
A Pattern-Based Approach for Interactive Clarification of
Natural Language Utterances

Hervé BLANCHON, Laurel FAIS, Kyung-Ho LOKEN-KIM & Tsuyoshi MORIMOTO
ATR-ITL

2-2 Hikaridai
Seika-cho, Soraku-gun

Kyoto 619-02 Japan

e-mail: blanchon@itl.atr.co.jp

Abstract
We are going to describe an interactive clarification methodology that has been used to develop two clarification modules

for French and English input. A clarification module is made of two parts, a kernel, which is language-independent, and a
description of the language-dependent clarification processes.

The clarification methodology works on tree structures. The basic mechanism involved in the recognition of an ambiguity
is a pattern matching mechanism. A class of ambiguities is described with one or several pattern beams (sets). Once a pattern
beam has been matched, a question is prepared. The question is composed of a number of items equal to the number of
patterns in the matched beam. A dialogue item production method is associated with each pattern. These dialogue item
production methods are described by a set of basic operators.

The clarification kernel combines a pattern matching module, a beam matching module, the set of basic operators, and a
question presentation module. For a given language, a clarification module is described by a clarification session planner, the
relevant pattern beams, and the dialogue item production methods associated with each described pattern.

Keywords
Interactive clarification, pattern-matching, beam-matching, ambiguity resolution, clarification framework

Introduction
Natural language (spoken or written) is seen as an attractive
modality for interactive computer systems. Recent
applications using a natural language interface include
multi-modal drawing tools [Caelen 1994 ; Hiyoshi &
Shimazu 1994 ; Nishimoto, et al. 1994], on-line
information retrieval [Haddock 1992 ; Zue, et al. 1993 ;
Goddeau, et al. 1994], oral control systems, and, finally,
face to face translation systems [Morimoto, et al. 1992 ;
Kay, et al. 1994].

Nevertheless, natural language input is handled with
great difficulty by computers. As natural language is highly
ambiguous even in restricted domains, interactive
clarification is seen as the solution to produce more robust,
fault-tolerant and user-friendly interactive systems.

In this context, the role of an interactive clarification
module is to plan interactive sessions enabling the system
to recover the information the analysis module has not been
able to calculate automatically.

We defined a framework in which two experiments
have been conducted involving clarification modules, one
for French, at the GETA lab (France), in the context of the
LIDIA project [Blanchon 1994b ; Boitet & Blanchon 1995]
of dialogue-based machine translation, and one for English,
at ATR-ITL (Japan), in the context of interpreting
telecommunications [Blanchon & Loken-Kim 1994].

In this paper we will concentrate on the English
clarification module. We will first give an overview of the
methodology involved. We will then describe the
clarification engine, which is the language-independent part
of a clarification module. We will next describe the
linguistic data which make up the English clarification
module. Then we are going to give several examples of the
produced clarification dialogues.

1. Overview
1.1. Framework

The framework we propose is based on the manipulation of
tree structures. The basic mechanism involved in the
recognition of an ambiguity is a pattern matching one. A
clarification module is made of two parts, an engine
(language-independent) and “linguistic data” (language-
dependent).

A class of ambiguity is described with one or several
pattern sets (beams). Once a beam has been matched, a
question is prepared. It contains as many items (cf. fig. 20)
as the matched beam. An item production method is
associated with each pattern. The production of these items
is described by a set of basic operators.

The clarification engine combines a pattern matching
module, a beam matching module, the set of basic
operators, and a question presentation module.

Thus, the linguistic data of a clarification process is
made of pattern beams (objects), item production
methods (methods) and a clarification scheduler
(automaton) in charge of defining the order in which the
beams are matched against the analysis structure.

1.2. Ambiguity Classified
The ambiguities which make up the corpus upon which the
clarification mechanism was based were taken from a data
base of spontaneous speech collected at ATR-ITL. The
conversations, between native speakers of American

English, were recorded during an experiment conducted in
the Environment for MultiModal Interaction (EMMI)
[Loken-Kim, et al. 1993], and took place via both telephone
and multimedia communication contexts [Fais 1994]. The
17 conversations from the experiment, comprising over
8000 words, were examined by hand, and all detected
ambiguities were extracted. Ambiguities due solely to
polysemy were disregarded; typical examples of all other
types of ambiguity were selected to form the final corpus.

