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Summary 
Dynamic time warping (DTW) has been widely used in 
various pattern recognition and time series data mining 
applications. However, as examples will illustrate, both the 
classic DTW and its later alternative, derivative DTW, 
may fail to align a pair of sequences on their common 
trends or patterns.   Furthermore, the learning capability of 
any supervised learning algorithm based on 
classic/derivative DTW is very limited.  In order to capture 
trends or patterns that a sequence presents during the 
alignment process, we first derive a global feature and a 
local feature for each point in a sequence.  Then, a method 
called feature based dynamic time warping (FBDTW) is 

local and global features instead of its value or derivative.  
Experimental study shows that FDBTW outperforms both 
classic DTW and derivative DTW on pairwise distance 
evaluation of time series sequences.  In order to enhance 
the capacity of supervised learning based on DTW, we 
further design a method called adaptive feature based 
dynamic time warping (AFDBTW) by equipping the 
FDBTW with a novel feature selection algorithm.  This 
feature selection algorithm is able to expand the learning 
capability of any DTW based supervised learning 
algorithm by a dual learning process.   The first-fold 
learning process learns the significances of both the local 
feature and global feature towards classification; then the 
second-fold learning process learns a classification model 
based on the pairwise distances generated by the 
AFDBTW.  A comprehensive experimental study shows 
that the AFDBTW is able to make further improvement 
over the FDBTW in time series classification.  
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1. Introduction 
    As an algorithm for measuring similarity between time 
series sequences, Dynamic Time Warping (DTW) has been 
widely used in various pattern recognition applications, 
such as speech recognition [3, 9], handwriting recognition 
[1], gesture recognition [2], signature recognition [20], 
ECG pattern recognition[21], shape recognition [7] and 
others. Due to the huge amount of time series data that has 
been accumulated in different domains such as finance, 
manufacturing, process engineering, medicine, molecular 
biology, physics, and chemistry, recent years have also 
seen increasing interest in applying DTW to time series 
data mining.  The involved data mining tasks include, but 
are not limited to, clustering [4, 22], classification [23, 24], 
association mining [25], and motif discovery [8, 26].    
    Unlike Linear Time Warping (LTW), which compares 
two sequences based on a linear match of the two temporal 
dimensions, DTW uses dynamic programming to search a 
space of mapping between the time axes of the two 
sequences in order to determine the minimum distance 
between them.  Typically, certain constraints are imposed 
on DTW to optimize and expedite the search of the 
warping path.  Major constraints outlined in [9] include 
monotonic condition, continuity condition, boundary 
condition, adjustment window condition, and slope 
constraint condition.   

More formally, given two time series sequences R and Q 
as follows: R = r1r2r3 i M, and Q = q1q2q3 j N, 
DTW finds an optimal warping path between R and Q by 
using dynamic programming to calculate the minimal 
cumulative distance (M,N), where (i,j) is recursively 
defined as: 

( , ) ( , ) min( ( 1, 1), ( 1, ), ( , 1))i ji j d r q i j i j i j     (1) 

     As can be seen from formula 1, given a search space 
defined by two time series sequences and a set of 
constraints, DTW guarantees to find the warping path with 
the minimum cumulative distance among all possible 
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warping paths that are valid in the search space.  
Furthermore, according to formula 1, the determinant 
factor for (M,N) is all the d(ri, qj) d(ri, qj) 
represents the distance between the data point ri (1  i  M)  
from the sequence R and the data point qj (1  j  N) from 
the sequence Q.  In most situations, a data point in a time 
series sequence is a numerical value, so d(ri, qj) is typically 
defined as either | ri,- qj | or  (ri,- qj)2.  In this paper, we 
refer to this type of classic DTW as value based DTW.    
    The fundamental problem of value based DTW is that 
the numerical value of a data point in a time series 
sequence is not the complete picture of the data point in 
relation to rest of the sequence.  We will show in section 2 
that, when a data point in a sequence is compared with 
another point in another sequence, its position in the 
sequence and relation to its neighbors should also be taken 
into consideration.   In [5], a derivative DTW was 
proposed that replaces the value of each data point with its 
first derivation in the process of dynamic time warping.   
The derivation of a data point can be viewed as a local 
feature of the point that expresses its relationship with two 
adjacent neighbors.  However, as will also be illustrated in 
section 2, only considering derivations in comparison may 
make derivative DTW lose sight of the overall shapes or 
significant features that occur in the involved sequences.   

