Distributed Systems based on Sockets

Polytech/INFO 4, 2022-2023
Fabienne Boyer, Olivier Gruber,
UFR IM2AG, LIG, Université Grenoble Alpes
Fabienne.Boyer@imag.fr

® UNIVERSITE
POLYTECH E Grenoble
GRENOBLE L Alpes

Outline

B Introduction to sockets

B Point-to-point communication with TCP sockets

B Point-to-point communication with UDP sockets

B Group communication with sockets

B Client-server programming with sockets

© F. Boyer, UGA Basics of Distributed Programming — Info4

Internet Protocol

B IP (Internet Protocol)

The Internet protocol is not the Web
% The Web refers to HTTP, built on top of TCP/IP

It corresponds to the network layer of the OSI model

It manages addressing, routing and transport of data packets

B [P addresses

4 bytes(IPv4), naming a host machine (e.g. 192.168.2.100)
% Addresses on 16 bytes for IPV6

IP addresses are location dependent

© F. Boyer, UGA Basics of Distributed Programming — Info4 3

DNS (Domain Name System)

B I[P Address resolution
manages the translation between a host name and its IP address

B Discussing DNS design
A fairly complex world-wide distributed system in itself
Allows name aliases (multiple names for an address)
And the reverse (multiple addresses for a name)

Organized as hierarchical zones across the world

% A zone is managed by a DNS server

% Servers are replicated for high availability (following a master-slave
design)

© F. Boyer, UGA Basics of Distributed Programming — Info4 4

Ports

B An IP address and a port names a communication end point
Ports refer to communication channels on the local machine

B Port numbers are managed by the operating system
Ports between 1 and 1023 are well-known (513=rlogin, 25=telnet, ..)
Ports between 1024 and 49151 can be registered with the Internet
Corporation
Ports between 49152 and 65535 are dynamic

B Dynamic ports are allocated on-demand to processes
A port may be allocated to only one process at a time

© F. Boyer, UGA Basics of Distributed Programming — Info4 5

Sockets

B Provides 3 protocols for sending/receiving data over IP
TCP protocol

% Stream oriented

% Lossless

% Ordered

% Connection-oriented

UDP protocol

« Packet based
+» Not lossless, no order
« Efficient

Group protocol

% Packet based
*» Not lossless, no order

© F. Boyer, UGA Basics of Distributed Programming — Info4

Sockets

B Provides 3 protocols for sending/receiving data over IP
TCP protocol

% Stream oriented: components exchange streams of bytes
% Lossless: O bytes lost

% Ordered: 0 bytes reordered

% Connection-oriented

UDP protocol

% Packet based: components exchange messages
% Not lossless, no order: packets may be lost or reordered
% Efficient

Group protocol

% Packet based: components broadcast messages
% Not lossless, no order: packets may be lost or reordered

© F. Boyer, UGA Basics of Distributed Programming — Info4

Typical applications over TCP and UDP

TCP

% Applications that do not support loss or reordering
% Transferring files (ftp for instance)
% Downloading web pages

o
..

UDP

% Applications requiring high bandwidth & accepting loss or reordering
% Transmission of video/sound in real time

Ex: VoIP (Skype)

Out of sequence or incomplete frames are just dropped

®

© F. Boyer, UGA Basics of Distributed Programming — Info4 8

Outline

H Introduction to sockets

B Point-to-point communication with TCP sockets (in Java)

B Point-to-point communication with UDP sockets

B Group communication with sockets

B Client-server programming with sockets

© F. Boyer, UGA Basics of Distributed Programming — Info4

TCP Sockets — Steps Involved

e Server side
Assume the port of the server is decided

Create a ServerSocket on the desired port to listen to connection requests

Loop: walit for a connection request, accept it, then communicate with the
client

port ServerSocket

/ / (listening)

Server process

4320

Server Machine

© F. Boyer, UGA Basics of Distributed Programming — Info4

10

TCP Sockets — Steps Involved

e Client side
Create a Socket to connect to the server socket

(automatically allocates a port & sends a connection request to the server)

port ServerSocket

Client socket port / (listening)
process \ / /
\/) ~ R

36243
_ / o)