The ambiguities were then classified into several
classes. The meta-classes of ambiguity are: syntactic class
ambiguities, geometrical ambiguities and décorational
ambiguities. For a complete definition of those ambiguity
meta-classes cf. [Blanchon 1994a]. Those meta-classes
have been refined into several classes as described below.

Syntactic Class
Noun-Adjective

ex:This is an English speaking agent.
Noun-Verb

ex:You can either travel by subway, bus, or taxi.
Phrasal-Verb

ex: It is difficult to get out of Kyoto station.

Geometrical Ambiguity
Prepositional Attachment

ex:Where can I catch a taxi from Kyoto station?
Adverbial Attachment

ex:You can pay for it right on the bus.
Conjunction

ex:You can tell him that you are going to the
conference center and it should be a 20 minute
ride.

Decorational Ambiguity
ex: Good morning conference center.

The ambiguities are descibed as follows in the
clarification module:

Ambiguity Description

Noun-Adjective 1 type, 2 beams

Noun-Verb 1 type, 1 beam

Phrasal-Verb not described by beam

Prepositional Attachment 3 types, 5 beams

Adverbial Attachment 2 types; 3 beams

Conjunction 1 type, 1 beam

Decorational Ambiguity not handled yet

1.3. Implementation
The current implementation is realized in the Common Lisp
Object System (CLOS) [Keene 1989], in the Macintosh
Common Lisp environment. The only platform-specific
module is the dialogue presentation module. Thus, most of
the code is portable to any CLOS implemenation.

2. The engine
The clarification engine, which is language independent
and is to be reused by each clarification module, consists
of:

– a pattern matching mechanism,
– a beam matching mechanism,

– a presentation module, and,

– a set of basic operators.

2.1. The pattern matching mechanism
The patterns are described with a language derived from the
one proposed in [Norvig 1992]. Each pattern is described
with the syntax described in figure 1.

pattern ::= … |
seg-pattern |
spl-pattern |
(pattern . pattern)

spl-pattern ::= (?is variable pred args) |
; check the predicate pred

…
seg-pattern ::= ((?+ variable) …) |

; match a segment of one or more

…
variable ::= ?character+

Figure 1: Extract of the pattern syntax

A pattern describes a family of trees, with constraints on
their geometry and labelling.

The pattern matching mechanism is also inspired by
[Norvig 1992]’s proposal.

The result of the pattern matching mechanism is a list
whose first element (match-p) is t if matched, nil if
not, and whose second element (binding) is a binding list
containing the value of each variable defined in the pattern.

2.2. The beam matching mechanism
A family of ambiguities can be defined with several sets of
patterns also called beams. Thus, a sentence S, with s
solutions Si, contains the ambiguity described by the beam
B made of b patterns Pj if and only if:

– b < s

– ∀i, ∃!j / match-p(Si, Pj)=t

– ∀j, ∃i / match-p(Si, Pj)=t

– ∀i, i’, ∀j, j’
match-p(Si, Pj)=t

and match-p(Si’, Pj’)=t

d(binding(Si, Pj),
binding(Si’, Pj’))=0

Figure 2: Beam matching definition

with d a distance on bindings defined as follows:

Let vj,k, 1<k≤l, be the variables used in pattern Pj.

d(binding(Si, Pj),
binding(Si’, Pj’))=0

∀k, 1<k<l,
coverage(vj,k)=coverage(vj’,k)

and
coverage(vj,l)=coverage(vj’,l)
or prefix-p(vj,l, vj’,l)
or prefix-p(vj’,l, vj,l)

Figure 3: Matching distance definition
The coverage of a variable is the projection of the

leaves of the tree this variable represents.
Thus, the distance between two bindings is null if and

only if the coverage of each variable, except the last one, is
the same in each binding. For the last variable of the
patterns, if the coverage is not the same, one coverage has
to be a prefix of the other.

In practice, the beam matching is realised by the method
match-beam (fig. 4). The input parameters for this method
are a pattern-beam (self) and a structure called a numbered
analysis list (na_list). A numbered analysis list is a list of
couples: ((number solutions)+). The clarification allows
the user to indirectly select a number.

