
Perspectives of DBMT for monolingual authors
on the basis of LIDIA-1, an implemented mock-up

Hervé BLANCHON
GETA, Institut IMAG (UJF & CNRS)

BP 53, 38041 Grenoble Cedex 9, France
e-mail : Herve.Blanchon@imag.fr

Abstract

DBMT is researched here in the context of future systems
for the general public, where a monolingual author wants
to translate into several languages. We have produced a
complete mock-up, LIDIA-1, which demonstrates how a
French HyperCard™ stack could be translated into
German, Russian and English. We present the
computational, linguistic and ergonomic aspects of the
mock-up, and discuss them in the perspective of building
an operational prototype in the future.

Keywords

Interactive MT, DBMT for monolingual author,
Interactive disambiguation, Production of disambiguation
dialogues, Distributed architecture, Whiteboard approach

Introduction

Our LIDIA project aims at studying the concept of
‘Personal Machine Translation’, or more precisely, DBMT
for monolingual authors [Boitet & Blanchon 1993], in a
multilingual setting.

We have now completed the first implementation of a
mock-up, LIDIA-1. Working on a mock-up first, and not
on a prototype, has made it possible to tackle all aspects of
such future systems, computational, linguistic and
ergonomic. Even if we could not solve all problems, we
fell they are put in perspective. Almost all other attempts
in the direction of DBMT have considered only some
aspects of the paradigm, leading to unbalanced and
sometimes inadequate architectures.

Before a demonstration which shows the principles of the
translation process, we present an overview of the context
of the mock-up. Then, we give some more details about
the mock-up itself, the implementation techniques used
and the principles of the interactive disambiguation
process. Finally, we discuss some important points
(interface, implementation techniques and tools, and
disambiguation process) of the mock-up in the perspective
of building an operational prototype in the future.

1. Framework

1.1. The DBMT

Interactive MT was first proposed in the sixties by M. Kay
for the MIND system [Kay 1973], and several projects
experimented with variations of this design, notably the
ITS project [Melby 1981] at Provo (75 - 81), the Alvey N-
tran project [Wood 1989] at Manchester (85 - 87), the
DLT project [Sadler 1989] at Utrecht (82 - 88), the LMT
project [Rimon, et al. 1991] from 1989 at several IBM

research centers, and the JETS project [Tsutsumi , et al.
1993] fom 1989 at IBM Tokyo Labs.

In KBMT-89 [Goodman & Nirenburg 1991] at CMU-
CCL, questions were also asked by the “augmentor” if
ambiguities could not be solved by the ontology.

Among those projects where an interactive disambiguation
component was integrated, we were inspired by:

– the interface proposed in KBMT-89,

– the pattern-based disambiguation process used for
several ambiguities in LMT,

– the distributed architecture of JETS.

1.2. The LIDIA-1 mock-up

We have chosen a well-defined situation as regard to the
profile of the task and the profile of the user. We have
integrated the use of an interactive disambiguation process
at the very beginning of the design. This means that the
whole set of constraints was well established before we
started the implementation. The translation process
organization is described in [Boitet & Blanchon 1993].

In the scenario we propose, a monolingual French engineer
creates technical documentation, in the form of an
HyperCard stack, on a middle-range Macintosh, and helps
the system translate it into English, German and Russian.
We have opted for a distributed architecture (author
workstation on a Macintosh and MT server on a
mini—IBM-4361).

We have produced a demonstration stack about the
linguistics ambiguity we have chosen to cope with in
French.

1.3. The demonstation stack

Our demonstration stack, called ‘LIDIA les histoires’ is
made of story cards (Fig. 2) and treatment cards (Fig. 1).

Stack ButtonWindoid

Fields

Feedback buttons
F

igure 1: a card and its objects

2

A story card is a collection of two or three stories sharing
an ambiguous sentence. The author is supposed to solve
the ambiguities through his understanding of the stories.
Here is an example of a story card (see translations1).

