
Distributed Systems based on Sockets

Polytech/INFO 4, 2022-2023
Fabienne Boyer, Olivier Gruber,

UFR IM2AG, LIG, Université Grenoble Alpes
Fabienne.Boyer@imag.fr

2© F. Boyer, UGA Basics of Distributed Programming – Info4

Outline

■  Introduction to sockets

■  Point-to-point communication with TCP sockets  

■  Point-to-point communication with UDP sockets

■  Group communication with sockets

■  Client-server programming with sockets

3© F. Boyer, UGA Basics of Distributed Programming – Info4

Internet Protocol

■  IP (Internet Protocol)‏
◆  The Internet protocol is not the Web

❖  The Web refers to HTTP, built on top of TCP/IP

◆  It corresponds to the network layer of the OSI model

◆  It manages addressing, routing and transport of data packets

■  IP addresses
◆  4 bytes(IPv4), naming a host machine (e.g. 192.168.2.100)‏

❖  Addresses on 16 bytes for IPV6

◆  IP addresses are location dependent

4© F. Boyer, UGA Basics of Distributed Programming – Info4

DNS (Domain Name System)

■  IP Address resolution
◆ manages the translation between a host name and its IP address

■  Discussing DNS design
◆ A fairly complex world-wide distributed system in itself

◆ Allows name aliases (multiple names for an address)

◆ And the reverse (multiple addresses for a name)

◆ Organized as hierarchical zones across the world
❖  A zone is managed by a DNS server
❖  Servers are replicated for high availability (following a master-slave

design)

5© F. Boyer, UGA Basics of Distributed Programming – Info4

Ports

■  An IP address and a port names a communication end point
◆ Ports refer to communication channels on the local machine

■  Port numbers are managed by the operating system
◆ Ports between 1 and 1023 are well-known (513=rlogin, 25=telnet, ..)

◆ Ports between 1024 and 49151 can be registered with the Internet
Corporation

◆ Ports between 49152 and 65535 are dynamic
■  Dynamic ports are allocated on-demand to processes

◆ A port may be allocated to only one process at a time

6© F. Boyer, UGA Basics of Distributed Programming – Info4

Sockets

■  Provides 3 protocols for sending/receiving data over IP
◆  TCP protocol

❖  Stream oriented
❖  Lossless
❖  Ordered
❖  Connection-oriented

◆ UDP protocol
❖  Packet based
❖  Not lossless, no order
❖  Efficient

◆ Group protocol
❖  Packet based
❖  Not lossless, no order

7© F. Boyer, UGA Basics of Distributed Programming – Info4

Sockets

■  Provides 3 protocols for sending/receiving data over IP
◆  TCP protocol

❖  Stream oriented: components exchange streams of bytes
❖  Lossless: 0 bytes lost
❖  Ordered: 0 bytes reordered
❖  Connection-oriented

◆ UDP protocol
❖  Packet based: components exchange messages
❖  Not lossless, no order: packets may be lost or reordered
❖  Efficient

◆ Group protocol
❖  Packet based: components broadcast messages
❖  Not lossless, no order: packets may be lost or reordered

8© F. Boyer, UGA Basics of Distributed Programming – Info4

Typical applications over TCP and UDP

◆  TCP
❖  Applications that do not support loss or reordering
❖  Transferring files (ftp for instance)‏
❖  Downloading web pages
❖  ..

◆ UDP
❖  Applications requiring high bandwidth & accepting loss or reordering
❖  Transmission of video/sound in real time

Ex: VoIP (Skype)
Out of sequence or incomplete frames are just dropped

8

9© F. Boyer, UGA Basics of Distributed Programming – Info4

Outline

■  Introduction to sockets

■  Point-to-point communication with TCP sockets (in Java) 

■  Point-to-point communication with UDP sockets

■  Group communication with sockets

■  Client-server programming with sockets

10© F. Boyer, UGA Basics of Distributed Programming – Info4

TCP Sockets – Steps Involved

l  Server side
l  Assume the port of the server is decided
l  Create a ServerSocket on the desired port to listen to connection requests
l  Loop: wait for a connection request, accept it, then communicate with the

client

Server Machine

4320

port

Server process

ServerSocket
(listening)

