M1 WIC - M2 DCISS — PMO-TALN

Det \rightarrow that | this | a | the

TD — Analyse syntaxique

Hervé Blanchon

Grammaire ATIS très simplifiée

On considère la grammaire hors contexte suivante dont S est l'axiome (le symbole de départ) :

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$ Noun $\rightarrow book \mid flight \mid meal \mid man$

 $S \rightarrow VP$ Verb \rightarrow book | include | read

 $NP \rightarrow Det NOM$ Aux $\rightarrow does$

NOM → Noun

NOM → Noun NOM

 $VP \rightarrow Verb$

VP → Verb NP

1.1 Analyse top-down

Écrire le(s) arbre(s) d'analyse top-down des énoncés suivants :

- a. the man read this book
- b. book that flight

1.2 Analyse bottom-up

Écrire le(s) arbre(s) d'analyse bottom-up des énoncés suivants :

- a. the man read this book
- b. book that flight

2 Grammaire ATIS simplifiée

On considère la grammaire hors contexte suivante dont S est l'axiome (le symbole de départ) :

 $S \rightarrow NP VP$ Nominal \rightarrow Nominal PP

 $S \rightarrow VP$

 $VP \rightarrow Verb$ Det \rightarrow that | this | a | the

 $VP \rightarrow Verb NP$ Noun $\rightarrow book \mid flight \mid meal \mid man$

 $NP \rightarrow Det Nominal$ $Verb \rightarrow book | include | includes | read$

Nominal \rightarrow Noun ProperNoun \rightarrow Houston | TWA

Nominal \rightarrow Noun Nominal Aux \rightarrow does

2.1 Analyse top-down

Écrire le(s) arbre(s) d'analyse top-down des énoncés suivants :

- a. the flight from Houston includes a meal
- b. does the flight from Houston includes a meal

2.2 Analyse bottom-up

Écrire le(s) arbre(s) d'analyse bottom-up des énoncés suivants :

- a. the flight from Houston includes a meal
- b. does the flight from Houston includes a meal

3 Autour du verbe « voir »

On considère la grammaire hors contexte suivante dont S est l'axiome (le symbole de départ) :

 $S \rightarrow NP VP$ DT \rightarrow the

 $NP \rightarrow DT NN$ $NN \rightarrow man \mid dog \mid cat \mid park$

 $NP \rightarrow NP PP$ $VB \rightarrow saw$

 $PP \rightarrow IN NP$ IN \rightarrow in | with | under

 $VP \rightarrow VB NP$

3.1 Nombre d'analyses pour un énoncé

- 3.1.1 Avec cette grammaire, la phrase « the man saw the dog in the park » a combien d'analyes ?
- 3.1.2 Avec cette grammaire, la phrase « the man saw the dog in the park with the cat » a combien d'analyses ?

3.2 Prédiction du nombre d'analyses

Soit C_n définit comme le n-ième nombre de Catalan définit comme suit 1 :

$$C_n = \frac{(2n)!}{(n+1)! \, n!}$$

On pourrait montrer que \mathcal{C}_n est le nombre d'arbres binaires qui possèdent n+1 feuilles.

Considérons maintenant une phrase qui est grammaticale sous la grammaire hors contexte ci-dessus, et qui a exactement k prépositions suivant le verbe, et 0 préposition avant le verbe (une préposition est tout mot avec l'étiquette IN). Combien d'arbres d'analyse cette phrase aura-t-elle ?

4 Le singulier et le pluriel

On considère la grammaire hors contexte suivante dont S est l'axiome (le symbole de départ) :

 $S \rightarrow NP VP$ DT \rightarrow the

 $NP \rightarrow DT NN$ $NN \rightarrow man \mid dog \mid cat \mid park$

 $\mbox{NP} \rightarrow \mbox{DT NNS} \qquad \qquad \mbox{NNS} \rightarrow \mbox{dogs} \mid \mbox{cats} \mid \mbox{parks}$

 $NP \rightarrow NP PP$ $VB \rightarrow see \mid sees$

 $PP \rightarrow IN NP$ $IN \rightarrow in \mid with$

 $VP \rightarrow VB NP$ $VP \rightarrow VP PP$

Cette grammaire permet de produire des énoncés non grammaticaux, tels que :

- the dog see the cat
- the dog in the park see the cat
- the dog in the park see the cat in the park the dogs sees the cat
- the dogs in the park sees the cat
- the dogs in the park sees the cat in the park

4.1 Modification de la grammaire pour qu'elle ne produise que des énoncés corrects

Comment modifieriez-vous la grammaire pour que toutes les phrases qu'elle génère soient grammaticales ? **Indice** : il convient de mieux gérer le singulier et le pluriel.