(defmethod match-beam
((self pattern-beam) na_list)

 (let* ((the_beam_name (beam-name self))
(the_pattern_list (beam-value self))
...
(the_fill_in_result (fill-the-matrix self na_list))
(the_fill_in_success (car the_fill_in_result))
(the_filled_matrix (cadr the_fill_in_result)))

(if the_fill_in_success
(let* ((the_reduced_list ...)

(the_normalized_list ...)
(the_named_binding_list ...)
(the_new_solution_sets ...))

(listt
the_beam_name
the_named_binding_list
the_new_solution_sets))

'(nil nil nil nil))))

Figure 4: The method match-beam

The first step is the filling of a matching matrix M:

Solutions\patterns
P1 … Pb

S1
…
Ss

while verifying the constraints listed in figure 2. If
the_fill_in_success is true then the bindings are
reduced so as to obtain the smallest coverage for each
variable in each binding. The colums are first projected and
reduced so as to obtain the following list:

((matched-solutions Patternp-reduced-binding)+)

The last variable in each reduced binding is then
reduced so that a the_reduced_list is produced.

Finally a list is constructed (the_new_solution_sets)
containing one new numbered analysis list per pattern.
These new numbered analysis lists will be used as new
input to the clarification scheduler to prepare further
questions.

Figure 5: match-beam input and output

2.3. The presentation module
For a given clarification module, the clarification planner
produces a question tree defined as follows:

Clarif_tree ::= (Clarification_question (Clarif_tree*))

A clarification question is defined as follows:

(defclass clarification-question-class ()
((question-language

:initarg :question-language
:accessor question-language
:documentation "the language of the question")

(question-type
:initarg :question-type
:accessor question-type
:documentation "type of the ambiguity")

(question-modality
:initarg :question-modality
:accessor question-modality
:documentation "modality of the question")

(ambiguous-item
:initarg :ambiguous-item
:accessor ambiguous-item
:documentation "the ambiguous utterance")

(question-items-list
:initarg :question-items-list
:accessor question-items-list
:documentation "(item solutions-number")))

Figure 6: The class clarification-question-class
Once a question has been answered by the selection of

the item (choice) n, if necessary, the next nth question tree
has to be presented as shown in figure 7.

(defun question-tree-presentation
(the_question_tree)

(if (= 1 (length the_question_tree))
(concerned-solution (first the_question_tree))
(let((the_choice

(ask-question (first the_question_tree)))
 (the_other_questions

(second the_question_tree)))
(question-tree-presentation

(nth (- the_choice 1)
the_other_questions)))))

Figure 7: The function question-tree-presentation

The method ask-question (cf. fig. 7) — specialized on
the question-language, the question-type, and the question-
modality — proposes the question to the user.

2.4. The operators
Ten families of operators have been defined. These
operators are used to describe some manipulation of the
bindings in order to produce the dialogue items (cf. fig. 20).
Here is an example of some of them:

Text produce the text of the linguistic trees
given as parameter.

Coord produce the coordinating occurrence of the
linguistic trees given as parameter.

But_Coord produce the text of the linguistic trees
given as parameter without the
coordinating occurrence.

Substitute replace an ambiguous preposition with a
non-ambiguous one (in the context)
according to several properties: syntactic
function or logico-semantic relation.

3. The linguistic data
The linguistic data are used to describe an instance of a
clarification module for a given language. The data consist
of patterns and pattern beams, an automaton, dialogue item
production methods, and dialogue classes

3.1. The patterns & pattern beams
A pattern is made of a pattern-name (the name of the
pattern), a pattern-value (the definiton of the pattern) and a
pattern-method (the method to be applied to the binding in
order to produce a dialogue item). Figures 8 and 9 describe
the two patterns used in the the definition of the pattern-
beam called: *phvbprepatt_set_1* (fig. 10).