11© F. Boyer, UGA Basics of Distributed Programming – Info4

TCP Sockets – Steps Involved

l  Client side
l  Create a Socket to connect to the server socket

(automatically allocates a port & sends a connection request to the server)

Client Machine

socket

36243

Client
process

port

connection request

Server Machine

4320

port ServerSocket
(listening)

12© F. Boyer, UGA Basics of Distributed Programming – Info4

TCP Sockets – Steps Involved

l  Server side
l  Accept the connection from the client

(a couple (port, Socket) is automatically allocated to communicate with
the client)

Client Machine

socket

36243

port

connection request

Server Machine

4320

port

communication channel

ServerSocket
(for listening)

Socket
(for communicating)

13© F. Boyer, UGA Basics of Distributed Programming – Info4

TCP Sockets – Steps Involved

Client 1

Socket

36243

Server

ServerSocket

4320

port port

connection request

Client 2

56789

(listening)

(communicating)
Socket

communication channel

14© F. Boyer, UGA Basics of Distributed Programming – Info4

Java classes related to TCP sockets

■  java.net package
◆ ServerSocket class

❖  Represent a listening socket on a server (to accept connection requests)
❖  Configured with a backlog (maximum number of queued connection

requests, to avoid queuing too much connection requests)

◆ Socket class
❖  Represent a communication socket
❖  Both on server and client sides
❖  Configured with different parameters (e.g., TCP_NODELAY to avoid

buffering data written to the network , see java.net.SocketOptions)

◆ Other utility classes (InetAddress, SocketAddress, ..)

15© F. Boyer, UGA Basics of Distributed Programming – Info4

Example of Java Server on TCP

import java.net.*;

..

// SERVER SIDE

int port = 4320;

int backlog = 3;

ServerSocket listenSoc = new ServerSocket(port, backlog);

// server loop

while (true) {

 // wait for a connection request

 Socket soc= listenSoc.accept();

 // communicate with the client

<receive bytes from client through soc.getInputStream()>

<send bytes to client through soc.getOutputStream()>

}

// appel bloquant

16© F. Boyer, UGA Basics of Distributed Programming – Info4

import java.net.*;

// SERVER SIDE

int port = 4320;

int backlog = 3;

ServerSocket listenSoc= new
ServerSocket(port);

// server loop

while (true) {

 // wait for a connection

 Socket soc= server.accept();

 // communicate with the client

 ...

Example of Java sockets/TCP

import java.net.*;

//CLIENT SIDE

String serverHost = “goedel.imag.fr";

int serverPort = 4320;

// connect to the server

Socket soc = new Socket(serverHost, serverPort);

// communicate with the server

<send bytes to server through soc.getOutputStream()

<recv bytes from server through soc.getInputStream()

…

17© F. Boyer, UGA Basics of Distributed Programming – Info4

Stream-based communication in Java

java.io package
◆  InputStream / OutputStream

❖  abstract classes that represent
streams of bytes

◆  DataInputStream / DataOutputStream
❖  To manipulate streams of Java

primary types 

◆  ObjectInputStream / ObjectOutputStream
❖  To manipulate streams of Java

objects 

◆  FileInputStream / FileOutputStream
❖  To read data from a file or

write data to a file

◆  FilterInputStream /
FilterOutputStream
❖  To transform data along the

way

◆  BufferedInputStream /
BufferedOutputStream
❖  To bufferize bytes

18© F. Boyer, UGA Basics of Distributed Programming – Info4

Using Streams

■  Only wrap a stream into one upper stream
◆  Ex: DataInputStream upon InputStream

■  Only manipulate the upper stream
◆  Read, write, flush, close only the upper stream

■  Be sure that streams get closed in your code

 try {
OutputStream os = soc.getOutputStream();

 DataOutputStream dos = new DataOutputStream (os);
 dos.writeUTF("A simple sentence");
 ...