Fi
gure 2: a story card

For the purpose of the demonstration, each story is
presented in a treatment card, where the context of the
ambiguous sentence may be shown or hidden. Here is the
card for the story on the right.

F
igure 3: a treatment card

To have the story translated, the user will ask for the
translation of the fields of the treatment stack. Note that
the user is never interrupted by a question. Objects show
they are waiting for answers, and the user decides when
and which question to answer.

2. Demonstration

The user can choose the selection tool () and select the
object to be translated (Fig. 4).

Figure 4: the selection of an object

The button of treatment state then appears. When clicking
on it (fig 5), a windoid or pop-up window appears (Fig. 7).

1 Left story : ‘From China, the captain has bring back a vase.
This vase is English’. Right story: ‘The captain has bring back
a Chinese vase. His boat is soiled.’

Figure 5: the user asks for the treatment state
The task in progress is displayed in bold, the previous ones
in plain, and the following ones in italic. Thus, in figure 7
the system is currently analyzing the text fragment.

Figure 6: windoid for the treatment state

If the sentence has to be disambiguated, the author is asked
to answer some questions. The author is advised a new
question is ready by a new item in the menu Message and
by a button which appears over the concerned object as in
figure 7. The user can choose to interact at once or later

Figure 7: the object have a question of terminology

Suppose the user clicks on the button. A first
question appears (Fig. 8).

Le capitaine a rapporté un vase de chine.

de Chine, le capitaine a rapporté un vase.

Le capitaine a rapporte (un vase de chine).

Figure 8: attachement disambiguation (story 2)

With the dialogue (Fig. 8), the author select the
attachement of ‘de Chine’ (Chinese). Then, a second
dialogue appears (Fig. 9) where the author chooses the
sense of ‘capitaine’. The senses are found in Parax, a
multilingual lexical database mock-up [Sérasset & Blanc
1993].

capitaine

Officier qui commande une compagnie d'infanterie, un
escadron de cavalerie, une batterie d'artillerie

Officier qui commande un navire de commerce

Chef d'une équipe sportive

Figure 9: word sense disambiguation (story 2)

Once the disambiguation step has been performed, the user
can ask for the annotated form of the text (Fig. 10) which

3

contains the syntactic class of each occurrence and the
syntactic function of each phrase.

F
igure 10: annotated form

These annotations should help the user understand the
structure produced by the analyser. We think that
experienced users would like to shortcut some dialogues
by inserting some disambiguation marks themselves.

To check the translation produced in each target language,
the user can ask for the “reverse translation”. From
German and for the second interpretation of the example,
he get :

F
igure 11: reverse translation2

Finally, the system produces a translated story card.

Fi
gure 12: translation of the two stories into German

3. Other aspects

As a demonstration can not show all external aspects of
the mock-up, let us now give more details about the
interface, the implementation techniques, and the
methodology for disambiguation.

3.1. Interaction tools

Once the preferences have been
defined, the author uses a menu
and a palette to interact with
LIDIA.

The interaction with the author
is made through the LIDIA menu
(Fig. 13), the Messages menu,
a palette (Fig. 14), feedback
buttons (Fig. 1) and windoids
(Fig. 1).

The menu shown here offers 8
choices: process the selected

2 ‘The captain has brought back a Chinese vase.’

object according to the set of preferences, process some
object with a particular preference set, show the
treatments’ progress, show the reverse translation, show
the annotations, show the palette, modify the preferences
and build the target stacks.

The user can also ask
for the frequent
treatments with a
palette. In the first line
are displayed the LIDIA
tools (process the

selected object, show the treatment progress, show the
annotations and show the reverse translation). In the
second line are the browsing tools.

The translation process is divided into two steps: the
standardisation and the clarification. We have seen the
clarification process during the demonstration, let us have
a look on the standardization step.

3.2. Implementation

The implementation is characterized by the use of a
distributed architecture, a whiteboard approach, and
object-oriented techniques.

a. Distributed architecture

Three machines (Fig. 15) are involved in the translation
process.

