
An Interactive Disambiguation Module
for English Natural Language Utterances

Hervé Blanchon†‡, Kyung-Ho Loken-Kim†, Tsuyoshi Morimoto†

†ATR-ITL
2-2 Hikaridai

Seika-cho, Soraku-gun
Kyoto 619-02 Japan

{blanchon, kyungho, morimoto}@itl.atr.co.jp

‡GETA-CLIPS
150 rue de la Chimie

B.P. 53
38041 Grenoble Cedex 09 France

herve.blanchon@imag.fr

Abstract
An interactive disambiguation
methodology has been proposed and
implemented at the GETA lab. in the
framework of Dialogue-Based Machine
Translation. This methodology has been
generalized and re-engineered at ATR-ITL
in the framework of spoken language
transtlation and the MIDDIM project, a
joint research between ATR-ITL and the
GETA-CNRS aimed to study Multimodal
Interactive Disambiguation.

The disambiguation methodology is based
on the manipulation of tree structures. A
kind of ambiguity is described with a set
of patterns called a beam. A pattern
contains variables and descibes a tree
structure with constraints on its geometry
and labelling. Once a beam has been
recognized, a question is prepared. The
question items are produced through the
manipulation, with a set of basic operators,
of the values given to the variables
instanciated during the recognition of the
beam.

A particular disambiguation module is
described with a lingware which is
language and analyzer dependant. This
lingware is then used as input data to an
interactive disambiguation engine so as to
describe a particular instance of a running
disambiguation module. In this paper we
are going to describe the engine and the
lingware we have developed at ATR-ITL
for English input.

Keywords
Interactive disambiguation, pattern-
matching, beam-matching, ambiguity
resolution, disambiguation framework

Introduction
Natural language (spoken or written) is seen as an
attractive modality for interactive computer systems.
Recent applications using a natural language

interface include multi-modal drawing tools (Caelen
1994 ; Hiyoshi & Shimazu 1994 ; Nishimoto, et al.
1994), on-line information retrieval (Haddock 1992 ;
Zue, et al. 1993 ; Goddeau, et al. 1994), oral control
systems, and, finally, face to face translation
systems (Morimoto, et al. 1992 ; Kay, et al. 1994).

As natural language is highly ambiguous even in
restricted domains, interactive disambiguation is
seen as a necessity to achieve more robust and user-
friendly interactive systems, face to face translation,
systems and Dialogue-Based Machine Translation
systems (Boitet & Blanchon 1993). In those
contexts, an interactive disambiguation module is to
plan interactive sessions for the user to choose,
among the solutions produced by an analizer, the
one corresponding to the intended “meaning”.

To build such disambiguation modules, we have
defined a framework in which two disambiguation
modules have been produced, one for French, at the
GETA lab (France), in the context of the LIDIA
project (Blanchon 1994 ; Boitet & Blanchon 1995)
of dialogue-based machine translation, and one for
English, at ATR-ITL (Japan), in the context of
interpreting telecommunications (Blanchon &
Loken-Kim 1994).

In this paper we will concentrate on the English
disambiguation module. We will first give an
overview of the methodology involved. We will,
then, describe the disambiguation engine, which is
the language-independent part of a disambiguation
module. We will next describe the lingware which
make up the English disambiguation module. We
will finally give several examples of the produced
disambiguation dialogues.

1. Overview
1.1. Framework

In the framework we propose the analyzer is to
produce multiple analysis trees for every ambiguous
sentence. An analysis is called a “solution” (fig. 1).

When an ambiguity is recognized, a question is
prepared. A question is made of items among which
the user will have to choose. Those items are
constructed by rephrasing each solution. To rephrase

the solutions we do not use any complex generation
process but a collection of operators so as to ensure
that unambiguous items are proposed to the user1.

amb_phvb

sol=1 sol=2 sol=3

phvb phvb phvb

Figure 1: A multiple analysis made of 3 solutions

The most complex mechanism involved in the
recognition of an ambiguity is the matching of a set
made of several linked patterns (a beam) over the
produced solutions. The patterns are said to be
linked because they are sharing some variables that
should have the same value when the matching
process is over.

A disambiguation module is made of two parts,
an engine that is language-independent and a
lingware that is language and parser dependent. The
engine combines a pattern matching module, a beam
matching module, the set of basic operators, and a
question presentation module. The lingware is made
of beams, dialogue item production techniques and a
disambiguation scheduler in charge of defining the
order in which the beams are matched against the
analysis structure.