Based upon these observations of the essential problems 
of value based DTW and derivative DTW, we propose in 
this paper a novel approach called Feature Based Dynamic 
Time Warping (FBDTW) as a better technique for 
evaluating the similarity between two given time series 
sequences.  When comparing two points coming from each 
of the two sequences in the process of dynamic time 
warping, FBDTW takes into consideration both the local 
and global features of the two points.  By doing this, our 
algorithm gains a vision of not only the overall shapes of 
the sequence but also the local trend around the points.  
Experimental studies on the UCR time series 
classification/clustering test bed [6] with twenty different 
time series data sets show that FBDTW outperforms both 
value based (the classic) DTW and derivative DTW.   

The second contribution presented in this paper is the 
enhancement of the supervised learning capacity of DTW 
through a learning algorithm.  It is well known that time 
series classification has numerous important applications 
in different domains.  Although a wide range of time series 
classification algorithms were proposed in the past decade, 
X. Xi, E. Keogh, C. Shelton, and L. Wei [10] claimed 
based on their experimental studies that the combination of 
one-nearest-neighbor (1-NN) with Dynamic Time Warping 

superior performance over 
other alternatives, the combination of 1NN and DTW has 
limited learning capacity.  In other words, in this 
combination, the pairwise distance evaluated by DTW is 

domain and application independent.  In the study of the 
proposed FBDTW, we found that the pairwise distance 
between two time series sequences may be domain or 
application dependent.  For instance, in some domains or 
applications, time series sequences are classified primarily 
based on the global trends of the sequences; while in others, 
the local trends of the sequences may carry more weights.   
Therefore, a learning capacity should be equipped to a 
time series classification approach to learn an optimized 
way to calculate pairwise distances from the training data.   
The proposed FBDTW, which aligns sequences based on 
both the local feature and global feature of each point, 
provides an excellent instrument for such an adaptive 
distance measure.  The accumulative effect of the local 
features of all points in a sequence reflects local trends of 
that sequence; whereas the accumulative effect of the 
global features of points in a sequence reflects the global 
trend of the same sequence.  Hence, we design the adaptive 
FBDTW (AFBDTW) where the contributions of global 
features and location features are leveraged by weighting 
factors.  The weighting factors are learned from the 
training data by a newly designed feature selection 
algorithm.  The AFBDTW, therefore, enhance the capacity 
of supervised learning for time series data, such that the 
combination of 1-NN and AFBDTW contains a dual 
learning process.  The first-fold learning derives an 
optimized pairwise distance function for time series data; 
then, the second-fold learning is carried by 1-NN based on 
the learned distance.  Our experimental study shows that 
the enhancement of learning capacity brought by 
AFBDTW makes further improvement on the classification 
accuracy for time series data.        

The rest of the paper will be organized as follows.  In 
section 2, we study the limitations of value based DTW 
and derivative DTW.  Subsequently, our proposed 
FBDTW algorithm is presented in section 3.  Next, in 
section 4, we describe the AFBDTW and the 
corresponding feature selection algorithm.  In section 5 we 
conduct comprehensive experimental and comparative 
studies on AFBDTW, FBDTW, value based DTW, and 
derivative DTW.  The time complexity of FBDTW and 
AFBDTW is given in section 6. Finally, we conclude our 
contributions and envision further development on 
FBDTW in section 7. 

