
A Solution for in Context and Collaborative Localization
of most Commercial and Free Software

Amel FRAISSE 1, 2, Christian BOITET1,
Hervé BLANCHON1, Valérie BELLYNCK1

(1)GETALP, LIG
Joseph Fourier University,
385 rue de la Bibliothèque,

38041 Grenoble cedex 9, France
{Amel.Zairi, Christian.Boitet, Herve.Blanchon}@imag.fr

(2)Entreprise WINSOFT
24 rue Louis Gagnière

38950 Saint Martin Le Vinoux, France
afraisse@winsoft.fr

Abstract
We propose a novel approach that allows in context localization of most commercial and open source software. Currently, the
translation of textual resources of software (technical documents, online help, strings of the user interface, etc.) is entrusted only to
professional translators. This makes the localization process long, expensive and of poor quality because professional translators have
no knowledge about the context of use of the software. This current workflow seems impossible to apply for most under-resourced
languages for reasons of cost, and quite often scarcity or even lack of professional translators. Our proposal aims at involving end
users in the localization process in an efficient and dynamic way: while using an application (in context), users knowing English could
right-clicks on strings of the user interface to translate or improve translations proposed by machine translation (MT) or translation
memory (TM) systems. To implement this new paradigm, we modify the code as little as possible, very locally and in the same way
for all software. Hence our localization method is internal. We have experimented our approach on Notepad++, an open source
software. This has allowed us to localize, in context, 95% of the strings of the user interface. The rest are strings that are hard coded in
the source code.

Keywords: Software localization, in context localization, internal localization

1. Introduction
Currently, the translation of technical documents as well
as strings of the user interfaces is entrusted only to
professional translators. In practice, software editors
send original versions of documents to several
professional translators. Each translator translates and
sends the translated versions to the editors. But, it seems
impossible to continue in this way for most "new
languages", for reasons of cost, and quite often scarcity or
even lack of professional translators (costs increase while
quality and market size decrease).
On the other hand, free software like Mozilla (Mozilla,
2005) is translated by volunteer co-developers in many
languages (70), more than commercial software. The
software localization is based on the contribution of
volunteers (Vo-Trung, 2004), (Tong, 1987), (Lafourcade,
1991, 1996). Another situation (different from the
translation of technical documentation) is that of
occasional volunteer translators, who contribute without
an organic connection with the project (Linux, 2005).
Hence, it is possible to obtain high quality translations of
documents over a hundred pages long (such articles of the
Wikipedia encyclopedia, texts of Amnesty International
and Pax Humana). Another problem of the classical
process of translation is that strings of the interface are
translated out of their context. In fact, the relationships
of proximity of text fragments in time and space are
inaccessible to the translator, while the context in which a

text is read contains much information to which the text
refers. Hence, the choice of the appropriate translation is
not always possible out of context, and even a
professional translator cannot produce a perfect
translation. This is one of the major problems identified
at the L4Trans-III workshop of LREC-06 by the person
responsible (Kudo-san) of the localization of CATIA at
IBM-Japan.
As proposed in (Boitet, 2001), one solution to this
problem is to involve the end users knowing English and
who, during the use of software products, translate or
improve some translations proposed by machine
translation systems (TA) or translation memory (MT)
systems.

2. Current localization process

2.1. Description
The software localization process includes the
localization of (1) user interfaces (dialog boxes, menus,
buttons, error messages, commands…), (2) technical
documentation provided with the software (installation
guides, instruction manuals, training guides…) and (3)
online help. In this article, we are interested only in the
localization of the user interfaces.
To facilitate software localization, and sometimes also for
reasons of confidentiality, most developers of commercial
and free software separate strings of the user interfaces
or/and the user interface code from the source code of the

mailto:Herve.Blanchon%7D@imag.fr
mailto:afraisse@winsoft.fr

application. In fact, most developers use resource scripts
to create user interfaces. The most known and used
resource script is the RC resource script. An example of
RC resource script is given in Fig. 1 which describes the
user interface of Fig. 2.