1.2. Ambiguity Classification
We have defined a set of three meta-classes of
ambiguities to be used and refined in each instance
of a particular disambiguation module. Thoses meta-
classes — lexical ambiguity, geometrical ambiguity,
labelling ambiguity — are defined as follows.

– There is a lexical ambiguity when the analizer
is unable to operate an unique segmentation
into words or terms ([right here] vs [right]
[here]), or unable to choose a word among
homophones (to vs too vs two), or unable to
choose a syntactic class among homographs
(conduct noun vs verb).

– There is a geometrical ambiguity when the
analyzer produces several solutions with
different geometries without a lexical
ambiguity.

– There is a labelling ambiguity when the
analyser produces serveral solutions with the
same geometry without a lexical ambiguity.

Here are some examples of the kind of ambiguities
solved with the English disambiguation module:

1 Indeed, it is impossible to ensure onself that the output

produced by a generation proces — producing a
textual output from a nore or less abstract
representation — is not ambiguous.

Lexical Ambiguity
Noun-Adjective

ex:This is an English speaking agent.
Noun-Verb

ex:You can travel by subway, or taxi.
Phrasal-Verb

ex: It is difficult to get out of Kyoto station.
Geometrical Ambiguity

Prepositional Attachment
ex:Where can I catch a taxi from Kyoto station?

Adverbial Attachment
ex:You can pay for it right on the bus.

Conjunction
ex:Can I ask you to type in your name and the

telephone number?

Labelling Ambiguity
ex: I want a reservation for the hotel.

1.3. Implementation
The current implementation is realized in Common
Lisp Object System (CLOS) in the Macintosh
Common Lisp environment. The only platform-
specific module is the dialogue presentation module.
Thus, most of the code is portable to any CLOS
implemenation.

2. The engine
The disambiguation engine, which is language
independent and is to be reused by each
disambiguation module, consists of: a pattern
matching mechanism (2.1.), a beam matching
mechanism (2.2.), a presentation module (2.3.), and,
a set of basic operators (2.4.).

2.1. The pattern matching
mechanism

The patterns are described with a language derived
from the one proposed in (Norvig 1992). A pattern
(fig. 2) describes a family of trees, with constraints
on their geometry and labelling.

?p1

?x:CS=PHVB

?y:FS=OBJ

?z:FS:ATG

?p0 ?p2 ?p0 ?p1 ?p2

?x:CS=PHVB

?y:FS=OBJ ?z:FS:ATG

Figure 2: 2 patterns forming a beam

A pattern contains two kinds of variable: node
variables (?x, ?y, ?z) describing constrains on nodes
(CS=PHVB), and forest variables that can be sets of
trees (?p0, ?p1, ?p2).

The pattern matching mechanism is also inspired
by (Norvig 1992)’s proposal.

The result of the pattern matching mechanism is
a list whose first element is t if matched, nil if not,
and whose second element is a binding list
containing the value of each variable in the pattern.

2.2. The beam matching mechanism
A family of ambiguities can be defined with several
sets of patterns also called beams (fig. 2 & 9).

A sentence S, with s solutions Soli, contains
the ambiguity described by the beam B made of b
patterns Pj if and only if:

– the number of solutions (s) is strictly greater
than the number of pattern (b),

– for each solution Soli there is an unique
pattern Pj that match that solution,

– each pattern Pj match at least one solution
Soli,

– the distance d between the bindings of each
forest variables is null .

The distance between two bindings is null if and
only if the coverage of each forest variable, except
the last one, is the same in each binding. For the last
variable of the patterns, if the coverage is not the
same, one coverage has to be a prefix of the other.

The coverage of a variable is the projection of
the leaves of the subtree this variable represents.

In practice, the beam matching is realised by the
method match-beam (fig. 3).

The inputs for this method are a pattern-beam
and a numbered-solutions set . A numbered-
solutions set is a list of couples: ((number
solutions)+). The disambiguation allows the user to
select the number of the solution he meant.

(t

 Amb-T3

 ((P1 P1-match (1 3))
 (P2 P2-match (2))
)

 (((1 S1) (3 S3))
 ((2 S2))
)
)

Beam: Amb-T3
(P1, P2)

Numbered-Solutions Set (NSS):
 ((1 S1) (2 S2) (3 S3))

match-beam

Data forDialog

new NSSs

Figure 3: match-beam input and output

The output is a list of four data:
– t or nil, if the beam has matched of not. In the

latter case the other data are irrelevant,

– the name of the matched beam,

– a list of triplets which will enable the engine to
construct the dialogue items (cf. fig. 9) to be
used to solve the ambiguity,

– a list of new numbered-solutions sets in which,
if necessary, other ambiguity will be searched
to produce other disambiguation questions (cf.
fig. 5).