2. Limitation of Value Based DTW and 
Derivative DTW 

In this section we show that both value based DTW and 
derivative DTW may lose sight of overall shapes of the 
involved sequences.  First, Figure 1(a) presents two time 
series sequences that develop similar trends at almost the 
same pace.  These two sequences are the first one third of 
the two sequences that belong to the same class of a data 
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set called Beef that is one of the UCR time series data sets 
[6].  Intuitively, little time warping is needed when 
aligning these two sequences. However, as shown in 
Figure 1(b), value based DTW maps almost the whole first 
sequence (the one with the highest peak) to one single 
point denoted as P in the second sequence.  This alignment 
most certainly does not have a positive impact on the 
similarity evaluation of these two sequences.  The reason 
why value based DTW generates this abnormal alignment 
is simply because P is the closest point of the second 
sequence towards any point in the first sequence in terms 
of value.  In other words, this pure value-oriented 
comparison makes value based DTW ignore the context of 
points, such as their positions in local features and their 
relations to overall trends.  One may ask if normalization 
of these two sequences could solve this problem.  Figure 
1(C) shows the alignment result after normalization of 
these two sequences.  The problem is lessened a little but 
fundamentally still exists, i.e., the alignment is blind to the 
common trends developed by both sequences.   Better 
alignments of these two sequences by methods proposed in 
this paper can be seen in figure 3. 

Derivative DTW was proposed in [5] to remedy the 
weakness of value oriented mapping. However, the 
following example will illustrate that derivative oriented 
comparison may also neglect significant features of the 
involved sequences.  The two time series sequences shown 
in Figure 2(a) belong to the same class of a data set called 
CBF that is one of UCR time series data sets [6].  These 
two sequences share a common feature, which is a 
significant drop of value from point A to B in the first 

detected by derivative DTW, which generates the 
alignment shown in Figure 2(b).  Better alignments of 
these two sequences by methods proposed in this paper can 
be seen in figure 4. 
   These two examples suggest that in order to be able to 
identify and match common trends and patterns presented 
by a pair of sequences in the warping process, more 
features are needed to describe each point rather than just 
using pure value or only the first derivative. 

 

 

 

 

3. Feature Based Dynamic Time Warping 

    Given two time series sequences R and Q as follows: R 
= r1r2r3 i M, and Q = q1q2q3 j N.  A N M Matrix 
is created to find an optimal warping path by using 
dynamic programming.  The node (i,j) of the matrix is 
assigned with the distance between the data point ri and qj, 
which is denoted as dist(ri, qj).  By the FBDTW algorithm, 
dist(ri, qj) is evaluated based upon both the local and 
global features of ri and qj.   

3.1 Local Feature of a Data Point 
The local feature of the data point ri, which is denoted 

as )( ilocal rf , is defined as a vector of two components: 
),()( 11 iiiiilocal rrrrrf .  We feel that this definition can 

better reflect the local trend on the point ri than the first 
derivation of ri used in [5], which is defined as a single 
value 1 1 1( ) (( ) ( ) / 2) / 2i i i i iDev r r r r r .  For example, 
consider the following two groups of curves, where each 
curve has 3 points.  All the middle points within each 
group have the same deviation despite the fact that the 
local trends on them are very different.  By using our 
definition of local features, the different trends related to 
the middle points can be correctly expressed.    

 
Group 1: (1, 5, 3)  vs. (1, 3.5, 6) vs. (8/3, 6, 6)      
Group 2: (3, 1, 7)  vs.  (1, 1, 1)  vs.  (1, 3, -3) 

3.2 Global Feature of a Data Point 
The global feature of a data point in the given sequence  
 
 
 
 
 
 
 
 
 
 

 
a. Two time series sequences from 

 the same class of CBF 
b. Alignment generated 

by derivative DTW 

 

A 
A  

B  B 

Figure 2 visualizing the limitation of derivative DTW 

P 
  

a. Two time series sequences with similar trends b. Alignment generated by value based DTW 

P 

P 

 

P 

c. Alignment generated by value based DTW 
after normalization 

Figure 1 visualizing the limitation of value based DTW 
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should reflect the position of that point in the global shape 
of the sequence.  As illustrated in section 2, the derivation 
of a data point contains no global information of the data 
point.  The value of a data point can be viewed as a global 
feature; however it may not be in the same scale as the 
components of the local feature, so as to make it difficult 
to combine the global and local features.   In this paper, we 
define the global feature of a data point ri in a sequence R 
= r1r2r3 i M as a vector of two 
components:

1

1 1
))./(),1/(()(

i

k

M

ik kikiiglobal iMrrirrrf   That 

is, the first component of the vector is the difference 
between the value of ri and the average value of the first i-1 
points in the sequence R; while the second component of 
the vector is the difference between the value of ri and the 
average value of the last M-i points in R.   