(defvar *phvbprepatt-t1-1*
(make-instance 'pattern

:pattern-name '*phvbprepatt-t1-1*
:pattern-value

'((?is ?x node-prop-equal-p 'CS 'PHVB)
(?+ ?p0)
((?is ?y node-prop-equal-p 'FS 'OBJ)

(?+ ?p1)
((?is ?z node-prop-equal-p 'FS 'ATG)

(?+ ?p2))))
:pattern-method #'item-production-method))

Figure 8: The variable *phvbprepatt-t1-1*
A graphical interpretation of the previous pattern is

given below:

?x: CS=PHVB
?y: FS=OBJ

?z: FS=ATG

?p0 ?p1 ?p2

(defvar *phvbprepatt-t1-2*
(make-instance 'pattern

:pattern-name '*phvbprepatt-t1-2*
:pattern-value

'((?is ?x node-prop-equal-p 'CS 'PHVB)
(?+ ?p0)
((?is ?y node-prop-equal-p 'FS 'OBJ)

(?+ ?p1))
((?is ?z node-prop-equal-p 'FS 'CIRC)

(?+ ?p2)))
:pattern-method #'item-production-method))

Figure 9: The variable *phvbprepatt-t1-2*

A graphical interpretation of the previous pattern is
given below:

?x: CS=PHVB

?y: FS=OBJ ?z: FS=CIRC

?p0 ?p1 ?p2

A pattern beam is made of a beam-name (the name of
the beam), and a beam-value. The beam-value is a list of
patterns composing the set. The order in which the patterns
appear in the list determines the order in which they are
matched while filling the matching matrix. This order also
determines the order of the question’s items; for a
recognized beam, pattern i gives rise to the production of
item i of the dialogue.

The *phvbprepatt_set_1* beam (fig. 10) is one of the

two beams used to describe an ambiguity called “verbal

phrase prepositional attachment”. The other beam is called
phvbprepatt_set_2. These two beams are used to describe
a beam-stack called *phvbprepatt_beam_stack* (fig. 11)
that will be used by the state of the clarification scheduler
in charge to check the presence of a phvbprepatt ambiguity.

(defvar *phvbprepatt_set_1*
(make-instance 'pattern-beam

:beam-name '*phvbprepatt_set_1*
:beam-value (list *phvbprepatt-t1-1*

 phvbprepatt-t1-2)))

Figure 10: The variable *phvbprepatt_set_1 *

A beam-stack (fig. 11) combines all the beams proposed
to define a class of ambiguity. A beam-stack is associated
with each one of the relevant ambiguity recognition states
of the clarification scheduler. When trying to recognize a
class of ambiguity, each beam is matched one after another
until a beam has been matched or until every beam has been
matched without success.

(defvar *phvbprepatt_beam_stack*
(make-instance 'beam-stack

:beam-stack-name '*phvbprepatt_beam_stack*
:beam-stack-value (list *phvbprepatt_set_1*

phvbprepatt_set_2)))

Figure 11: The variable *phvbprepatt_beam_stack*

3.2. The clarification scheduler
The clarification scheduler is an automaton made of three
kinds of states: an automaton-scheduler, meta-class
recognition states, and ambiguity-class recognition states.

The automaton-sheduler (fig. 12) is the entry point of
the clarification scheduler of every clarification module. It
is defined as a method with one parameter specialized on
the_language . The automaton-scheduler shown in figure
12, is the automaton-scheduler for the English clarification
scheduler.

(defmethod automaton-scheduler
((the_language (eql 'english))

the_sentence
the_numbered_analysis_list)

 " in: a list of indexed-solution-sets,
 out: a question"

(if (= 1 (length the_numbered_analysis_list))
(list (make-instance 'empty-question

:concerned-solution
(first (first the_numbered_analysis_list))

:concerned-tree
(second (first the_numbered_analysis_list))))

(same-cat-p-state the_language
the_sentence
the_numbered_analysis_list)))

Figure 12: The method automaton-scheduler

There are two meta-class recognition states: one to test
the presence of an ambiguity of syntactic labelling, and one
to test the presence of an ambiguity of geometry. If neither
of these ambiguity meta classes have been recognized, the
ambiguity is a decorational ambiguity.

There are two kinds of ambiguity-class recognition
states: ones using the beam matching mechanism (for the
ambiguities described with beams), and ones using a
property recognition mechanism (for the ambiguities not
described with beams). We will focus on the first kind of
states.

The ambiguity class recognition states are described by
methods sharing a common skeleton; if the ambiguity the

state is to recognize is recognized, a question tree is
prepared; if not, the next ambiguity class recognition state
is triggered.

