
Annotating Documents by their Intended Meaning
to Make them Self Explaining:

an Essential Progress for the Semantic Web

Hervé Blanchon and Christian Boitet

Laboratoire CLIPS
BP 53

38041 Grenoble Cedex 9, France
{herve.blanchon, Christian.boitet}@imag.fr

Abstract. A Self-Explaining Document (SED) is a document enriched with an-
notations keeping track of all possible interpretations with respect to a given
grammar and dictionary, as well as disambiguating choices. If disambiguation
is complete and has been done by the author himself, a SED conveys “the
author’s intention”. The availability of SEDs might considerably reduce misun-
derstanding between authors and readers, and perhaps lead to the assignment of
a “meaning certification level” to any part of a document. We present ways to
integrate these annotations into an arbitrary XML document (SED-XML), and
to make them visible and usable to readers for accessing the “true content” of a
document. We also show that, under several constraints, a SED, once translated
into a target language L, might be transformed into an SED in L with no human
interaction. Hence, the SED structure might be used in multilingual as well as
in monolingual contexts, without addition of human work.

1 Introduction

We first proposed the concept of Self-Explaining Document in [5] as an answer to
some question raised while experimenting with a new incarnation of the interactive
translation paradigm, the DBMT approach (Dialogue-Based Machine Translation) in
the LIDIA project [6]. We observed (again) that translation introduces ambiguities
which are not present in the source text. Traduttore, traditore… For example, the two
French words “remplacer” (replace by a new thing) and “replacer” (put back into
place) were both translated by “replace” in English. It also happened that all disam-
biguated analyses of a sentence produce the same translation, as ambiguous as the
original. One example was the translation from French into Russian of the famous
sentence «the man sees the girl in the park with a telescope».

This raised an objection to DBMT: what is the use of disambiguating the source
text if ambiguities reappear in the translation(s), or even worse if new ones are cre-
ated? Would it not be better to try and produce translations which preserve the ambi-
guities, and dispense with Interactive Disambiguation (ID) altogether?

Unfortunately, the experience of human translation shows that ambiguities can be
exactly preserved only in some cases, and that to do it purposefully is quite difficult

and often leads to unnatural ways of expression in the translation. It is also quite clear
that the “transferable” ambiguities vary with the target language. Finally, although
some texts may be intentionally ambiguous, especially in poetry and politics, we take
it that the vast majority of ambiguities are not intentional, but are due to the intrinsic
nature of natural languages. Of course, some authors write more clearly than others,
but all authors write unambiguously in any programming language, unambiguous by
construction, and ambiguously in any natural language, ambiguous by nature!

This motivated the idea of Self-Explaining Documents: if the source and target
documents are accompanied by their (unambiguous) linguistic structure, with the
indications of potentially ambiguous parts, and if the reader in the target language
may obtain a clarification of unclear parts in a user-friendly way, the objection disap-
pears. As human users are notably not very sensitive to ambiguities, however, we
should find a way to warn the reader that the target text is ambiguous.

2 DBMT: a Context for SED production

After having worked in the direction of “suboptimization” for 15 years [10], we
turned to high quality Dialogue-Based Machine Translation. DBMT is a new para-
digm derived from that of Interactive MT (IMT) and geared to various translation
situations where other approaches, such as the Linguistic-Based (LBMT) and the
Knowledge-Based (KBMT) approaches, are not adequate.

In DBMT, although the linguistic knowledge sources are still crucial, and extralin-
guistic knowledge might be used if available, emphasis is on indirect pre-editing
through negotiation and clarification dialogues with the author in order to get high
quality translations without revision.

Authors are distinguished from “spontaneous” writers or speakers by the fact that
they want to produce a “clean” final message and may be willing to enter into such
dialogues. The crucial difference with usual IMT is that interactive disambiguation is
not performed during an analysis or transfer process, but on a “multiple” data struc-
ture factorizing all possible analysis results. Hence, the author is not “slave of the
system”, but decides if and when s/he wants to enter the disambiguation dialogue.

The first situation considered (in 1990) was the production of multilingual techni-
cal documentation in the form of HyperCard1 documents. A page of such a document
is a card. A card may contain different kinds of objects such as graphics, buttons and
textual fields. The linguistic MT lingware was based on multilevel transfer with inter-
lingual acceptions, properties and relations implemented in ARIANE-G5.

The first mockup, LIDIA-1 [6], demonstrates the idea on a HyperCard stack pre-
senting short ambiguous French sentences in several disambiguating contexts. This
document is translated into three documents, German, Russian and English. Although
this mockup does not implement all features of the general design — a complete im-
plementation would have called for considerably more human resources than were
available — it demonstrates the potential of the approach.