3.3 Evaluation of dist(ri, qj) 
Based on the global feature and local feature we defined 

in section III. A and III. B, a point p is described by two 
vectors )( pflocal  and )( pfglobal .  Given two time series 
sequences R and Q as follows: R = r1r2r3 i M, and Q = 
q1q2q3 j N, we define the distance between the point ri 
and qj as follows: 
 
 dist(ri, qj) = distlocal(ri, qj) + distglobal(ri, qj),                    (2) 
 
where dist(ri, qj) is the overall distance between ri and qj, 
distlocal(ri, qj) is the distance between ri and qj based on 
their local features, and distglobal(ri, qj) is the distance 
between ri and qj based on their local features. We further 
design two methods to evaluate both  distlocal(ri, qj) and 
distglobal(ri, qj).   
 
By method 1, we have the following: 
   

 distlocal(ri, qj) = | 1))(( ilocal rf  - 1))(( jlocal qf | +  
| 2))(( ilocal rf - 2))(( jlocal qf  |                                   (3.1) 

 distglobal(ri, qj) = | 1))(( iglobal rf - 1))(( jglobal qf | +  
| 2))(( iglobal rf  - 2))(( jglobal qf |                                (3.2)  

where iv  represents the ith component of vector v .  
 
Method 2 uses vector operations to calculate local and 
global distances, where  

 
 distlocal(ri, qj) = | )( ilocal rf - )( jlocal qf |                                

(4.1)   
 distglobal(ri, qj) = | )( iglobal rf - )( jglobal qf |                            

(4.2) 
 

    The DTW algorithm where the dist(ri, qj) is evaluated 
based on method 1 is called Feature Based DTW with 
Distance Function 1 (FBDTW1 for short), and the DTW 
algorithm where dist(ri, qj) is evaluated based on method 
two is called the Feature Based DTW with Distance 
Function 2 (FBDTW2 for short).  As with value based 
DTW and derivative DTW, both FBDTW1 and FBDTW2 
find an optimal warping path between R and Q by using 
dynamic programming to calculate the minimal cumulative 
distance (M,N), where (i,j) is recursively defined as is 
recursively defined in equation 1.  Finally, the distance 
between sequence R and sequence Q is expressed as 
(M,N)/(M+N), where M and N are sizes of R and Q 

respectively.  Please note that the local feature and global 
feature have no definition for the first and last points in a 
sequence, therefore, both FBDTW1 and FBDTW2 
calculate the optimal warping path starting with the second 
points of the two sequences and ending at their penultimate 
points.  The time complexity of FBDTW is the same as 
value based DTW and derivative DTW, which is O(MN).  

3.4 Visually Comparing FBDTW with Value Based 
DTW and Derivative DTW 

First we visually show that that FBDTW1 and FBDTW2 
are able to remedy both the problem caused by value based 
DTW on the two sequences shown in Figure 1(a), and the 
problem caused by derivative DTW on the two sequences 
shown in Figure 2(a).  As Figure 3 presents, both 
FBDTW1 and FBDTW2 align the two sequences shown in 
Figure 1(a) along their common track of feature 
development in general.  Furthermore, as Figure 4 shows, 
both FBDTW1 and FBDTW2 are able to detect and match 
the common significant features embedded in the two 
sequences shown in Figure 2(a).   

Next, we visually compare these four DTW methods on 
another pair of time series sequences from a data set called 
Wafer, which is also part of the UCR time series 
classification and clustering test bed.  These two sequences 
are in different type than the sequences shown in Figure 
1(a) & 2(a). As illustrated in Figure 5(b), the stable line 
parts of these two sequences are similar to each other, 
whereas the unstable parts of the two sequences are the 
major source of their dissimilarity.  However, both value 
based DTW and especially derivative DTW generate two 
large singularities on the straight line part, as shown in 
Figure 5(c) & (d).  That is, by these two methods, a large 
group of consecutive data points from one sequence match 
with one single point from the other sequence. This 
example shows again that value based or derivative DTW 
may have the tendency of overlooking overall shapes or 
global features of the involved sequences.  On the contrary, 
both the proposed FBDTW1 and FBDTW2 generate more 
reasonable warping results by matching the stable line part 
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of the first sequence to the stable line part of the second 
sequence, as shown in Figure 5(e) and (f).      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4. Feature Based Dynamic Time Warping 
      The experimental studies showed that the combination 
of one-nearest-neighbor (1-NN) with Dynamic Time 