On the author’s workstation the HyperCard Kernel sends
and receives messages from the LIDIA kernel which
organises the translation process for each object. The LIDIA
Kernel sends translation jobs to the Translation server via
the Communication server. The LIDIA Kernel also asks to
prepare the disambiguation questions.

b. Whiteboard approach

For each object to be translated, the LIDIA Kernel creates a
mirror object (a text file) in which are stored all
information required by the translation process and
necessary for the construction of the target stack. We
distinguish between static and dynamic information. Static
information is what is attached by HyperCard to each
object. It is necessary to construct target stacks. Dynamic
information is any information used by LIDIA to translate
the content of an object.

These files can be considered as whiteboards as defined in
[Seligman & Boitet 1994]. Unlike the blackboard, the
whiteboard is accessed only by a coordinator (the LIDIA
Kernel), and not by the components (Disambiguation kernel
and RemoteMacMain-Frame). The main advantage of this
architecture is to allow easy integration of existing new
components without having to modify them.

c. Object oriented techniques

Except the lingware, all components use object-oriented
programming. The module for the Terminology, the idioms
and the Typage as the kernel of the Communication server
are written in HyperTalk the HyperCard scripting
language.

The LIDIA serveur is written with CLOS (MCL). Although
encapsulated within the same environment, the LIDIA Kernel

Figure 13: the menu

Figure 14: the palette

4

and the Disambiguation Kernel communicate by exchanging
messages and can then be distributed.

The use of messages and object-oriented programming
techniques is close to the actor model used in the context
of distributed cooperative systems.

3.3. disambiguation

'le'
'le'
d
des
—

'capitaine'
'capitaine'
n
gov
—

'a'
'avoir'
v
aux
—

'rapporté'
'rapporter'
v
gov
—

'un'
'un'
d
des
—

'vase'
'vase'
n
gov
—

'de'
'de'
s
reg
—

'Chine'
'Chine'
n
gov
—

—
'phvb'
phvb
—
—

—
'dgn'
gn
suj
arg0

—
'dgn'
gn
obj1
arg1

—
'gp'
gn
comp
unde'nv'

nv

'le'
'le'
d
des
—

'capitaine'
'capitaine'
n
gov
—

'a'
'avoir'
v
aux
—

'rapporté'
'rapporter'
v
gov
—

'un'
'un'
d
des
—

'vase'
'vase'
n
gov
—

'de'
'de'
s
reg
—

'Chine'
'Chine'
n
gov
—

—
'phvb'
phvb
—
—

—
'dgn'
gn
suj
arg0

—
'dgn'
gn
circ
unde'nv'

nv

—
'dgn'
gn
obj1
arg1

Figure 16: multisolution, multilevel
and concrete structure

X:PHVB

Y:SUJ Z:NV

U:OBJ1

T

V:COMP

Patron 12

X:PHVB

Y:SUJ Z:NV U:OBJ1

T

V:CIRC

Patron 13

Figure 17: 2 patterns

The disambiguation process is
organized around a pattern matcher
[Blanchon 1992]. For five out of the
eight classes of ambiguity
considered in the mock-up, we use a
mechanism of pattern matching with
unification of variables which
allows to recognize the ambiguity
and produce the disambiguation
dialogue. A dialogue construction
method is associated with each
pattern. These methods rely on a set
of thirteen operators.

Figure 16 shows the trees produced
for the sentence ‘Le capitaine a
rapporté un vase de Chine.’

The patterns (Patron 12 & Patron
13) used to recognize the ambiguity
in our example are shown in Fig. 17.

The method associated with pattern
12 is:

Texte(Y) Texte(Z) Parenthèse(Texte(T), Texte(V))

which produces the following text:
Le capitaine a rapporté (un vase de chine.)

The method associated with pattern 13 is:

Texte(V) , Texte(Y) Texte(Z) Texte(T)

which produces the following text:
de Chine, le capitaine a rapporté un vase.