In the phvb-prep-att-state (fig. 13), if a phvb-prep-att
ambiguity is not recognized, the next triggered state is the
rel-phvb-adv-att-state one. If the ambiguity is recognized,
a question tree is prepared with the method prepare-
question-tree.
(defmethod phvb-prep-att-state

((the_language (eql 'english))
the_sentence
the_na_list)

(let*
((the_beam_stack *phvbprepatt_beam_stack*)

(the_beam_match
(beam-stack-match the_beam_stack

the_na_list))
(matched? (first the_beam_stack_match)))

(if matched?
(let

((the_type 'general)
(the_modality 'textual)
(the_list_of_triplets (third the_beam_match))
(the_new_sol_sets (fourth the_beam_match)))

(prepare-question-tree the_language
the_type
the_modality
the_sentence
the_triplets
the_new_sol_sets))

(rel-phvb-adv-att-state the_language
the_sentence
the_na_list))))

Figure 13: The method phvb-prep-att-state

The method prepare-question-tree (fig. 14) prepares a
question with the third item (the_list-of_triplets, fig. 13 &
14) of the result of the beam-match method (cf. fig. 5).

The new indexed solutions sets in the_na_list are used
to prepare, if necessary, the next questions. Finally, a
question tree is constructed (the_result).
(defmethod prepare-question-tree

((the_language (eql 'english))
the_type
(the_modality (eql 'textual))
the_sentence
the_list_of_triplets
the_new_solution_sets)

(let*
((the_first_question (prepare-question

the_language
the_type
the_modality
the_sentence
the_list_of_triplets))

(the_next_questions (prepare-question-list
the_language
the_sentence
the_new_sol_sets))

(the_result(listthe_first_question
the_next_questions)))

the_result))

Figure 14: The method prepare-question-tree
The method prepare-question-list (fig. 15) calls the

automaton-scheduler for each new indexed solutions set
(the_new_sol_sets, cf. fig. 15).

(defmethod prepare-question-list
((the_language (eql 'english))

the_sentence
the_sol-sets)

(if (= 1 (length the_sol-sets))
(list(automaton-scheduler the_language

the_sentence
(car the_new_sol_sets))

(cons (automaton-scheduler the_language
the_sentence
(car the_new_sol_sets))

(prepare-question-list the_language
the_sentence
(cdr the_new_sol_sets)))))

Figure 15: The method prepare-question-list

The creation process of the question tree is resumed in
the following figure.

Figure 16: The construction of the question tree

3.3. The dialogue item production
methods

The dialogue item production methods are described with
the method item-production-method (fig. 17 & 18)
specialized on its pattern-name (the name of the pattern)
argument.

Each method produces a string of characters which is an
arrangement of a manipulation, with the operators (defined
in § 2.4) of the binding associated with some of the
variables defined in the pattern the method is associated
with.

The method associated with pattern *phvbprepatt-t1-1*
(fig. 18) produces the following string:

text(?p0) (text(?p1) text(?p2))
(defmethod item-production-method

((pattern-name (eql '*phvbprepatt-t1-1*)) binding)
(format nil

" ~A (~A ~A). "
(apply #'text (cdr (assoc '?p0 binding)))
(apply #'text (cdr (assoc '?p1 binding)))
(apply #'text (cdr (assoc '?p2 binding)))))

Figure 17: The method item-production-method

The method associated with pattern *phvbprepatt-t1-2*
(fig. 19) produces the following string:

text(?p2), text(?p0) text(?p1)

(defmethod item-production-method
((pattern-name (eql '*phvbprepatt-t1-2*)) binding)

(format nil
" ~A, ~A ~A. "
(apply #'text (cdr (assoc '?p2 binding)))
(apply #'text (cdr (assoc '?p0 binding)))
(apply #'text (cdr (assoc '?p1 binding)))))

Figure 18: The method item-production-method

3.4. The dialogue classes
Generic dialogue classes are specialized with dialogue
subclasses. For English textual dialogue we have defined
two classes: english-general-textual-dialogue-class (fig. 19),
and english-polysemy-textual-dialogue-class.

These classes specialize the invitation-string, the prompt-
string, the window-title (shown fig. 20), and other slots of
the generic-textual-clarif-dialogue-class (cf. fig. 19).