performance over other alternatives, the combination of 
1NN and DTW has limited learning capacity.  In other 
words, in this combination, the pairwise distance evaluated 
by DTW is domain and application independent; the only 
learning ability comes from 1NN.  In the study of the 
proposed FBDTW, we found that the pairwise distance 
between two time series sequences may be domain or 
application dependent.  In other words, in some domains or 
applications, time series sequences may be classified 

primarily based on the global trends of the sequences; 
while in others, the local trends of the sequences may carry 
more weights.  Taking one of the UCR time series data sets 
Synthetic Control as example, if we conduct dynamic 
wrapping solely based on local features of points, the 
classification accuracy is only around 50%; whereas the 
accuracy rate is above 90% if dynamic warping is based on 
only global features of points.  This example implies that 
the classification labels were assigned to training 
sequences much more based on global trends of sequences 
than their local features.  Conversely, for the UCR time 
series data set Coffee, the classification solely based on 
local features leads to accuracy rate close to 90%; whereas 
classification solely based on global features leads to 
accuracy rate only close to 80%.  This implies that, for this 
data set, local feature of sequences are more important 
factors for classification.         
      Therefore, a learning capacity should be equipped to a 
time series classification approach to learn an optimized 
way to calculate pairwise distances from the training data.   
The proposed FBDTW, which aligns sequences based on 
both the local feature and global feature of each point, 
provides an excellent instrument for such an adaptive 
distance measure.  The accumulative effect of the local 
features of points in a sequence reflects local trends of that 
sequence; whereas the accumulative effect of the global 
features of points in a sequence reflects the global trend of 
the same sequence.  Hence, we design the adaptive 
FBDTW (AFBDTW) where the contributions of global 
features and local features are leveraged by weighting 
factors.   

   More specifically, given two time series sequences R 
and Q as follows: R = r1r2r3 i M, and Q = 
q1q2q3 j N, we define the adaptive distance between 
the point ri and qj as follows: 

 
   dist(ri, qj) = w1·distlocal(ri, qj) + w2·distglobal(ri, qj),         (5) 
 
where dist(ri, qj) is the overall distance between ri and qj; 
distlocal(ri, qj) is the distance between ri and qj based on 
their local features; distglobal(ri, qj) is the distance between 
ri and qj based on their local features; and w1+ w2 = 1, 0  
w1  1, 0  w2  1.     
      Then, the AFBDTW find an optimal warping path 
between R and Q by using dynamic programming to 
calculate the minimal cumulative distance (M,N), where 
(i,j) is recursively defined in equation 1.  Finally, the 

distance between sequence R and sequence Q is expressed 
as (M,N)/(M+N), where M and N are sizes of R and Q 
respectively. 
      Given that two methods were designed to evaluate both 
distlocal(ri, qj) and distglobal(ri, qj) in section 3.C, we denote 
the AFBDTW that uses the first method  (equation 3.1 & 

 

 

a. Alignment generated by FBDTW1 

b. Alignment generated by FBDTW2 
 

Figure 3 Alignments generated by FBDTW1&2 
on the two sequences shown in Figure 1(a) 

 

 

 

a. Alignment generated by FBDTW1 

b. Alignment generated by FBDTW2 
 
Figure 4 Alignments generated by 

FBDTW1&2 on the two sequences shown in 
Figure 2(a) 
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3.2) as AFBDTW1, and the AFBDTW that uses the 
second method (equation 4.1 & 4.2) as AFBDTW2.  
       Comparing equation 5 that is used by AFBDTW with 
equation 2 that is used by FBDTW, we can see that both 
AFBDTW and FBDTW take advantages of the local 
feature and the global feature of each point; however, 
AFBDTW further leverages the contributions of global 
features and local features by using weighting factors.  The 
weighting factors used in equation 5 can be learned from 
the training data, which makes the evaluation of distances 
between time series sequences no longer domains and 
applications irrelevant.  We design the following 
algorithms called In-Class-Range Weighting Algorithm to 
learn the weighting factors w1 and w2 from the training data.  
This algorithm evaluates the distinguishability of the local 
feature and the global feature one at a time by setting the 
corresponding weighting factor in equation 5 to be 1 and 
the other weighting factor to be 0.   The algorithm defines 
an in-class range for each sequence in the training set as 
the distance between this sequence and the farthest 
sequence in the same class.  Then, for each training 
sequence, it calculates the difference between the number 
of same-class sequences within the in-class range and the 
number of different-class sequences within the in-class 
range.  Finally, the value of the normalized accumulated 
differences among all the training sequences is used as the 
value of the weighting factor for the corresponding feature. 
The algorithm is presented in details as follows.       
 