4. Towards an operational prototype

4.1. Interface

For a prototype, the modules for the terminology and the
idioms should use, at least, a lemmatizer, and with the text
categorization module they should not rely on HyperCard
any more (Fig. 17).

Our implementation of the ‘guided languages’ idea is still
very primitive. We hope to develop working techniques
from our studies on ‘utterence styles’ and ‘text genres’.

The interfaces of the standardization modules are only a
first sketch. The iconic buttons used to ask for the user
intervention have to be redesigned (we haven’t found a
good solution yet). On the other hand, the cursors for the
LIDIA tools and the feed-back buttons are homogenous
and could be kept (Fig. 1 & 7).

In a future work, it will be necessary to adapt the dialogue
type to the skills of the author. The kind of dialogue we
have developed allows only the user to select the right
analysis. A new dialogue type could allow the user to get
information and examples about the ambiguity currently
solved. The user could then change its text or insert
disambiguating marks.

4.2. Implementation techniques

The current implementation in terms of software and
hardware may be characterized as integrated, distributed
and extensible.

Communication server

Scripts

downLoadScriptupLoadScript

RemoteMacMainFrame

HC kernel

IBMXFERTIBM3270

Author's workstation

HyperCard

HC Kernel

TypageFormulæ

Terminology

Serveur LIDIA

Serveur de désambiguïsation

Operators

Disambiguation Kernel

Patterns

LIDIA Kernel

Pattern Matcher
LIDIA/IBM network

Ariane-G5

Translation server

Figure 15: the architecture of LIDIA-1

5

Using four servers (LIDIA, Disambiguation, Communication,
and Translation) collaborating through messages and text
files as made it relatively easy to integrate tools running in
different hardware and/or software environments.

For using DBMT at home, a simple communication server
could pilote a modem to request services from a LIDIA
server, exactly as a mail utility. With such an architecture,
a low-cost personal computer would be usable for
authoring and translating.

Using object-oriented programming techniques makes the
system easy to customize.

4.3. Implementation tools

The dictionaries used by the Ariane-G5 lingware are build
from Parax [Sérasset & Blanc 1993]. For a prototype we
need a more powerfull and flexible tool, as also described
in [Sérasset & Blanc 1993].

For developing the lingware, we have used Ariane-G5,
designed for heuristic programming in the context of
sublanguages. We plan to develop some new Specialized
Languages for Linguistic Programming, thereby working
in the direction of ‘ambiguous programming’ [Boitet
1993].

4.4. Disambiguation process

It has been clear from the beginning that we would not be
able to find, for each class of ambiguity we have chosen to
solve, a unique resolution method. Keeping in mind the
kind of dialogues we wanted, we have examined a large
quantity of ambiguity configurations and have arrived at 9
problem patterns.

The use of a strategy, organizing the disambiguation
process, the use of patterns and methods implemented with
a set of basic operators make the process highly
customizable. That’s why we think about an environment
for the description of disambiguation process.

This environment integrates three modules: a module for
the patterns definition, a module for the definition of the
dialogue production methods, and finally a module for the
description of the disambiguation strategy.

Conclusion

The implementation of our mock-up LIDIA-1, first
concrete experiment towards the DBMT ‘for everybody’,
has been done ‘in breadth’ at first, and ‘in depth’ on
certain points. It was very important to tackle all the
aspects. Previous experiments have shown the necessity of
a broad conception for a MT system to succeed. During
our work we have seen that the ergonomics goals can
trigger computational and linguistic choices. The situation
is the same for the computational or linguistic goals.

The idea of the interactive clarification approach in the
context of natural language processing seems now to
interest a real community. For MT, the current work of
[Wehrli 1993], [Yamaguchi, et al. 1993], and the ongoing
work on JETS [Tsutsumi, et al. 1993] are some good
examples. For speech systems, the interactive clarification
approach is also a solution as shown in [Frankish, et al.
1992] and proposed in [Ainsworth & Pratt 1992] and
[Saito 1992].