2.3. The presentation module
For a given disambiguation module, the
disambiguation automaton produces a question tree.

A disambiguation question is made of:
– a question-language: language used (here

English),

– a question-type: ambiguity to be solved,

– a question-modality: modality(ies) to be used to
present the question to the user,

– an ambiguous-item: utterance to be
disambiguated,

– a question-items-list: dialogue items to be
proposed to the user.

The question tree is covered until no more
question is to be asked. A method, ask-question —
specialized on the question-language, the question-
type, and the question-modality —, proposes the
question to the user.

2.4. The operators
The operators are used to describe the construction
dialogue items. They allow to perform several
operations on the binding of the variables. Three
families of operators are defined:

1) the operators of the first family describe some
manipulations of subtree structures, basically
the selection or the suppression of some part of
the trees; for example:

Text produces the text of the subtree given
as parameter.

Coord produces the coordinating occurrence
of the subtree given as parameter.

2) the operators of the second family describe the
replacement of a occurence by an other; as:

Substitute replaces
an ambiguous preposition with a non-
ambiguous one according to several properties.

3) the operators of the third family describe some
more complex operations of distribution and
bracketing of subtrees.

3. The lingware
The lingware is used to describe a particular
instance of a disambiguation module for a given
language and a given analyzer. The lingware
consists of patterns and beams (3.1.), a
disambiguation automaton (3.2.), dialogue item
production methods (3.3.), and dialogue classes
(3.4.).

3.1. The patterns & beams
A pattern is made of a pattern-name (the name of
the pattern), a pattern-value (the definition of the
pattern) and a pattern-method (the method to be
applied to the binding in order to produce a dialogue
item).

A beam is made of a beam-name (the name of
the beam), and a beam-value which is a list of
patterns composing the beam. The order in which
the patterns appear in the list determines the order of

the question’s items; for a recognized beam, patterni
gives rise to the production of itemi of the dialogue.

Beams describing the same kind of ambiguity are
then grouped into a beam-stack. A beam-stack is
associated with each one of the relevant ambiguity
recognition states of the disambiguation automaton.
When trying to recognize a class of ambiguity, each
beam is matched one after another until a beam has
been matched or until every beam has been tried
without success.

3.2. The disambiguation automaton
The disambiguation automaton is made of three
kinds of states: an automaton-scheduler, meta-class
recognition states, and ambiguity-class recognition
states.

The automaton-sheduler (fig. 4) is the entry
point of the disambiguation scheduler of every
disambiguation module. It is defined as a method
with one parameter specialized on the_language .

The ambiguity class recognition states (fig. 4)
are described by methods sharing a common
skeleton:

– when an ambiguity is recognized, two kinds of
data are produced: data to produce the dialogue
aimed to solve the regognized ambiguity and,
if necessary, new numbered-solution sets (new
NSSs) used to produce the following questions
if any ambiguity is still remaining.

– when an ambiguity is not recognized, the next
ambiguity class recognition state is triggered.

numbered-solutions set
 (NSS)

prepare-question-tree

question tree

data for dialog
new NSSs

new NSSs
Automaton Scheduler

Amb. X
Recog. State

Amb. X recognized

Amb. X
not recognized

Error

new NSSs

no new NSSs

Amb. X+1
Recog. State

Figure 4: Preparation of a question tree

With the current method prepare-question-tree ,
the question tree is iteratively constructed and a
question tree is prepared as shown fig. 5.

Beam 1

Pattern 1.2

Pattern 1.1

Beam 5

Beam 8Quest. 1

Question 2.2

Question 2.1

S1

S
2

S
4

S
3

S5

S
1

S2

S
4

S3

S5

Figure 5: A question tree to discriminate 5 solutions

With the current strategy all the questions are
first prepared before the first one is answered. An
other strategy would prepare a question only when
necessary. This would be made thanks to a
specialisation of the method prepare-question-tree
on a parameter called strategy (all-at-first, one-by-
one).

3.3. The dialogue item production
methods

The dialogue item production methods are described
with the method item-production-method (fig. 6 &
7) specialized on its pattern-name argument.

Each method produces a string of characters
which is an arrangement or a manipulation, with the
operators defined in § 2.4, of the binding of some of
the variables defined in the pattern the method is
associated with.