Fig. 1: Resource file of an American commercial software

Hence, to localize software interfaces, we have to localize
the resource file(s) of the software. The current
localization process consists of five main stages:
Extraction and analysis of user interface strings:
localizers extract all user interface strings from the
resource files and store them in an Excel file called
glossary. To extract user interface strings from resource
files, localizers can use automatic extraction tools such as
RCWINTRANS, POWERGLOT, etc. In order to reduce
translation costs, localizers use translation memories such
as TRADOS to analyze the contents of the glossaries.
This allows them to find strings that have already been
translated (strings with 100% match) in earlier versions
of the software, and compute the matching rate of the
rest. Indeed, the cost of translation depends on the
matching rate: for example, it is cheaper to translate
segments with a 90% matching rate then segments with
10%.
Translation: once analyzed, localizers send the glossary
to professional translators. Some localization services
give to translators the terminology database of the
software in order to ensure consistency of translation
between different versions of the same software.
Revision: localizers send the translated glossary to
reviewers to review and check translations done by
translators. Generally, reviewers have a better knowledge
of the context of use of the software, so that they are able
to correct translations that seem wrong.
Compilation: once all strings are translated, localizers re-
inject them in the resource files and compile the software
to generate a β-version that will be tested before being
published.
Test: there are two types of test:
 Internal test: performed by localizers, it consists in
verifying the proper functioning of the software.
 External test: it is provided by LQA companies
(Linguistic Quality Assurance) or β-testers that are
simply users who volunteer to test the product. They are
not paid by the editors, but are often given a free product
license.

Any anomaly detected by the β-testers is reported to the
publisher. Editors generally have an online platform that
allows testers to capture the following information:

o Name of the tester who detected the bug
o Date
o Nature of the bug (display problem,

inconsistency of translations for MacOS and
Windows…).

o How to find the interface that contains the bug
(screenshot, instructions…).

Fig. 2: “Print” dialog box created by

the script resource file of Fig. 1.

2.2. Problems of the current localization process
It is out of context: professional translators and reviewers
have no knowledge about the context of use of the
software.
It is not incremental: the software is published when it is
totally localized.
It causes long delays between updates: all modifications
are done by release. Hence, once the software is
published, translations cannot be modified.
It does not involve a variety of contributors: currently,
the different contributors on the localization process are
professional translators, reviewers and testers.
End users are totally excluded from the localization
process, although they have the capacity to participate
effectively, since they have a better knowledge of the
context of use of the software.

3. New paradigm of internal and
in context localization

We propose a new paradigm that will permit the end
users to take part in the localization process in an
efficient and dynamic way: while using the software, the
end users who know English can translate or improve the
already existing translations. However, the editor may
ask professional translators and reviewers to translate the
crucial parts of the software.

Fig. 3: Sequence diagram describing the in context localization
process

The distinct characteristics of the new localization
paradigm (Fig. 3) are as follows.
Contextual mode: the translation of the strings of the
user interfaces is done from the application. This allows
a better translation quality and that is mandatory to get
end users to contribute.
Multiple participants: As well as the professional
translators, reviewers and β-testers, the end users may
also participate in the localization process.
Quick update: for each new translation proposed by the
user, the interface is updated in real time. The
synchronization with other contributors is made when the
periodic updates of the application are complete.
Incrementality: the new process permits the incremental
augmentation of both quality and quantity. The software
editor can publish a partially localized version that will
progressively improve with the contributions of the end
users.
Minimal intervention on the code: in order to put the
new paradigm in place, we need to modify the source
code of the software. Hence, our process is one of
internal localization. To be as generic as possible and to
modify the software source code as little as possible, our
modifications are made uniquely on the basic classes that
produce interfaces. These modifications consist to add to
strings of the user interfaces behavior adapted to the in
context translation: by a simple right-click on a string of
the interface, we can choose from a list of possible
translations and we can also add our own. The end user
can also translate any string of the interface, which is then
updated in real time.

4. In context localization of applications

4.1. Illustration of the new scenario on
Notepad++

We have conducted a complete experiment with
Notepad++ (free software programmed in C++). It is a
code of reasonable size (60000 sources lines) compared
to other software such as FileMaker and Photoshop that
we have studied previously. This allowed us to try his
internal localization ourselves, without relying on
external collaborators.

Take the example of the dialog box ‘ColumnEditor ‘of
Notepad++:

o The user right-clicks on the string "Text to
insert", which allows him to edit the string.

o She/he enters his new translation, or chooses one
of the proposed translations.

o She/he clicks on the “Localize” button.
o The interface is updated in real time.

Our approach does not handle messages with variables
(Boitet, 2005), but that is part of our planned evolutions.