1 HyperCard is a Macintosh-based (MacOS-7 to MacOS-9) environment for the production of

hypertextual documents called “stacks”.

2.1 LIDIA-1 Through an Example

The author can trigger the most frequent functions through the LIDIA-1 palette. Its
first line contains the LIDIA tools (process the selected object, show the treatment
progress, show the annotations, and show the reverse translation). The second line
contains browsing tools.

Fig. 1. Selection of a field to be translated2

After analysis, a button (? !! - Fig. 2) appears above the object to be translated if its
content is ambiguous.

Fig. 2. Pending disambiguation questions2

When the author decides to disambiguate the object’s content, s/he clicks on the
button. Pending questions are then asked (Fig. 3 & Fig. 4).

Le capitaine a rapporté un vase de chine.

de Chine, le capitaine a rapporté un vase.

Le capitaine a rapporte (un vase de chine).

Fig. 3. Structural disambiguation question3

capitaine

Officier qui commande une compagnie d'infanterie, un

escadron de cavalerie, une batterie d'artillerie

Officier qui commande un navire de commerce

Chef d'une équipe sportive

Fig. 4. Word sense question4

Finally, the system produces the corresponding “exact” translation. For our exam-
ple sentence, we will get two different translations in German if we disambiguate

2 The captain brought back a vase (form/of) China.
3 “From China, the captain brought back a vase” vs. “The captain brought a Chinese vase”.
4 Sense-1: army captain; Sense-2: boat captain; Sense-3: sports team captain.

according to two different contexts: (1) “Der Hauptmann hat eine Vase aus China
mitgebracht. Die Vase ist englisch.“, and (2) “Der Kapitän hat eine chinesische Vase
mitgebracht. Sein Boot ist sehr verblaßt.“

2.2 SED Production in the DBMT Framework

Let us now explain how a SED can be produced. For this, some details about the
LIDIA lingware architecture are needed.

Fig. 5. DAE production workflow

Each sentence of the source text is analyzed to produce a source-mmc (multisolu-
tion, multilevel, concrete) structure. A representation of a text is “concrete” if the
corresponding text can be recovered from it by using a standard traversal algorithm
and simple morphological and graphematical generation rules. Familiar examples are
textbook constituent structures and dependency structures (with left-to-right traversal
of the leaves or infix traversal of all nodes). Otherwise, we say that the representation
is “abstract”. Note that the information contained in both kinds of structures (on labels
and other more or less complex annotations) may be of the same linguistic “depth”:
there may be “deep” concrete structures and “surface” abstract structures, in this
sense, although the opposite is of course more frequent.

This source-mmc structure is then used to produce a disambiguation question tree.
Once the author has answered the questions, the system gets the non-ambiguous
source-umc (unisolution, multilevel, concrete) structure chosen by the author.

This source-umc structure is abstracted into a source-uma (unisolution, multilevel,
abstract) structure. In an abstract structure, some lexical information can be “featur-
ized”, and order would be normalized. Abstract representations of utterances are far
superior to concrete representations as input and output structures of transfers in se-
mantic transfer MT or as “lexical-conceptual structures” [7] in interlingual MT, espe-
cially between distant languages. But their relation to the corresponding utterances is
not as clear, a natural consequence of abstraction.

A lexical and structural transfer component produces a target-gma (generating,
multilevel, abstract) structure. In gma structures, non-interlingual linguistic levels are
underspecified. If present, they are used only as reflections of corresponding surface
levels in the source language, and are recomputed in the first generation phase, called
“paraphrase choice”.

The paraphrase selection step produces a target-uma structure. This structure is
equivalent to the structure that would be obtained after analysis and disambiguation of
the target text to be produced. The translation process ends with the syntactic and
morphological generation phases.

In order to produce a SED, it suffices to keep the data structures used by the ID
phase, namely: the mmc structure, the question tree, and the disambiguating path in it.
Fig. 5 gives a functional diagram of the workflow we just described.

2.3 LIDIA-1 Distributed Software Architecture

In the LIDIA-1 architecture, the coordination server, the redaction server,
the communication server and the disambiguation server were AppleScript
applets. They communicated through AppleEvent messages to coordinate
their work. The coordination server scheduled the whole translation process
for each translation unit. The author’s workstation communicated with the
translation server under the SMTP protocol.

3 SED Production within LIDIA-2

LIDIA-2 is a new Java front end for DBMT services developed since 2002. LIDIA-2
produces XML documents, from which SEDS are produced.

