
Université Grenoble Alpes POLYTECH

TP 1 28/04/22

PROJET – Chat Server

RMI-based Distributed Applications

Polytech/INFO4
F. Boyer, O. Gruber

Organisation Binome
Evaluation Code-based
Advised time 3-4h per binome
Tools JDK >=1.7, IDE (eclipse or equivalent)
Return Compressed source files, in a file named Name1_Name2_RMI.zip (or .tar)
Contact Fabienne.Boyer@imag.dfr, Olivier.Gruber@imag.fr

1 Preamble

This practical work aims at programming a Chat application over Java/RMI. For a good understanding of this work, you
need to have in mind the RMI lecture.

2 Baby step

We will firstly consider programming a Printer application over Java/RMI whose behavior can be sketched as follows:

• Server side:
o The server instantiates the class Printer, implementing the IPrinter interface (this interface simply

defines a method print(String s) that prints a line on the local screen.
o The server registers the reference of the Printer object onto the RMI registry.

• Client side:
o The client gets the remote reference of the printer object, implementing the interface IPrinter, from the

RMI registry
o The client calls the method print(“hello”) on this object.

Steps to follow:

1. Start by understanding which classes compose your application. Basically, you may consider four classes here:
Client, Server, Printer, and IPrinter. The classes Client and Server just contain a main method that respectively
launch the client and server applications. The interface IPrinter defines the remote method print(String s). The
Printer class implements the methods defined in the IPrinter interface.

2. The second step is to determine which objects compose your application at runtime and how these objects are
aliased. We ask you to draw on a paper the global distributed object graph, showing local objects and
remote objects, and also including all the stubs and skeletons.

3. Now you are ready to program your application, so create a Java project under Eclipse. Create first the interface
IPrinter and its corresponding implementation (Printer class). Then, define the Server and Client classes.

4. Regarding the Server class, you have the choice of embedding the RMIregistry, or to launch it as a standalone
application (through the rmiregistry command). We advise you to embed the RMIRegistry within your server
because this greatly simplifies the way you start and stop your application. A reminder of how to do this is given
next page.

5. Start your server, and then start several clients. Check that things go properly.

Université Grenoble Alpes POLYTECH

TP 2 28/04/22

Reminder

To embed the RMIregistry within your server, create and start a registry on a given port and then (re)bind names
to remote references as follow

 Registry reg = LocateRegistry.createRegistry(port);
 reg.rebind(“LinePrinter”, printer);

Another option is to use the static method rebind of the Naming class, taking as argument the url of the registry:

 Naming.rebind(“//” + host + “:” + port + “/” + “LinePrinter”, printer);

At Client side, you may get the reference of the registry and then the remote reference of the printer as follows:

 Registry reg = LocateRegistry.getRegistry(host, port);
 printer = reg.lookup(“LinePrinter”);

Another option is to simply use the static method lookup of the Naming class that takes as argument the url of
the registry:

 printer = Naming.lookup(“//” + host + “:” + port + “/” + “LinePrinter”;

3 Chat server

We now consider programming a Chat server over Java/RMI. This server manages one or more chat rooms where
several participants in a given room may exchange messages.

The communication protocol of a participant with a Chat server is very simple; it consists of the following operations
that may be called on the Chat server:

• Connect: allows a new participant to connect to a chat room
• Leave: allows a participant to leave a chat room
• Say: allows a participant to send a message to a given chat room
• Who: allows a participant to get the names of all participants currently connected to a chat room

To be able to send or receive messages to a chat room, a participant must be connected to that chat room. When a
participant sends a message to a chat room, the Chat server delivers the message to all participants that are currently
connected to that chat room.

3.1 First Version: the chat server will manage a single chat room

In Eclipse, create a Java project for the Chat server and then follow these steps:

1. Firstly, determine what classes and interfaces compose your application. We advise you to consider six classes
here: Client, Server, ChatRoom / IChatRoom, and Participant / IParticipant. The Client and Server classes
allow respectively to launch the client and server applications. The IChatRoom interface defines the remote
methods that can be invoked on a ChatRoom instance. The IParticipant interface defines the remote methods
that can be invoked on a Participant instance.

2. As a second step, determine what objects compose your application at runtime and how the corresponding
object graph (including object aliasing). As previously, we ask you to draw the global distributed object graph,
showing local objects and remote objects, and also including all the stubs and skeletons.

Université Grenoble Alpes POLYTECH

TP 3 28/04/22

3. Now define the ChatRoom and Participant classes implementing the IChatRoom and IParticipant interfaces
defined as proposed below. Pay attention to the fact that any remote object may be invoked concurrently, as
soon as it is remotely aliased from several clients.

Interface IChatRoom:
 String name();
 void connect(IParticipant p);
 void leave(IParticipant p);
 String[] who();

 void send(IParticipant p, String msg);

Interface IParticipant:

 String name();
 void receive(String name, String msg);

4. Once this is done, define your class Server and Client. The class Client uses the shell command line to interact
with end users.

5. Finally, start one or more servers and launch several clients to test your application.

3.2 Packaged version - steps to follow:
We now focus on how to package and deploy our Chat application over distributed machines (client and server
machines). In the previous versions, you launched the clients and the server under Eclipse, from the same Java project.
This does not match the reality of distributed applications deployed in the real world. Firstly, clients and servers are
usually started via shell scripts as standalone Java applications, independently from Eclipse or any other IDE. Secondly,
the client part and the server part are delivered as separate Java Archive files (jar):

1. A ChatClient.jar that you can give to anyone who wants to launch the Client application allowing to connect to
a given Chat server. Determine what classes should compose this archive.

2. A ChatServer.jar archive that you can give to anyone who wants to launch a Chat server. Notice that some
classes need to be present in both archives.

To create the ChatClient.jar and ChatServer.jar archives under Eclipse:

• Select Export then Create Jar, do not select Create Runnable Jar.
• Check that your jars contains the expected files from the command: jar -tvf X.jar

To launch manually, from a shell, your server application, you can use the following command that assumes your class
Server is in the Java package chat.server:

 java -cp ChatServer.jar chat.server.Server <args>

To launch manually, from a shell, client applications, you can use the following command that assumes your class Client
is in the Java package chat.client:

 java -cp ChatClient.jar chat.client.Client <args>

Notice that you can start one or more clients, on one or more machines.

3.3 Multiple chat rooms version

Add the possibility to your class Server to manage multiple chat rooms.

Make sure that you server can survive to the crash of clients (hitting Ctrl-C for example)

Université Grenoble Alpes POLYTECH

TP 4 28/04/22

Make sure that a client can resist to a temporary unavailable server (a server crash for example). The idea is that the
client will wait for a new server to be restarted and will then reconnect to that new server.

Add the ability, for a client, to leave a chat room for a while and to get all messages that have been sent in the meantime
when coming back.