Algorithm:  In-Class-Range Weighting Algorithm     
Input:  training data set consisting of 
            - A set of time series sequences S = {S1, S2 Sn} 
            - A set of class labels C = {c1, c2 cm} 
            - A mapping from S to C.  
Output: w1 and w2 
 
 
for each wi (i = 1 or 2) in { w1, w2}  //i.e., i=1 for the first 
iteration, and =2 for the second iteration.  
      set wi = 1 and wj (i j, j=1 or 2)= 0  ;  //i.e., j=2 for the first 
iteration, and =1 for the second iteration.  
      for any two sequences Sx, Sy  (x  y) in S 
            use AFBDTW to calculate the distance between Sx 
and Sy by using equation 5.   
      end for 
      for each sequence Sx in S 
            let inClassx  store all the sequences in S that have 
the same class label as Sx.   
            calculate maxDistInClassx , which is the maximum 
of all the distances between Sx and a sequence in inClassx 
            calculate numSameClassx, which is the total 
number of sequences with the same class label as Si 
            calculate numDiffClassInRangex , which is the total 
number of sequences with different class label than Si and 

with distance to Sx smaller than or equal to 
maxDistInClassx.  
      

n

x
xxi ssInRangenumDiffClassnumSameClaw

1
)(         

      end for           
end for                       
normalize(w1, w2). 
 
 
Procedure:  normalize (w1, w2) 
 
if (w1>0 && w2 >0)  )/( 2111 wwww ; 

)/( 2122 wwww  
else if (w1>0 && w2 <=0)   w1 = 1; w2 = 0;     
else if (w1 <=0 && w2 >0)   w1 = 0; w2 = 1;     
else if (w1 < 0 && w2 < 0)   )(/ 2121 wwww , 

)(/ 2112 wwww  
else  w1 =  w2  = 0.5;     
 
 
 
 

 

 

 
 
 
 
 
 
 

5. Experimental Results 
     In order to test the effectiveness of applying FBDTW to 
evaluate the similarity between time series sequences as 
well as the capacity of AFBDTW in time series supervised 
learning, we used all the 20 data sets published on UCR 
Time Series Classification/Clustering Page (as of 

 
 a & b.  Two sequences from Wafer 

 
c. Alignment by value based DTW 

 

 

  d. Alignment by derivative DTW 

e. Alignment by FBDTW1 

 

Figure 5 Visually compare value based DTW, 
derivative DTW, FBDTW1&2 based on two curves 

from Wafer. 

f. Alignment by FBDTW2 
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12/28/2009) as our test bed [6].  These 20 data sets contain 
time series data in different domains, such as 
electrocardiogram, control chart, microelectronics 
fabrication, video surveillance, and various contour data [6, 
27].  Each data set is divided into training set and test set.  
Some characteristics of the 20 data sets, which are copied 
from the UCR webpage are listed in table 1 for easy 
reference.   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1-NN Classification algorithms are implemented on the 

following DTW algorithms: value based DTW, FBDTW1 
& FBDTW2, and AFBDTW1 & AFBDTW2 (Since 1NN 

+ derivative DTW has much worse performance than 1NN 
+ value based DTW on most of the 20 data sets based on 

comparison).  We use the accuracy rate of the 
classification results as the performance measure.  The 
accuracy rate for 1NN + value based DTW is calculated by 
1- error_rate, where error_rate for 1NN + value based 
DTW is directly obtained from UCR Time Series 
Classification/Clustering web page.   

The experimental results on each data set are recorded in 
table 1 (in this table, we denote value based DTW as DTW 
for simplicity).   We have the following observations on 
the experimental results:  

1) All of the proposed methods including FBDTW 1&2 
and AFBDTW 1&2 get better results on majority of the 20 
data sets than the value based DTW.   