3.1 LIDIA-2: New Software Architecture and Environment

The LIDIA-1 implementation was tightly linked with Macintosh operating system
before OS-X. The manipulated data were also very poor in terms of content (no mem-
ory of the intermediate processes is kept) and their representation (plain text files).

In LIDIA-2, all DBMT services are made available on Internet through a portable
interface written in Java. We use a distributed components architecture experimented
within the C-STAR [3] and NESPOLE! [8] projects of speech-to-speech translation.
The basic idea is to let all the components interact through a communication server
(ComSwitch), to which they are attached by a Telnet connection.

Fig. 6. LIDIA-2 architecture

LIDIA-2 appears as a text editor enhanced with DBMT functionalities. When the
author has customized his environment, s/he can create a new document or open an
existing one. The upper part of a document window displays its textual content, and
the lower part displays information about the documents status.

Fig. 7. Document window (after analysis step 1)

We use the ID module developed for English [2, 4]. Integration was immediate
within our new architecture.

After the author has requested the analysis (Fig. 7), the ambiguous sentences are
displayed in brown, and the unambiguous ones in green. In our example, only the first
sentence is unambiguous sentence. When the author double-clicks an ambiguous
sentence, the disambiguation questions tree prepared is traversed down.

For the sentence “I want the symposium on interpreting telecommunications at the
international conference center”, the root question (Fig. 8) is first asked. The Status
part shows that this is the first question, and that at most, one question can follow.
The author may Suspend or Reinitialize the session, or go back to the Previous ques-
tion. When s/he has answered a question, s/he proceed to the Next one. When every
question are answered, the author closes the session. At that point, for demonstration
purposes, the sentences may be translated in French using a translation database.

Fig. 8. Root question of the selected sentence

3.2 The LIDIA-2 Document

The XML document produced by LIDIA-2 is manipulated through the DOM API.
When the author opens a document, its syntax is checked with the SAX API. The
document contains a header, and its actual content. The header consists of a title and
information about the author. The content is a set of paragraphs made of sentences.

<phrase source="ENG" stamp="51054803544695">
 <original><![CDATA[I will show you where you are located right now.]]></original>
 <question>
 <reformulation choix="NON"><![CDATA[I will show you (where you are located right now).]]>
 <analyse><![CDATA[…]]></analyse>
 </reformulation>
 <reformulation choix="OUI"><![CDATA[right now, I will show you where you are located.]]>
 <analyse><![CDATA[…]]></analyse>
 </reformulation>
 </question>
 <traduction cible="FRA"><![CDATA[Je vais tout de suite vous montrer où vous êtes.]]></traduction>
</phrase>

Fig. 9. a LIDIA-2 document excerpt

Each sentence has a source language and a unique transaction identifier that allows
the environment to keep track of the ongoing treatments for each sentence. The origi-
nal content of the sentence, the answered question tree, and the produced translations
are also represented. As far as the question tree is concerned, it stores the answer path
through the different question items and the umc structure with its solution number
associated with each terminal question.

3.3 Producing and Visualizing a DAE

After disambiguation, a source SED can be filtered out from the LIDIA-2 document.
Sentences and answered disambiguation trees without the umc structures are kept.

As we want a SED to be a portable document, we developed a specialized viewer.
Ideally, such a viewer should present the document and highlight its ambiguous seg-
ments. The reader should then be able to select any ambiguous segment and get a
presentation of the author’s intended meaning.

Although our first viewer, developed in Java, is fairly simple and user interaction
with the document is still poor, it gives a concrete idea of what can be done.

In this first version, the ambiguous segments are not highlighted (see below): in
order to gather information about the different readings, the reader must double-click
on a sentence. S/he can then browse through the questions answered by the author of
the document. The rephrasings chosen by the author are then highlighted.

Fig. 10. Showing the author’s chosen rephrasings

3.4 Outcome and Short Term Perspectives

Our first short-term goal is to make the ARIANE-G5 HTL modules for LIDIA avail-
able through the same ComSwitch as the disambiguation module. That would add
new possibilities of experimentation. Going further on showing the ambiguities would
require several changes in the disambiguation module itself.

The first version of the LIDIA-2 XML document structure is fairly simple,
and all the information is not fully "XML-ized". For example, the mmc struc-

ture and the question tree use a Lisp-like representation requiring a specific
module, although a DOM-based module would be more efficient and portable.

The question tree is XML-ized within the LIDIA-2 interface. It would be better to
let the disambiguation module do it instead of producing a bracketed linear structure
from a tree object.

Ariane-G5 does not handle XML-like data structure yet. We may implement a fil-
ter going back and forth between XML and ARIANE-G5 data structures. Such a com-
ponent could be added transparently within the ComSwitch-based architecture.