Fig. 4: In context localization of the
‘ColumnEditor’ dialog box

4.2. Internal localization of Notepad++
As mentioned above, to enable the in context localization
of applications, we need to perform an internal
intervention on the source code. To be as generic as
possible and modify the source code as little as possible,
our modifications are done only on the base classes that
generate all GUI of the application.

4.2.1. Architecture
In the case of Notepad++, there are two main generic
classes that produce all user interfaces of the application:
‘StaticDialog’ and ‘StaticMenu’. Thus, we integrated our
module in these two generic classes.

In Context
localization

module

Generic classes of IHM
Lib interfaces

Specific classes of IHM

win32 SwingStatic_Dialog

Static_Menu

Fig. 5: Integration of the “in context localization
 module” on the Notepad++ architecture

4.2.2. Exchange Format
XLIFF is the XML Localization Interchange File Format
designed by a group of software providers, localization
service providers, and localization tools providers. It has
been created to standardize localization. XLIFF itself has
been standardized by OASIS in 2002 (OASIS, 2002).
This format can be applied to documents that can have
complex structure (in fact, documents with any DTD),
and is perfect for simple cases of textual elements of the
programs (strings of the user interfaces), and other
documents accompanying software. Hence, we use the
XLIFF format as exchange format to communicate with
the application. In fact, all new translations proposed by
users are stored in the XLIFF file. Hence, when a user

clicks on the “Localize” button, the application loads the
new translation from the XLIFF file and updates the
interface. At runtime, before displaying any interface
element, the program checks whether there is a new
translation in the XLIFF file.

Fig. 6: Structure of the XLIFF file

4.3. Interactions
The application interacts with our in context localization
module during the edition of the user interface strings by
end users and during the update of the user interfaces.

4.3.1. Edition of user interface strings
When the end user right-clicks on a string of the
interface, the application retrieves and sends the string
identifier to the in context localization module.
This displays the in context localization dialog box
containing by default the source string and the different
propositions of translations available in the XLIFF file.
Once editing is finished, the XLIFF file is updated and
the application is notified to update the user interface.

4.3.2. Update of the user interface
The graphical libraries that are widely used with Java are:
Swing, AWT and SWT. With C++, it is Win32
(Microsoft, 2008) (on Windows).
The operating principle of these libraries (Java, 2008),
(Sun, 2000), (Microsoft, 2008) is the same: each interface
is represented in memory by a data structure. At runtime,
the application loads all interfaces and especially strings
of the interface from these data structures. Thus,
updating the user interface causes updating of the
corresponding data structure. Once editing is complete,
the in context localization module updates the XLIFF file
and requests the application to refresh the user interface
containing the edited string. Then, the application
replaces in the data structure the value of the string by the
new translation proposed by the user.

5. Collaborative localization

5.1. Triangular localization
The establishment of such a localization process requires
the intervention of 3 entities: the software editor, the
collaborative online platform (Eneko, 2000), (Kageura,
2007), (Bey, 2006, 2008) and the end user.

The software editor manages the global quality of the
localization of the software. He can check and validate
all strings of the software. He can also promote a new
localized (complete or not) version of the software for the
end user without having to wait for the next release.
The collaborative platform manages the registration of
the various end users. It collects their submissions and
stores all the information concerning users, submitted
translations and software editor validations.
The end user directly localizes, in context, the software
he is currently using.

Fig. 7: “In context localization” dialog box

connected to collaborative platform

5.2. Interactions between the entities
The software editor validates the submitted translations
directly on the collaborative platform. He is assisted by
the comments of the users, their profiles, and their scores.
The promotion of a totally or partially localized version is
also realized directly on the collaborative platform.
The end user submits the localized strings to the
collaborative platform. S/he can see all the contributions
stored in the collaborative workspace, and can get access
to translation memories and specialized dictionaries.
S/he can also get a specified validated string, or get a
localized version promoted by the software editor.

5.3. In Context and Collaborative
Localization of Notepad++

We have used an online collaborative platform developed
by Huynh Cong P. of our team.
As shown in Fig. 7, the user can submit a new translation,
get the contribution of other end users, and directly
access the collaborative platform.