(defclass english-general-textual-dialogue-class
(generic-textual-clarif-dialogue-class)

((window-length :initform 400)
(invitation-string:initform "The following

sentence has several possible interpretations.")
(invitation-string-font :initform '("geneva" 10))
(ambiguous-string-font:initform '("geneva" 10 :bold))
(prompt-string:initform "Choose the right one:")
(prompt-string-font :initform '("geneva" 10))
(items-font:initform '("geneva" 10 :bold)))

(:default-initargs :window-title "Ambiguity"))

Figure 19: The class english-general-textual-dialogue-class

Figure 20: Some dialogues’ slots

4. Some examples
In this last section, let us give some examples of the
produced dialogues according to the ambiguity to be
solved.

4.1. Syntactic class ambiguity
In the sentence “This is an English speaking agent.” there is
ambiguity for the syntactic class of the word “English”
which can interpreted as a noun (an agent who speaks
English), or as an adjective (an agent who is English).

This ambiguity is detected by the following pattern
beam.

X:GP+GNX:GP+GN

Y:ATG

p0 p1 p2 p3 p4p0 p1 p2 p3 p4

The dialogue produced to solve this ambiguity is shown
in the following figure.

Figure 21: Syntactic class clarification

4.2. Prepositional attachment involving
the verb

In the sentence “Where can I catch a taxi from Kyoto
station?” there is an ambiguity called phvb-prep-att
(prepositional attachment involving the verb).

This ambiguity is detected with the beam shown in fig.
10.

The dialogue produced to solve this ambiguity is shown
in the following figure.

Figure 22: phvb-prep-att type-1 clarification

4.3. Prepositional attachment not
involving the verb

In the sentence “You are going to the international
conference center.” there is an ambiguity called non-phvp-
prep-att (prepositional attachment not involving the verb).

This ambiguity is detected by the following beam.
X:GP+CIRC X:GP+CIRC

Y:ATG

p0 p1 p2 p3 p4 p0 p1 p2 p3 p4

The dialogue produced to solve this ambiguity is shown
in the following figure.

Figure 23: non-phvb-prep-att type-1 clarification

Conclusion
The methodology we described has in our opinion two main
advantages: it can be customized and it can be improved
incrementally. The ability to customize comes from the
clear separation of the linguistic data from the kernel. In
this framework, a number of different clarification modules
can be produced for different languages and kinds of input.
The descripition of the linguistic data can be improved
incrementally as the design and the use of a clarification
module progress.

The coverage of the first version of an interactive
clarification module described here is currently being
evaluated. For this evaluation we are constructing a new
corpus from the data collected in the latest experiments
conducted in the EMMI framework of interpreting
multimedia /multimodal and telephone communications,
[Park & Loken-Kim 1994] and [Park, et al. 1995].

Most of the ambiguities we have found in the evaluation
and improvement corpus are already covered by the current
module. The most important difference lies in the fact that
there are a greater number of ambiguities of coordination.
After we evaluate the first version of the clarification
module by testing its coverage on the new data, we will
improve the module by extending it to include the
ambiguities it was not able to handle in the test data.
Certainly, we will not be able to claim that the improved
module will cover all the ambiguities found in spontaneous
English, but it will have broad coverage for application to
these particular domains. Similarly, if new ambiguities are
located in future data, the module can be incrementally
improved to cope with the new ambiguities.

We are also currently investigating the use of weights to
let the module learn from the history of the dialogue. If one
particular interpretation of an often recurring ambiguity is
always chosen, the module will more heavily weight that
interpretation, either automatically, or after querying the
user. The module will then be tunable.

In future work, we intend to integrate the clarification
module into the EMMI context to investigate its usability in
a multimedia environment. We will also design
experiments with naive users to determine the optimal
design of clarification dialogues and interactive sessions.

References
Blanchon H. (1994a). Pattern-based approach to
interactive disambiguation: first definition and
implementation. Rap. ATR-Interpreting
Telecommunications Research Laboratories. Technical
Report. n° TR-IT-0073. Sept. 8, 1994. 91 p.