 } catch (Exception e) {
 ...
 } finally {
 ..
 if (dos != null) try { dos.close();} catch (Exception e) {}
 ..
 }

19© F. Boyer, UGA Basics of Distributed Programming – Info4

Continuing with our Client/Server over TCP

import java.io.*;
..
// SERVER side

int port = 4320;

int backlog = 3;

ServerSocket listenSoc = new ServerSocket(port, backlog);

while (true) {
 // wait for a connection request

Socket soc = listenSoc.accept();

// the server sends the date to the client
Date date = new Date();
byte[] b = date.toString().getBytes();
OutputStream os = soc.getOutputStream();
os.write(b);

}

20© F. Boyer, UGA Basics of Distributed Programming – Info4

import java.io.*;

// SERVER side
...

while (true) {
// wait for a connection
Socket soc = server.accept();

// send the date to the clientit to bytes
Date date = new Date();
byte[] b = date.toString().getBytes();
OutputStream os = socClient.getOutputStream
os.write(b);

}

Pursuing on our Client/Server over TCP

import java.io.*;

// CLIENT side
String date = "";
..
// connect to server
Socket soc = new Socket(serverHost,serverPort);

// receive the date from server
InputStream is = soc.getInputStream();
byte[] b = new byte[100];
int nb = is.read(b);
if (nb>0) date = new String(b);
System.out.println(”Date: " + date);

21© F. Boyer, UGA Basics of Distributed Programming – Info4

Not so simple..

// SERVER side
OutputStream os = soc.getOutputStream();
Date date = new Date();
byte[] b = date.toString().getBytes();
os.write(b);

// CLIENT side
InputStream is = soc.getInputStream();
byte[] b = new byte[100];
int nb = is.read(b);
If (nb>0) date = new String(b);

Is this correct ?

22© F. Boyer, UGA Basics of Distributed Programming – Info4

Not so simple..

// SERVER side
OutputStream os = soc.getOutputStream();
Date date = new Date();
byte[] b = date.toString().getBytes();
os.write(b);

// CLIENT side
InputStream is = soc.getInputStream();
byte[] b = new byte[100];
int nb = is.read(b);
If (nb>0) date = new String(b);

Socket stream

IP packets

Is this correct ? No..

1) data is
sent by packets, it may
just not be fully received

2) strings encoding may
differ on client and server

23© F. Boyer, UGA Basics of Distributed Programming – Info4

Checking that all bytes are received

// SERVER side
OutputStream os = soc.getOutputStream();
DataOutputStream dos = new DataOutputStream(os);
Date date = new Date();
byte[] b = date.toString().getBytes();
dos.writeInt(b.length);
dos.write(b);

// CLIENT side
InputStream is = soc.getInputStream();
DataInputStream dis = new DataInputStream(is);
int length = dis.readInt();
byte[] b = new byte[length];
dis.readFully(b);
date = new String(b);

Send the length of data as
prefix (or use a marker at
the end of data)

Use writeInt method of
DataOutputStream
(endianness proof)

24© F. Boyer, UGA Basics of Distributed Programming – Info4

Example of using an end-mark

// Echo SERVER (exchanging lines of characters)
...
while (true) {
 Socket soc = server.accept();

 InputStream is = soc.getInputStream();
 InputStreamReader isr = new InputStreamReader(is);
 BufferedReader br = new BufferedReader(isr);

 OutputStream os = soc.getOutputStream();
 OutputStreamReader osr = new OutputStreamReader(os);
 BufferedWriter bw = new BufferedWriter(osr);

 String line = br.readLine();
 bw.write(line);
 bw.newLine();
 bw.close();
}

“\n” is used as the
end-mark in the
method readLine())

25© F. Boyer, UGA Basics of Distributed Programming – Info4

Paying attention to String encoding

// SERVER side
OutputStream os = soc.getOutputStream();
DataOutputStream dos = new DataOutputStream(os);
Date date = new Date();
byte[] b = date.toString().getBytes(“UTF-8”);
dos.writeInt(b.length);
dos.write(b);