6. Conclusion
We have proposed a novel approach that allows in
context localization of most commercial and open source
software. The current translation workflow, based on the
exclusive recourse to professional translators and
synchronized delivery of all localized versions at the
same time, seems impossible to apply for most under-
resourced languages for reasons of cost, and quite often
scarcity or even lack of professional translators.
In our in context approach, end users are involved in the
localization process in an efficient and dynamic way:
while using an application (in context), users knowing the
current language of the GUI can right-click on strings of

the GUI to translate or improve translations proposed by
machine translation (MT) or translation memory (TM)
systems.
As we have to modify the source code to change the
behavior of the GUI, our localization method is internal.
However, our changes are minimal, very local, and can
be done in the same way for all software.
We have experimented our approach on Notepad++, an
open source software. The first author has been able to
localize, in context, 95% of the strings of the user
interface. In the near future, we plan to set up an
experiment involving the same software, but one or more
other target languages, with a group of volunteers for
each, to evaluate the gains in terms of delay and quality,
and get feedback. Another perspective is to adapt our
technique to applications written in Java and using the:
Swing, AWT or SWT libraries.

Acknowledgments
This work has been mainly funded by a CIFRE ANRT
scholarship. Thanks also to WinSoft for allowing us to
go deep into the current practice of professional
localization.

References
Boitet, C. (2001). Four technical and organizational keys

for handling more languages and improving quality
(on demand). Proc. MTS2001, IAMT 8 p., Santiago
de Compostela, September 2001.

Boitet, C. (2005). Message Automata for Messages with
Variants, and Methods for their Translation. Proc.
CICLING-05, LNCS 3406, pp. 352—371, Mexico.

Eneko, E. (2000). A Methodology for building
Translator-oriented Dictionary Systems. Machine
Translation 15, pp. 295

Vo-Trung, H. (2004). Méthodes et outils pour
utilisateurs, développeurs et traducteurs de logiciels
en contexte multilingue, thèse d’informatique, Institut
National Polytechnique de Grenoble.

Kageura, K. and Abekawa, T. (2007). QRedit: An
Integrated Editor System to Support Online Volunteer
Translators. Digital Humanities, pp. 3-5.

Tong, L.C. (1987). The Engineering of a translator
workstation, Computers and Translation, pp. 263-273.

Lafourcade, M. (1991). ODILE-2, un outil pour
traducteurs occasionnels sur Macintosh. Presses de
l’université de Québec, Université de Montréal,
AUPELF-UREF ed. pp. 95-108.

Lafourcade, M. and Sérasset, G. (1996). Apple
Technology Integration. A Web dictionary server as a
practical example. Mac Tech magazine, 12/7, pp. 25.

Bey, Y., Boitet, C. and Kageura, K. (2006). The
TRANSBey Prototype: An Online Collaborative Wiki-
Based CAT Environment for Volunteer Translators.
LREC 2006-Fifth International Conference on
Language Resources and Evaluation. Genoa, June
2006.

Bey, Y., Kageura, K. and Boitet, C. (2008). BEYTrans: A
Wiki-based Environment for Helping Online
Volunteer Translators. In Topics in Language
Resources for Translation and Localisation, Yuste
Rodrigo, 135–150.

Bey, Y., Kageura, K. and Boitet, C. (2006). Data
Management in QRLex, an Online Aid System for
Volunteer Translators. International Journal of
Computational Linguistics and Chinese Language
Processing, 11/4, pp. 349-376

Web references
Java™ Platform, Standard Edition 6 API Specification

retrieved from: http://java.sun.com/javase/6/docs/api.
Access date: 2008.

Linux documentation translation. Traduc project retrieved
from: http://traduc.org/. Access date: 2005

Mozilla project & Mozilla French Localization project
retrieved from: http://frenchmozilla.online.fr/. Access
date: 2005.

Sun Microsystems Inc. Building International
Applications, documentation Sun. retrieved from:
http://docs.sun.com/db/doc/806-6663-01. Access date:
2000.

Win32 and COM Development retrieved from:
http://msdn.microsoft.com/en-us/library. Access date:
2008.

XLIFF 1.2 Specification retrieved from: http://docs.oasis-
open.org/xliff/xliff-core/xliff-core.html Access date:
2009

http://frenchmozilla.online.fr/
http://docs.sun.com/db/doc/806-6663-01
http://msdn.microsoft.com/en-us/library.%20%20Access%20date:%202008
http://msdn.microsoft.com/en-us/library.%20%20Access%20date:%202008
http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html
http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html

