvement greater than 5 percent; 7 data sets with
accuracy improvement greater than 10 percent; and 2 data
sets with accuracy improvement greater than 20 percent.

5) AFBDTW2 make further improvement over
FBDTW2 on 11 data sets, ties with FDBTW2 on 7 data
sets, and gets worse results than FBDTW2 on 2 data sets.

We further compare the proposed AFBDTW with value
based DTW by plotting all the data sets in Figure 6 with x-
axis representing accuracy rates obtained by value based
DTW and y-axis representing accuracy rates obtained by
AFBDTW (1&2). From these two figures, it is clearly
show that majority of data sets favor AFBDTW. The few
data sets where value based DTW gains better results are
actually close to the diagonal line, which means that the
performance differences on those few data sets between
AFBDTW and value based DTW are actually very minor.
Therefore, the experimental results suggest that AFBDTW
is a better alternative to valued based DTW in time series
classification in terms of classification accuracy.
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Figure 6 Comparison of AFBDTW with value based DTW

on all 20 data sets

6. Time Complexity of FBDTW & AFBDTW

Assume the size of the training set is N, the size of the
testing set is N, and the length of each sequence is M.
Then the time complexity of INN+FBDTW is the same as

INN + DTW, which is O(N; N> M¥) . Since INN +
AFBDTW adopts a dual learning strategy, its time
complexity is O(N;Z MF) + O(N; No MP), where O(N;Z MP)
is the time complexity of the first learning process that is
to calculate the weighting factors for global features and
local features; and O(N; N, MF) is the time complexity of
INN classification. Given that the training size is typically
much smaller than the testing size (i.e., Ny <<N») in real
situations, the time complexity of INN+AFBDTW is
reduced to O (N; N, MP), which is theoretically the same as
INN+DTW.

Quite a few techniques have been proposed to reduce the
quadratic time complexity of DTW in sequence length
from different aspects, such as imposing constraints on
warping windows [9, 13], reducing sequence dimension by
data abstraction or transformation [14, 15, 19], indexing
sequences with lower bonds [16, 17, 18], as well as
methods that combined two or more above strategies [10,
12]. It is not difficult to see that most of these techniques
can be ecasily adapted to the proposed FBDTW and
AFBDTW. In our future work, we will study the
effectiveness of different speeding techniques on FBDTW
and AFBDTW, based on which come up with linear or
near-linear versions of FBDTW and AFBDTW without
sacrificing their performance on accuracy rate.

7. Conclusions

In this paper, we first analyzed some major limitation of
value based DTW and derivative DTW. Since the value or
the deviation of a point may not reflect the position of this
point in global or local trends of the sequence, both value
based DTW and derivate DTW may fail to align a pair of
sequences along their common trends or patterns. In order
to solve this issue, we first define a global feature and a
local feature for each point in a time series sequence, then
proposed the FBDTW algorithm that dynamically aligns
two time series sequences based on both the global
features and local features of each points in the sequences.
Experiments show that FBDTW generates better
classification results on majority of the UCR time series
data sets.

The proposed FBDTW make it possible to enhance the
learning capacity of DTW based classification algorithms.
Through our study, we first found out that the significance
of global features and local features in classification may
vary from one domain/application to another. Then we
further propose an adaptive version of FBDTW that is
called AFBDTW to learn the weighting factors for global
features and local features from the training data.
Experiments show that AFBDTW is able to make further
improvement on classification accuracy over FBDTW.
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Our future focus will be put on studying algorithms that

are

able to improve the speed of AFBDTW without

sacrificing its classification accuracy.
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