The method associated with the left pattern in
figure 2) produces the following string:

text(?p0) (text(?p1) text(?p2))
(defmethod item-production-method

((pattern-name (eql '*phvbprepatt-t1-1*)) binding)
(format nil " ~A (~A ~A). "

(apply #'text (cdr (assoc '?p0 binding)))
(apply #'text (cdr (assoc '?p1 binding)))
(apply #'text (cdr (assoc '?p2 binding)))))

Figure 6: The method item-production-method

The method associated with the right pattern in
figure 2 produces the following string:

text(?p2), text(?p0) text(?p1)

(defmethod item-production-method
((pattern-name (eql '*phvbprepatt-t1-2*)) binding)

(format nil " ~A, ~A ~A. "
(apply #'text (cdr (assoc '?p2 binding)))
(apply #'text (cdr (assoc '?p0 binding)))
(apply #'text (cdr (assoc '?p1 binding)))))

Figure 7: The method item-production-method

3.4. The dialogue classes
Generic dialogue classes are specialized with new
dialogue classes according to the disambiguated
language. This concerns, the fonts, styles and the
meta-language used to ask a question. The following
figure shows what has been done for English.

Figure 8: Some dialogues’ slots

4. Some examples
In this last section, we will present some examples
of the produced dialogues.

4.1. Syntactic class ambiguity
In the sentence “This is an English speaking agent.”
there is ambiguity for the syntactic class of the word
“English” which can interpreted as a noun (an agent
who speaks English), or as an adjective (an agent
who is English).

This ambiguity is described as follows.

X:GP+GNX:GP+GN

Y:ATG

p0 p1 p2 p3 p4p0 p1 p2 p3 p4

Figure 9: A beam describing an zmbiguity of
syntactic class

The produced dialogue is shown below.

Figure 10: The resolution of a syntactic class

4.2. Prepositional attachment
involving the verb

In the sentence “Where can I catch a taxi from
Kyoto station?”, there is an ambiguity called phvb-
prep-att (prepositional attachment involving the
verb).

The ambiguity is detected by the beam shown
fig. 2. With the following binding:

– ?p0 = “where can I catch”

– ?p1 = “a taxi”

– ?p2 = “from Kyoto station”

The dialogue produced is shown below.

Figure 11: The resolution of a prepositional
attachment ambiguity

The first dialogue item is produced with the
method described in figure 6, and the second item
with the method described in figure 7.

4.3. Labelling ambiguity
This kind of ambiguity is not recognized through the
use of a beam matching mechanism, but rather by
the recognition of property over lists.

For the following sentence, “I want a reservation
for the hotel.” The preposition “for” is ambiguous, it
can be replaced by “on behalf of” (I is making the
reservation on behalf of the hotel) or by “at” (I is
making a reservation for someone to sleep at the
hotel).

Figure 12: The resolution of a labelling ambiguity

Conclusion
The methodology we described has in our opinion
two main advantages: it can be customized and it
can be improved incrementally. The ability to
customize comes from the clear separation of the
linguistic data from the kernel. In this framework, a
number of different disambiguation modules can be
produced for different languages and kinds of input.
The description of the linguistic data can be
improved incrementally as the design and the use of
a disambiguation module progress.

The coverage of the first version of an interactive
disambiguation module described here is currently
being evaluated. For this evaluation we are
constructing a new corpus from the data collected in
the latest experiments conducted in the EMMI
framework of interpreting multimedia /multimodal
and telephone communications, (Park & Loken-Kim
1994) and (Park, et al. 1995).

Most of the ambiguities we have found in the
evaluation and improvement corpus are already
covered by the current module. The most important
difference lies in the fact that there are a greater
number of ambiguities of coordination. After we
evaluate the first version of the disambiguation
module by testing its coverage on the new data, we
will improve the module by extending it to include
the ambiguities it was not able to handle in the test
data. Certainly, we will not be able to claim that the
improved module will cover all the ambiguities
found in spontaneous English, but it will have broad
coverage for application to these particular domains.

Similarly, if new ambiguities are located in future
data, the module can be incrementally improved to
cope with the new ambiguities.

We are also currently investigating in two
directions:

– The fisrt direction is the use of weights to let
the module learn from the history of the
dialogue. If one particular interpretation of an
often recurring ambiguity is always chosen, the
module will more heavily weight that
interpretation, either automatically, or after
querying the user. The module will then be
tunable.

– The second direction is the automatic
construction of new patterns. When an
ambiguity is not recognized by the module, it
should prepare the patterns to be used to
recognize it. The module will the learn to
recognize next ambiguities. Of course, the
dialogue items production methods to be
associated with the new pattern will have to be
prepared by hand.