Blanchon H. (1994b). Perspectives of DBMT for
monolingual authors on the basis of LIDIA-1, an
implemented mock-up. Proc. Coling-94. Kyoto, Japan.
August 5-9, 1994, vol. 1/2 : pp. 115-119.

Blanchon H. & Loken-Kim K. H. (1994). Towards More
Robust, Fault-Tolerant and User-Friendly Software
Integrating Natural Language Processing Components. in
Bulletin of the Information Processing Society of Japan.
vol. 94(109) : pp. 17-24.

Boitet C. & Blanchon H. (1995). Multilingual Dialogue-
Based MT for monolingual authors: the LIDIA project and
a first mockup. in Machine Translation. vol. À paraître :
pp. 21.

Caelen J. (1994). Multimodal Human-Computer
Interaction. in Fundamentals of Speech Synthesis and
Speech Recognition. Keller, E. (ed.). John Wiley & Sons.
New York. pp. 339-373.

Fais L. (1994). Effects of communicative mode on
spontaneous English speech. Rap. Institute of Electronics,
Information and Communication Engineers. Technical
Report. n° NLC94-22. Oct. 94. 6 p.

Goddeau D., Brill E., Glass J., Pao C., Philips M.,
Polifroni J., Seneff S. & Zue V. (1994). GALAXY: a
Human-Language Interface to On-Line Travel Information.
Proc. ICSLP 94. Yokohama, Japan. September 18-22, 1994,
vol. 2/4 : pp. 707-710.

Haddock N. J. (1992). Multimodal Database Query. Proc.
Coling-92. Nantes, France. 23-28 juillet 1992, vol. 4/4 : pp.
1274-1278.

Hiyoshi M. & Shimazu H. (1994). Drawing Pictures with
Natural Language and Direct Manipulation. Proc. Coling-
94. Kyoto, Japan. August 5-9, 1994, vol. 2/2 : pp. 722-726.

Kay M., Gawron J. M. & Norvig P. (1994). Verbmobil: A
Translation System for Face-to-Face Dialog. CSLI lecture
note no 33. Center for the Study of Language and
Information, Stanford, CA. 235 p.

Keene S. E. (1989). Object-Oriented Programming in
Common Lisp: A Programmer’s Guide to CLOS. Addison-
Wesley Publishing Compagny. New York. 266 p.

Loken-Kim K.-H., Yato F., Kurihara K., Fais L. &
Furukawa R. (1993). EMMI-ATR environment for multi-
modal interactions. Rap. ATR-ITL. Technical Report. n°
TR-IT-0018. Sept 30, 1993. 28 p.

Morimoto T., Suzuki M., Takezawa T., Kikui G.,
Nagata M. & Tomokio M. (1992). A Spoken Language
Translation System: SL-TRANS2. Proc. Coling-92. Nantes,
France. 23-28 juillet 1992, vol. 3/4 : pp. 1048-1052.

Nishimoto T., Shida N., Kobayashi T. & Shirai K.
(1994). Multimodal Drawing Tool Using Speech, Mouse
and Key-Board. Proc. ICSLP 94. Yokohama, Japan.
September 18-22, 1994, vol. 3/4 : pp. 1287-1290.

Norvig P. (1992). Paradigms of Artificial Intelligence
Programming: Case Studies in Common Lisp. Morgan
Kaufmann Publishers. San Mateo, California. 945 p.

Park Y.-D. & Loken-Kim K.-H. (1994). Text Database of
Telephone and Multimedia Multimodal Interpretation
Experiment. Rap. ATR-ITL. Technical Report. n° TR-IT-
0086. Dec. xx, 1994. XX p.

Park Y.-D., Loken-Kim K.-H., Mizunashi S. & Fais L.
(1995). Transcription of the Collected Dialogue in a
Telephone and Multimedia/Multimodal WOZ Experiment.
Rap. ATR-ITL. Technical Report. n° TR-IT-0090. Feb.,
1995. 123 p.

Zue V., Seneff S., Polifroni J. & Phillips M. (1993).
PEGASUS: a Spoken Dialogue Interface for On-Line Air
Travel Planing. Proc. ISSD-93 — New Directions in
Human and Man-Machine Communication. International
Conference Center, Waseda University, Tokyo, Japan.
November 10-12, 1993, vol. 1/1 : pp. 157-160.