4. Long Term Perspectives

The proposals we discuss now will impact on the HLT modules and/or the disam-
biguation module. They are thus long term goals.

4.1 Ambiguity Support and SED

4.1.1 Ambiguity as a Formal Object
In order to formalize the notion of ambiguity, let us take an example. Consider the
utterance: (1) Do you know where the international telephone serv-
ices are located?

The underlined fragment has an ambiguity of attachment, because it has two dif-
ferent “skeleton” [1] representations: [international telephone] services /
international [telephone services].

As a title, this sequence presents the same ambiguity. However, it is not enough to
consider it in isolation. Take for example: (2) The international telephone
services many countries. The ambiguity has disappeared!

It is indeed frequent that an ambiguity relative to a fragment appears, disappears
and reappears as one broadens its context in an utterance. For example, in (3) The
international telephone services many countries have established
are very reliable, the ambiguity has reappeared.

From the examples above, we see that, in order to define properly what an ambigu-
ity is, we must consider a fragment within an utterance, and clarify the idea that this
fragment is the smallest (within the utterance) where the ambiguity can be observed.

A fragment F presents an ambiguity A of multiplicity n (n≥2) in an utterance U if it
has n different proper representations which are all part of m (m≥n) proper representa-
tions of U.

F is an ambiguity support if it is minimal relative to that ambiguity. This means
that any strictly smaller fragment F’ of U will have strictly less than n associated sub-
representations (at least two of the representations of V are equal with respect to F’).

In example (1) above, then, the fragment “the international telephone services”,
together with the two skeleton representations “the [international telephone] services /
the international [telephone services]” is not minimal, because it and its two represen-
tations can be reduced to the subfragment “international telephone services” and its
two representations (which are minimal).

An ambiguity occurrence, or simply ambiguity, A of multiplicity n (n≥2) relative to a representa-
tion system R, may be formally defined as:

A = (U, F, <S1, S2, …, Sm>, <f1, f2, … , fn>), where m≥n and:
– U is a complete utterance, called the context of the ambiguity A.
– F is a fragment of U, usually, but not necessarily connex, called the support of the ambi-

guity A.
– S1, S2, …, Sm are proper representations of U in R, and f1, f2, … , fn are subparts of them

representing F.
– Minimality condition:
For any fragment F’ of U strictly contained in F, if f’1, f’2, … , f’n are respective parts of f1, f2,

… , fn corresponding to F’, then there is at least one pair f’i, f’j (i≠j) such that f’i=f’j.

The kind of the ambiguity A depends on the difference between the si. It is defined in the frame-
work of each R.

Fig. 11. Formal definition of ambiguity

4.1.2 Ambiguity Detection in the Current ID Process
The disambiguation methodology is based on the manipulation of tree structures. A
kind of ambiguity is described with a set of patterns called an ambiguity descriptor
(Fig. 12). A pattern contains variables and describes a tree structure with constraints
on its geometry and labelling. Once an ambiguity descriptor has been recognized, a
question is prepared.

Fig. 12. An ambiguity detection beam

A question item is associated with each pattern of the beam and is produced
through the manipulation, with a set of basic operators, of the values given to the
variables instantiated during the recognition of the beam. The method associated with
the left pattern in Fig. 12 produces the following string: Text(p2), Text(p0) Text(p1)
Text(p2). The method associated with the right pattern, produces the following string:
Text(p0) Text(p1) Bracket(Text(p2), Text(p3)).

4.1.3 Towards a Better ID Preparation Process
In the current version of the French and English ID modules, within an ambiguity
descriptor, the patterns are designed to capture the ambiguity support and some con-
text. This context is used to produce a better labelling of the dialogue items.

For a SED, it seems to be very important to have a precise localization of the am-
biguities that enable a precise highlighting of every ambiguity. It means that the ID
preparation process should be able to provide the ambiguity support. They are two
approaches to reach this goal.

In the first approach, the ambiguity descriptor patterns are not changed and the
ambiguity support is associated with each descriptor. The support can be described in
terms of the variables available in the patterns of the descriptor.

The second approach would change deeply the disambiguation preparation process.
The new idea here is to let the patterns describe an ambiguity using only the ambigu-
ity support. On the other hand, the rephrasing mechanism will have to pick up, in the
mmc structure, the parts of the input text that have to be used to produce the dialogue
items. It will also necessitate an embedded XML encoding of the ambiguity support
allowing the GUI to clearly mark them.