// CLIENT side
InputStream is = soc.getInputStream();
DataInputStream dis = new DataInputStream(is);
int length = dis.readInt();
byte[] b = new byte[length];
dis.readFully(b);
String date = new String(b,“UTF-8”);

Encoding may differ
from one VM to
another

Advice is to use
UTF-8 / UTF-16

26© F. Boyer, UGA Basics of Distributed Programming – Info4

Paying attention to String encoding

// SERVER side
OutputStream os = soc.getOutputStream();
DataOutputStream dos = new DataOutputStream(os);
Date date = new Date();
dos.writeUTF(date.toString());

// CLIENT side
InputStream is= soc.getInputStream();
DataInputStream dis = new DataInputStream(is);
String date = dis.readUTF();

Other option for
exchanging strings

l  writeUTF
l  readUTF
(manage the length &
use UTF-8)

27© F. Boyer, UGA Basics of Distributed Programming – Info4

Flushing data to send

// SERVER side
OutputStream os = soc.getOutputStream();
DataOutputStream dos=new
DataOutputStream(os);
Date date = new Date();
dos.writeUTF(date.toString());
dos.flush();

// CLIENT side
InputStream is = soc.getInputStream();
DataInputStream dis = new
DataInputStream(is);
String date = dis.readUTF();

Do we need to flush the data to
send?

l  Not obviously at each
write

l  Can be made when bytes
to send have been
accumulated in the
stream

l  It forces the transfer of
the data into the low level
buffers

l  Closing a stream forces a
flush

28© F. Boyer, UGA Basics of Distributed Programming – Info4

Sending and receiving objects

// SERVER side
...
while (true) {
 Socket soc = server.accept();
 OutputStream os = soc.getOutputStream();
 Date date = new Date();
 ObjectOutputStream oos=new ObjectOutputStream(os);
 oos.writeObject(date);
 oos.close();
}

// CLIENT side
Socket soc= new Socket(serverHost,serverPort);
InputStream is = soc.getInputStream();
ObjectInputStream ois = new ObjectInputStream(is);
Date date = (Date) ois.readObject();
ois.close();

We can also exchange
any object that
implements the
Serializable interface

29© F. Boyer, UGA Basics of Distributed Programming – Info4

Object Serialization

■  Object à byte[] , byte[] à Object
■  Any class may implement the Serializable interface

◆  If it does, instances of that class can be serialized
■  Serialization is a deep copy

◆ Recursive serialization along object references

◆ Sharing is respected

■  We'll see more on serialization later

serialization deserialization

30© F. Boyer, UGA Basics of Distributed Programming – Info4

Outline

■  Introduction to sockets

■  Point-to-point communication with TCP sockets (in Java) 

■  Point-to-point communication with UDP sockets (in Java)

■  Group communication with sockets

■  Client-server programming with sockets

31© F. Boyer, UGA Basics of Distributed Programming – Info4

Java sockets over UDP

■  Communicating in the unconnected mode

◆ UDP protocol allows to send packets of data, called datagrams 

◆ A datagram is an independent self-contained message whose
arrival and arrival time are not guaranteed

 

32© F. Boyer, UGA Basics of Distributed Programming – Info4

Java classes related to UDP

■  java.net.DatagramPacket
◆ Represents a data packet

❖  Essentially a byte buffer
❖  Maximum length given by DatagramSocket. getReceiveBufferSize()‏

◆  Includes an InetAddress and port number

■  java.net.DatagramSocket
◆ Used for sending and receiving datagram packets

33© F. Boyer, UGA Basics of Distributed Programming – Info4

Example of Java sockets/UDP

import java.net.*;

// SERVER side

int port = 1234;
DatagramSocket soc = new DatagramSocket(port);

while (true) {
// allocate a datagram packet and wait for a client request

 byte[] buf = new byte[256 ;[‏
DatagramPacket packet = new DatagramPacket(buf, buf.length);
serverSoc.receive(packet);

 String request=new String(packet.getData());
 ..