As far as the future is concerned, we have begun to study
multimodal interactive disambiguation with ATR-ITL in a
more general framework than LIDIA-1. We hope to get
adequate support for developing a more larger-scale
prototype in the next few years.

References
Ainsworth, W. A. & Pratt, S. R. (1992). Feedback strategies
for error correction in speech recognition systems. in
International Journal of Man-Machine Studies. vol. 36(6) : pp.
833-842.

Blanchon, H. (1992). A Solution to the Problem of Interactive
Disambiguation. Proc. Coling-92. Nantes, France. 23-28 juillet
1992, vol. 4/4 : pp. 1233-1238.

Boitet, C. (1993). Crucial Open Problems in Machine
Translation and Interpretation. Proc. Symposium on Natural
Language Processing in Thailand. Bangkok. 17-21 March 1993,
vol. : pp. 1—29.

Boitet, C. & Blanchon, H. (1993). Dialogue-based MT for
monolingual authors and the LIDIA project. Proc. NLPRS’93.
Fukuoka, Japon. 6-7 décembre 1993, vol. 1/1 : pp. 208-222.

Frankish, C., Jones, D. & Hapeshi, K. (1992). Decline in
accuracy of automatic speech recognition as a function of time
on task: fatigue or voice drift? in International Journal of Man-
Machine Studies. vol. 36(6) : pp. 797-816.

Goodman, K. & Nirenburg, S. (eds), (1991). The KBMT
Project: A case study in knowledge-based machine translation.
Morgan Kaufmann. San Mateo, California. 331 p.

Kay, M. (1973). The MIND system. in Courant Computer
Science Symposium 8: Natural Language Processing.
Algorithmics Press, Inc. New York. pp. 155-188.

Melby, A. K. (1981). Translators and Machines - Can they
cooperate ? in META. vol. 26(1) : pp. 23-34.

Rimon, M. & al. (1991). Advances in Machine Translation
Research in IBM. Proc. Machine Translation Summit III.
Washington, D.C. 1-4 juillet 1991, vol. 1/1 : pp. 11-18.

Sadler, V. (1989). Working with analogical semantics :
Disambiguation techniques in DLT. Floris Publications.
Dordrecht, Holland. 256 p.

Saito, H. (1992). Interactive Speech Understanding. Proc.
Coling-92. Nantes, France. 23-28 juillet 1992, vol. 3/4 : pp.
1053-1057.

Seligman, M. & Boitet, C. (1994). A “whiteboard” architecture
for automatic speech translation. Proc. International Symposium
on Spoken Dialogue. Waseda University, Tokyo. 1-12 novembre
1993, vol. : pp. 4.

Sérasset, G. & Blanc, É. (1993). Une approche par acception
pour les bases lexicales multilingues. Proc. T–TA–TAO 93.
Montréal, Canada. 30 semptembre-2 octobre 1993, vol. : pp. À
paraître.

Tsutsumi, T. & al. (1993). Example-Based Approach to
Machine Translation. Proc. Premières journées franco-japonaise
sur la traductionassistée par ordinateur. Ambassade de France au
Japon, Tokyo, Japon. 15-16 mars 1993, vol. 1/1 : pp. 161-169.

Wehrli, É. (1993). Vers un système de traduction interactif. in
La traductique. Les presses de l’Université de Montréal,
AUPELF/UREF. pp. 423-432.

Wood, M. M. (1989). Japanese for speakers of English: The
UMIST/Sheffield Machine Translation Project. in Recent
Developments and Applications of Natural Language Processing.
Kogan Page Limited. London. pp. 56-64.

Yamaguchi, M. & al. (1993). An Interactive Method for
Semantic Disambiguation in Sentences by Selecting Examples.
Proc. NLPRS’93. Fukuoka, Japon. 6-7 décembre 1993, vol. : pp.
208-222.