-

Voir Wikipedia pour plus d'information

5 Autour du verbe « voir » en cascade

On considère la grammaire hors contexte suivante dont S est l'axiome (le symbole de départ) :

 $S \rightarrow NP VP$ VP- $GAP \rightarrow Vdt NP$ $NP \rightarrow DT NN$ $WH \rightarrow that$ $VP \rightarrow Vt DT$ $DT \rightarrow the$ $VP \rightarrow Vdt NP NP$ $NN \rightarrow man$ $NP \rightarrow NP RELC$ $NN \rightarrow dog$ RELC → WH S-GAP $NN \rightarrow cat$ S-GAP \rightarrow VP $NN \rightarrow park$ S-GAP \rightarrow NP VP-GAP Vt → saw VP- $GAP \rightarrow Vt$ $Vdt \rightarrow gave$

5.1 Arbres d'analyse sous la grammaire proposée

- 5.1.1 Donner les arbres d'analyse pour les énoncés « the man that saw the dog saw the cat $\,$ » et « the man that the cat saw saw the dog $\,$ »
- 5.1.2 Donner une phrase qui soit grammaticale sous cette grammaire et qui contienne le trigramme « saw saw »

5.2 Modification de la grammaire

Supposons que nous ajoutons les règles suivantes à la grammaire, de sorte que l'énoncé « the man said the cat saw the dog » puisse être analysée correctement :

 $VP \rightarrow V3 S$ $V3 \rightarrow said$

Quelle(s) règle(s) ajouteriez-vous à la grammaire pour que la phrase suivante puisse être analysée ? :

« the dog that the man said the cat saw saw the park »

6 Importation en Suisse

On considère la grammaire hors contexte partielle suivante dont S est l'axiome (le symbole de départ) :

 $S \rightarrow NP \ VP$ $N \rightarrow 2012 \ | \ Switzerland \ | \ USA \ | \ exports$

 $NP \rightarrow Det N$ $V \rightarrow exports$ $NP \rightarrow N$ $VBP \rightarrow are$

 $NP \rightarrow NP PP$ VBG \rightarrow increasing

 $VP \rightarrow V$ Det \rightarrow the

 $VP \rightarrow VP PP$ $P \rightarrow to \mid from \mid in$

VP → VBP VDG PP

 $PP \rightarrow P NP$

6.1 Vers la forme normale de Chomsky

Transformer la grammaire pour la mettre sous forme normale de Chomsky.

6.2 Analyse avec l'algorithme CYK

En utilisant l'algorithme CYK, analysez l'énoncé suivant en utilisant la grammaire sous forme normale de Chomsky que vous aurez proposée :

the exports from the USA to Switzerland are increasing in 2012

Fournir à la fois la structure de données complète, entièrement remplie, utilisée par l'algorithme, ainsi que le résultat de l'analyse sous la forme d'un ou de plusieurs arbres.

7 Time flies like an arrow

On considère la grammaire hors contexte suivante dont S est l'axiome (le symbole de départ) :

 $S \rightarrow NP VP$ $NP \rightarrow time$ $S \rightarrow Vst NP$ Vst → time $S \rightarrow S PP$ $NP \rightarrow flies$ $VP \rightarrow V NP$ $VP \rightarrow flies$ $VP \rightarrow VP PP$ $P \rightarrow like$ $NP \rightarrow Det N$ $V \rightarrow like$ $NP \rightarrow NP PP$ $Det \rightarrow an$ $NP \rightarrow NP NP$ $N \rightarrow arrow$ $PP \rightarrow P NP$

7.1 Analyse avec l'algorithme CYK

En utilisant l'algorithme CYK, analysez l'énoncé suivant en utilisant la grammaire proposée qui est déjà sous forme normale de Chomsky :

time flies like an arrow

Fournir à la fois la structure de données complète, entièrement remplie, utilisée par l'algorithme, ainsi que le résultat de l'analyse sous la forme d'un ou de plusieurs arbres.

8 Sources

Les exercices 1 et 7 sont inspirés du cours CS 585 de Andrew McCallum, University of Massachusetts Amherst Les exercices 3, 4 et 5 sont inspirés du cours COMS 4705 de Michael Collins, Columbia University

L'exercice 6 est inspiré du cours Introduction to NLP de J.-C. Chappelier et Martin Rajman, École Polytechnique Fédérale de Lausanne