// Send the reply to the client
 byte reply = new byte[128];
 ..
 InetAddress clientAddr = packet.getAddress();
 int clientPort = packet.getPort();

packet = new DatagramPacket(reply, reply.length, clientAddr, clientPort);
soc.send(packet);

}

34© F. Boyer, UGA Basics of Distributed Programming – Info4

import java.net.*;

// SERVER side

int port = 1234;
DatagramSocket serverSoc = new DatagramSocket(port);

while (true) {

 // allocate a datagram packet and wait for a client message
 byte[] buf = new byte[256‏];

 DatagramPacket packet = new DatagramPacket(buf, buf.length);
 serverSoc.receive(packet);

 // send a reply to the client

 byte[] reply = ..
 InetAddress clientAddr = packet.getAddress();
 int clientPort = packet.getPort();
 packet = new DatagramPacket(buf, buf.length, clientAddr, clientPort);

 soc.send(packet);
}

Example of Java sockets/UDP

import java.net.*;
int serverPort = 1234;
String serverHost = ...;

// SERVER side

// Create a datagram socket
DatagramSocket soc = new DatagramSocket();

// Send the request to the server
byte[] buf = …
InetAddress serverAddr=InetAddress.getByName(serverHost);
DatagramPacket packet = new DatagramPacket(buf,
buf.length, serverAddr, serverPort);
clientSoc.send(packet);

// Receive the reply from the server
packet = new DatagramPacket(buf, buf.length);
soc.receive(packet);
String reply=new String(packet.getData());
System.out.println(reply);`

35© F. Boyer, UGA Basics of Distributed Programming – Info4

Outline

■  Introduction to sockets

■  Point-to-point communication with TCP sockets (in Java) 

■  Point-to-point communication with UDP sockets (in Java)

■  Group communication with sockets

■  Client-server programming with sockets

36© F. Boyer, UGA Basics of Distributed Programming – Info4

Java Multicast

■  Based on UDP sockets
◆ Datagram packets (same as before)

◆  Java class MulticastSocket extends DatagramSocket

■  Relies on IP-level multicast
◆ Multicast IP adresses

◆ Class D addresses are reserved for multicast

◆  In the range 224.0.0.0 to 239.255.255.255

◆ A multicast group is just a multicast address and port

37© F. Boyer, UGA Basics of Distributed Programming – Info4

Java Multicast

■  Multicasting to a group
◆ Create a datagram packet

◆ Make a normal UDP send, to the group InetAddress and port

■  Joigning a multicast group
◆ Create the multicast socket with the group port

◆  Join the multicast group, use the multicast address

◆ Receive messages multicasted to the group

■  Leaving a multicast group
◆ Explicit departure

38© F. Boyer, UGA Basics of Distributed Programming – Info4

Joining a group and receiving messages

import java.net.*;

// Multicast group
int groupPort = 5000;
InetAddress groupAddr = InetAddress.getName(“225.4.5.6”);

// Create a socket and join the group
MulticastSocket soc = new MulticastSocket(groupPort);
soc.joinGroup(groupAddr);

// Receiving
byte buf[] = new byte[1234];
DatagramPacket packet = new DatagramPacket(buf, buf.length);
soc.receive(packet);

// When done, leave the multicast group and close the socket
soc.leaveGroup(groupAddr);
Soc.close();

}

39© F. Boyer, UGA Basics of Distributed Programming – Info4

Sending to a group

import java.net.*;

// Multicast group
int groupPort = 5000;
InetAddress groupAddr = InetAddress.getName(“225.4.5.6”);

// Create the socket
// but we don’t bind it and we don’t join the multicast group
MulticastSocket soc = new MulticastSocket();

byte buf[] = new byte[10];
For (int i=0; i<buf.lenght; i++)
 buf[i] = (byte)i;

// Create a datagram packet and send it
DatagramPacket packet = new DatagramPacket(buf, buf.length, groupAddr,
groupPort);

// Send the packet
Byte ttl = 1;
soc.send(packet, ttl);

// When doneclose the socket
soc.close();
}

40© F. Boyer, UGA Basics of Distributed Programming – Info4

Java Multicast

■  Limitations
◆  IP multicast is supported by many routers

❖  But most Internet providers forbid IP multicast
❖  Over the public Internet, multicast is simply not available

◆ Usable on local LAN

■  If you need multicast features, use a Middleware solution
◆ Middleware built above IP or UDP or TCP/IP

❖  Using point to point messages
❖  Provides different properties(ordererd, reliable, ..)