4.2 Incomplete Disambiguation and Meaning Certification Levels

In the context of real applications, many ambiguities will arise, concerning word
sense, attachment, argument structure, etc. Thus, there is a chance that for each sen-
tence the question tree will be quite big, and the writer will not be willing to answer
all questions, but only the most crucial ones.

Suppose that a sentence of length N has kN interpretations and that the ambiguity
descriptors are of average size b. (k/b).N questions in average would totally disam-
biguate the sentence. If, for example, (k/b)=1/2, there would be about 120 questions
for a page of 240 words. Although answering them all may take 10 minutes or less5 if
we allow 5 seconds for each answer, the author may want to spend less time on ID.

In order to satisfy that need, answering all the questions in a question tree has not
to be mandatory for the generation module to produce a translation. In other words,
given an mmc structure, some disambiguation answers and maybe some user prefer-
ences or profile, the HLT modules have to be able to make a choice (using heuristics)
and produce a unique translation, or to produce a factorized and linguistically “felici-
tous” representation for all remaining interpretations.

From the degree of completeness of the disambiguation of a sentence, and from the
cruciality of the remaining ambiguities, it is certainly possible to compute a “meaning
certification level” and associate it to the sentence. Meaning certification level can
then be computed for paragraph, sections, etc., up to the whole documents, and more
generally any part of it.

4.4 Target Language SED

In section 2.4, we have discussed why it would be very interesting to produce SEDs in
target languages. Reaching such a goal is very demanding as far as the HLT module
development is concerned because we need or each target language an “all path”
analyzer which is an inverse of the generator. We intend to cooperate with other
groups abroad to prototype that part.

5 This has to be compared with the usual figures given by professional translators: 1 hour for

each first draft translation, 20 minutes for the postedition in each target language.

5 Conclusion

The concept of SED appeared, and perhaps could only appear, in the con-
text of our research on DBMT. That explains why, although it clearly opens
many fascinating new possibilities in the use of numerical documents, no
other researchers seem to work (yet!) on that concept.

However, we consider our research to be directly quite related to the larger
and booming area of numerical documents and of the “semantic web” [11].
Starting from our first SED prototype, based on the new LIDIA-2 architec-
ture, and primitive SED viewer, we now plan to contribute to the subfield of
active documents [9] by building a more sophisticated GUI embedded in a la
Thot6-like.environment.

References

1. Black, E., Garside, R. and Leech, G.: Statistically-Driven Grammars of English: the
IBM/Lancaster Approach. Rodopi. Amsterdam (1993)

2. Blanchon, H. An Interactive Disambiguation Module for English Natural Language Utter-
ances. NLPRS'95. Seoul, Korea, vol. 2/2: 550-555 (1995)

3. Blanchon, H. and Boitet, C.: Speech Translation for French within the C-STAR II Consor-
tium and Future Perspectives. ICSLP 2000. Beijing, China, vol. 4/4: 412-417 (2000)

4. Blanchon, H. and Fais, L.: Asking Users About What They Mean: Two Experiments &
Results. HCI'97. San Francisco, California, vol. 2/2: pp. 609-912 (1997)

5. Boitet, C.: Dialogue-Based MT and self explaining documents as an alternative to MAHT
and MT of controlled language. Machine Translation Ten Years On. Cranfield, England
(1994)

6. Boitet, C. and Blanchon, H.: Multilingual Dialogue-Based MT for monolingual authors: the
LIDIA project and a first mockup. Machine Translation, vol. 9(2): 99-132 (1995)

7. Levin, L. and Nirenburg, S. (1994) The Correct Place of Lexical Semantics in Interlingua.
COLING-94. Kyoto, Japan, vol. 1/2: pp. 349-355 (1994)

8. Metze, F., Mc Donough, J., Soltau, H., Waibel, A., Lavie, A., Burger, S., Langley, C.,
Levin, L., Schultz, T., Pianesi, F., Cattoni, R., Lazzari, G., Mana, N., Pianta, E., Besacier,
L., Blanchon, H., Vaufreydaz, D. and Taddei, L.: The NESPOLE! Speech-to-Speech Trans-
lation System. HLT 2002. San Diego, California, USA (2002)

9. Quint, V. and Vatton, I.: Making structured documents active. Electronic Publishing Origi-
nation, Dissemination, and Design. vol. 7(2): pp. 55-74 (1994)

10. Vauquois, B. and Boitet, C.: Automated Translation at Grenoble University. Computational
Linguistics, vol. 11(1): 28-36 (1985)

11. W3C (2001) Semantic Web. http://www.w3.org/2001/sw/.

6 cf. http://opera.inrialpes.fr/Thot.en.html