In future work, we intend to integrate the
disambiguation module into the EMMI context to
investigate its usability in a multimedia
environment. There is also a need to design
experiments with naive users to determine the
optimal design of disambiguation dialogues and
interactive sessions. Finally, we hope to use these
results and continue to improve then back in the
framework of DBMT and perhaps face to face
translation in France at the GETA-CLIPS lab.

Acknowledgement
I would like to express my sincere gratitude to Dr.
Yamazaki and ATR-ITL for having supported this
work, Tsuyoshi Morimoto and Kyung-Ho Loken-
Kim for their strong challenges to my proposals, and
Laurel Fais for her kind cooperation and smart
proposals. I would not forget Prof. Boitet and the
GETA lab. for their constant support.

References
Blanchon H. (1994). Perspectives of DBMT for
monolingual authors on the basis of LIDIA-1, an
implemented mock-up. Proc. Coling-94. Kyoto,
Japan. August 5-9, 1994, vol. 1/2 : pp. 115-119.

Blanchon H. & Loken-Kim K. H. (1994). Towards
More Robust, Fault-Tolerant and User-Friendly
Software Integrating Natural Language Processing
Components. in Bulletin of the Information
Processing Society of Japan (94-SLP-4). vol.
94(109) : pp. 17-24.

Boitet C. & Blanchon H. (1993). Dialogue-based
MT for monolingual authors and the LIDIA project.
Proc. NLPRS’93. Fukuoka, Japon. December 6-7,
1993, vol. 1/1 : pp. 208-222.

Boitet C. & Blanchon H. (1995). Multilingual
Dialogue-Based MT for monolingual authors: the
LIDIA project and a first mockup. in Machine
Translation. vol. 9(2) : pp. 99-132.

Caelen J. (1994). Multimodal Human-Computer
Interaction. in Fundamentals of Speech Synthesis
and Speech Recognition. Keller, E. (ed.). John
Wiley & Sons. New York. pp. 339-373.

Goddeau D., Brill E., Glass J., Pao C., Philips M.,
Polifroni J., Seneff S. & Zue V. (1994). GALAXY:
a Human-Language Interface to On-Line Travel
Information. Proc. ICSLP 94. Yokohama, Japan.
September 18-22, 1994, vol. 2/4 : pp. 707-710.

Haddock N. J. (1992). Multimodal Database
Query. Proc. Coling-92. Nantes, France. 23-28
juillet 1992, vol. 4/4 : pp. 1274-1278.

Hiyoshi M. & Shimazu H. (1994). Drawing
Pictures with Natural Language and Direct
Manipulation. Proc. Coling-94. Kyoto, Japan.
August 5-9, 1994, vol. 2/2 : pp. 722-726.

Kay M., Gawron J. M. & Norvig P. (1994).
Verbmobil: A Translation System for Face-to-Face
Dialog. CSLI lecture note no 33. Center for the
Study of Language and Information, Stanford, CA.
235 p.

Morimoto T., Suzuki M., Takezawa T., Kikui G.,
Nagata M. & Tomokio M. (1992). A Spoken
Language Translation System: SL-TRANS2. Proc.
Coling-92. Nantes, France. 23-28 juillet 1992, vol.
3/4 : pp. 1048-1052.

Nishimoto T., Shida N., Kobayashi T. & Shirai K.
(1994). Multimodal Drawing Tool Using Speech,
Mouse and Key-Board. Proc. ICSLP 94. Yokohama,
Japan. September 18-22, 1994, vol. 3/4 : pp. 1287-
1290.

Norvig P. (1992). Paradigms of Artificial
Intelligence Programming: Case Studies in Common
Lisp. Morgan Kaufmann Publishers. San Mateo,
California. 945 p.

Park Y.-D. & Loken-Kim K.-H. (1994). Text
Database of Telephone and Multimedia Multimodal
Interpretation Experiment. Rap. ATR-ITL.
Technical Report. n° TR-IT-86. Dec., 1994. 161 p.

Park Y.-D., Loken-Kim K.-H., Mizunashi S. &
Fais L. (1995). Transcription of the Collected
Dialogue in a Telephone and
Multimedia/Multimodal WOZ Experiment. Rap.
ATR-ITL. Technical Report. n° TR-IT-90. Feb.,
1995. 123 p.

Zue V., Seneff S., Polifroni J. & Phillips M.
(1993). PEGASUS: a Spoken Dialogue Interface for
On-Line Air Travel Planing. Proc. ISSD-93 — New
Directions in Human and Man-Machine
Communication. International Conference Center,
Waseda University, Tokyo, Japan. November 10-12,
1993, vol. 1/1 : pp. 157-160.