41© F. Boyer, UGA Basics of Distributed Programming – Info4

Outline

■  Introduction to sockets

■  Point-to-point communication with TCP sockets (in Java) 

■  Point-to-point communication with UDP sockets (in Java)

■  Group communication with sockets

■  Client-Server programming with sockets

42© F. Boyer, UGA Basics of Distributed Programming – Info4

Socket-based Server Design

request
processing

client requests

server responses
remote server

■  Server: a process that receives requests from remote clients,
"execute" the requests and replies to the clients

■  Socket-based: clients and server communicate through the
socket layer

Network
clients

43© F. Boyer, UGA Basics of Distributed Programming – Info4

Server design

■  Three main models
◆ Sequential: a given thread processes incoming requests in

sequence
◆ Parallel : multi-threaded (most common case) or multi-processes

Replicated: a same request is processed by several threads or
processes

44© F. Boyer, UGA Basics of Distributed Programming – Info4

Multi-threaded TCP Server

client socket

36243

client port

4320

server port listening socket

36243

36243
4320

4320

4320

comm. socket

Parallel
worker
threads

listening thread

45© F. Boyer, UGA Basics of Distributed Programming – Info4

Multi-threaded TCP server: basic design

class MultiThreadedTCPServer {
 …
 public static void main(String[] args) throws IOException {

initComm();
while (true) {

Socket soc= socListen.accept();
// create a new worker for each client
Worker worker = new Worker(soc).start();

}
 ..

Class Worker extends Thread {
 Worker (Socket soc) {..}
 public void run(){
 // receive request from soc, process it and reply to client
 // do this as many times as required (session-oriented communication)
 // at the end, close soc
 }
}

46© F. Boyer, UGA Basics of Distributed Programming – Info4

Multi-threaded TCP server: pool-based design

request
processing

Request queue

(prod-cons buffer)

client
requests

server
responses

server

main thread worker threads

47© F. Boyer, UGA Basics of Distributed Programming – Info4

Multi-threaded TCP server: pool-based design

class MultiThreadTCPServer {
 public static void main(String[] args) throws IOException {

initComm();
 ProdCons clientsBuffer = new ProdCons(..);

while (true) {
Socket soc= socListen.accept();
clientsBuffer.put(soc);

}
 ..

Class Worker extends Thread {
 Message m;
 Worker (ProdCons clientsBuffer) {this.clientsBuffer = clientsBuffer;}

 public void run(){
 while (true){
 Socket soc= clientsBuffer.get();
 // receive request from soc, process it and reply to client
 // do this as many times as required (session-oriented communication)
 // at the end, close soc
 }
}

48© F. Boyer, UGA Basics of Distributed Programming – Info4

Multi-threaded UDP server

class MultiThreadServer {
 public static void main(String[] args) throws IOException {

initComm();
while (true) {

Message message = receiveMessage();
Worker worker = new Worker(message).start();

}
 ..

Class Worker extends Thread {
 Message m;
 Worker (Message m) {this.message = m;}
 public void run(){
 // get request and client port from m,
 // process request
 // reply to client
}
..

49© F. Boyer, UGA Basics of Distributed Programming – Info4

Multi-threaded UDP server: pool-based design

class MultiThreadUDPServer {
 public static void main(String[] args) throws IOException {

initComm();
 ProdCons messagesBuffer = new ProdCons(..);

while (true) {
Message message = receiveMessage();
messagesBuffer.put(message);

}
 ..

Class Worker extends Thread {
 Message m;
 Worker (ProdCons messagesBuffer) {this.messagesBuffer = messagesBuffer;}

 public void run(){
 while (true){
 Message message = messagesBuffer.get();
 // process the message
 // reply to client
 }
}
..