2) FBDTW1 gains better results on 14 out of 20 data 
sets over the value based DTW; ties with value based 
DTW on 3 data sets; and gets worse results on 3 data sets.  
Among the 14 data sets where FBDTW1 gains 
improvements, there are 9 data sets with accuracy 
improvement great than 5 percent; 5 data sets with 
accuracy improvement greater than 10 percent;  2 data sets 
with accuracy improvement greater than 20 percent; and 1 
data set with accuracy improvement greater than 30 
percent. 

3) AFBDTW1 makes further improvement over 
FBDTW1 on 8 data sets, ties with FDBTW1 on 10 data 
sets, and gets worse results than FBDTW1 on 2 data sets. 

4) FBDTW2 gains better results on 12 out of 20 data 
sets over the value based DTW; ties with value based 
DTW on 2 data sets; and gets worse results on 6 data sets.   

Data #  of   Training   Testing   Time  Series

Set Classes size size Length

50words 50 450 455 270

Adiac 37 390 391 176

Beef 5 30 30 470

CBF 3 30 900 128

Coffee 2 28 28 286

ECG200 2 100 100 96

FaceAll 14 560 1690 131

FaceFour 24 24 88 350

Fish 7 175 175 463

Gun_Point 2 50 150 150

Lighting2 2 60 61 637

Lighting7 7 70 73 319

OliveOil 4 30 30 570

OSULeaf 6 200 242 427

SwedishLeaf 15 500 6.25 128

Synthetic  Control 6 300 300 60

Trace 4 100 100 275

Two_Patterns 4 1000 4000 128

wafer 2 1000 6174 152

yoga 2 300 3000 426

Table 1.  Characteristics of the 20 Data Sets (directly from [6]) 
 
 

Accuracy  Rate  of  Classification

Data  Set 1NN  +     1NN  + Accuracy   1NN  + Accuracy   1NN  + Accuracy   1NN  + Accuracy

DTW FBDTW1 Improved FBDTW2 Improved AFBDTW1 Improved AFBDTW2 Improved

50words 0.69 0.787 14.06% 0.802 16.23% 0.787 14.06% 0.807 16.96%

Adiac 0.604 0.657 8.77% 0.683 13.08% 0.66 9.27% 0.683 13.08%

Beef 0.5 0.667 33.40% 0.633 26.60% 0.667 33.40% 0.633 26.60%

CBF 0.997 0.9 -­‐9.73% 0.919 -­‐7.82% 0.996 -­‐0.10% 0.979 -­‐1.81%

Coffee 0.821 0.857 4.38% 0.857 4.38% 0.821 0 0.864 5.24%

ECG200 0.77 0.87 12.99% 0.88 14.29% 0.88 14.29% 0.88 14.29%

FaceAl l 0.808 0.81 0.25% 0.803 -­‐0.62% 0.811 0.37% 0.802 -­‐0.74%

FaceFour 0.83 0.875 5.42% 0.875 5.42% 0.875 5.42% 0.875 5.42%

Fish 0.833 0.903 8.40% 0.943 13.21% 0.903 8.40% 0.949 13.93%

Gun_Point 0.907 0.973 7.28% 0.98 8.05% 0.98 8.05% 0.98 8.05%

Lighting2 0.869 0.885 1.84% 0.869 0 0.885 1.84% 0.885 1.84%

Lighting7 0.726 0.726 0 0.699 -­‐3.72% 0.712 -­‐1.93% 0.699 -­‐3.72%

Ol iveOi l 0.867 0.833 -­‐3.92% 0.833 -­‐3.92% 0.833 -­‐3.92% 0.8 -­‐7.73%

OSULeaf 0.591 0.719 21.66% 0.711 20.30% 0.731 23.69% 0.756 27.92%

SwedishLeaf 0.79 0.883 11.77% 0.883 11.77% 0.891 12.78% 0.886 12.15%

Synthetic  Control 0.993 0.89 -­‐10.37% 0.827 -­‐16.72% 0.977 -­‐1.61% 0.947 -­‐4.63%

Trace 1 1 0 0.99 -­‐1% 1 0 1 0

Two_Patterns 1 1 0 1 0 1 0 1 0

wafer 0.98 0.993 1.33% 0.993 1.33% 0.993 1.33% 0.994 1.43%

yoga 0.836 0.868 3.83% 0.865 2.90% 0.868 3.83% 0.866 3.59%

Table 2. Experimental results on the UCR time series classification/clustering test bed 
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Among the 12 data sets where FBDTW2 gains 
improvement, there are 9 data sets with accuracy 
improvement greater than 5 percent; 7 data sets with 
accuracy improvement greater than 10 percent; and 2 data 
sets with accuracy improvement greater than 20 percent. 

5) AFBDTW2 make further improvement over 
FBDTW2 on 11 data sets, ties with FDBTW2 on 7 data 
sets, and gets worse results than FBDTW2 on 2 data sets.  

We further compare the proposed AFBDTW with value 
based DTW by plotting all the data sets in Figure 6 with x-
axis representing accuracy rates obtained by value based 
DTW and y-axis representing accuracy rates obtained by 
AFBDTW (1&2).  From these two figures, it is clearly 
show that majority of data sets favor AFBDTW.  The few 
data sets where value based DTW gains better results are 
actually close to the diagonal line, which means that the 
performance differences on those few data sets between 
AFBDTW and value based DTW are actually very minor.  
Therefore, the experimental results suggest that AFBDTW 
is a better alternative to valued based DTW in time series 
classification in terms of classification accuracy. 

 

 

 
 

6. Time Complexity of FBDTW & AFBDTW 
Assume the size of the training set is N1, the size of the 

testing set is N2, and the length of each sequence is M.  
Then the time complexity of 1NN+FBDTW is the same as 

1NN + DTW, which is O(N1 N2 M2) .  Since 1NN + 
AFBDTW adopts a dual learning strategy, its time 
complexity is O(N1

2 M2) + O(N1 N2 M2), where O(N1
2 M2) 

is  the time complexity of the first learning process that is 
to calculate the weighting factors for global features and 
local features; and O(N1 N2 M2) is the time complexity of 
1NN classification.  Given that the training size is typically 
much smaller than the testing size (i.e., N1 <<N2) in real 
situations, the time complexity of 1NN+AFBDTW is 
reduced to O (N1 N2 M2), which is theoretically the same as 
1NN+DTW.  

Quite a few techniques have been proposed to reduce the 
quadratic time complexity of DTW in sequence length 
from different aspects, such as imposing constraints on 
warping windows [9, 13], reducing sequence dimension by 
data abstraction or transformation [14, 15, 19], indexing 
sequences with lower bonds [16, 17, 18], as well as 
methods that combined two or more above strategies [10, 
12].  It is not difficult to see that most of these techniques 
can be easily adapted to the proposed FBDTW and 
AFBDTW.  In our future work, we will study the 
effectiveness of different speeding techniques on FBDTW 
and AFBDTW, based on which come up with linear or 
near-linear versions of FBDTW and AFBDTW without 
sacrificing their performance on accuracy rate.          

7. Conclusions 
In this paper, we first analyzed some major limitation of 

value based DTW and derivative DTW.  Since the value or 
the deviation of a point may not reflect the position of this 
point in global or local trends of the sequence, both value 
based DTW and derivate DTW may fail to align a pair of 
sequences along their common trends or patterns.  In order 
to solve this issue, we first define a global feature and a 
local feature for each point in a time series sequence, then 
proposed the FBDTW algorithm that dynamically aligns 
two time series sequences based on both the global 
features and local features of each points in the sequences.  
Experiments show that FBDTW generates better 
classification results on majority of the UCR time series 
data sets.    

The proposed FBDTW make it possible to enhance the 
learning capacity of DTW based classification algorithms.  
Through our study, we first found out that the significance 
of global features and local features in classification may 
vary from one domain/application to another.  Then we 
further propose an adaptive version of FBDTW that is 
called AFBDTW to learn the weighting factors for global 
features and local features from the training data.  
Experiments show that AFBDTW is able to make further 
improvement on classification accuracy over FBDTW.  

Figure 6  Comparison of AFBDTW with value based DTW 

 on all 20 data sets 
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Our future focus will be put on studying algorithms that 
are able to improve the speed of AFBDTW without 
sacrificing its classification accuracy.       
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