Client Machine Server Machine

connection request 4320

© F. Boyer, UGA Basics of Distributed Programming — Info4 11

TCP Sockets — Steps Involved

e Server side
Accept the connection from the client

(a couple (port, Socket) is automatically allocated to communicate with

the client)
port ServerSocket
(for listening)
socket port / /72/
\ . est C)L—‘ Socket
4)/ connect\on requ 4320 P /%r communicating)
O @)
36243 communication channel
- U
Client Machine

Server Machine

© F. Boyer, UGA Basics of Distributed Programming — Info4 12

TCP Sockets — Steps Involved

Socket port port

ServerSocket

/ (listening)

Socket
7 (communicating)

o
\
AN

Client 2

© F. Boyer, UGA Basics of Distributed Programming — Info4 13

Java classes related to TCP sockets

B java.net package

ServerSocket class

% Represent a listening socket on a server (to accept connection requests)
% Configured with a backlog (maximum number of queued connection
requests, to avoid queuing too much connection requests)

Socket class
% Represent a communication socket
% Both on server and client sides
% Configured with different parameters (e.g., TCP_NODELAY to avoid
buffering data written to the network , see java.net.SocketOptions)

Other utility classes (InetAddress, SocketAddress, ..)

© F. Boyer, UGA Basics of Distributed Programming — Info4 14

Example of Java Server on TCP

import java.net.*;
// SERVER SIDE
int port = 4320;
int backlog = 3;

ServerSocket listenSoc = new ServerSocket(port, backlog);
// server loop
while (true) {

// wait for a connection request

Socket soc= listenSoc.accept(); // appel bloquant

// communicate with the client
<receive bytes from client through soc.getInputStream()>

<send bytes to client through soc.getOutputStream()>

© F. Boyer, UGA Basics of Distributed Programming — Info4

15

Example of Java sockets/TCP

import java.net.*; : .
ilmport java.net.?*;

// SERVER SIDE
//CLIENT SIDE

int port = 4320;) “) |
String serverHost = goedel.imag.fr";

int backlog = 3; :
int backlog ! int serverPort = 4320;

ServerSocket listenSoc{
ServerSocket (port);

while (true) { Socket soc = new Socket(serverHost, serverPort);

Socket soc= server.at

<send bytes to server through soc.getOutputStream()

<recv bytes from server through soc.getInputStream()

© F. Boyer, UGA Basics of Distributed Programming — Info4 16

Stream-based communication in Java

java.io package FilelnputStream / FileOutputStream
InputStream / OutputStream % To read data from a file or
< abstract classes that represent write data to a file

streams of bytes

FilterInputStream /

DatalnputStream / DataOutputStream FilterOutputStream
% To manipulate streams of Java % To transform data along the
primary types way

ObjectinputStream / ObjectOutputStream BufferedInputStream /

% To manipulate streams of Java BufferedOutputStream

objects < To bufferize bytes

© F. Boyer, UGA Basics of Distributed Programming — Info4 17

Using Streams

B Only wrap a stream into one upper stream

Ex: DatalnputStream upon InputStream

B Only manipulate the upper stream

Read, write, flush, close only the upper stream

B Be sure that streams get closed in your code

try {

DataOutputStream dos

} finally {

OutputStream os = soc.getOutputStream();

= new DataOutputStream (os);

dos.writeUTF("A simple sentence");

} catch (Exception e) {

if (dos != null) try { dos.close();} catch (Exception e) {}

© F. Boyer, UGA

Basics of Distributed Programming — Info4

18

Continuing with our Client/Server over TCP

import java.io.*;

// SERVER side
int port = 4320;
int backlog = 3;

ServerSocket listenSoc = new ServerSocket(port, backlog);

while (true) {
// wait for a connection request
Socket soc = listenSoc.accept();

// the server sends the date to the client
Date date = new Date();

byte[] b = date.toString().getBytes();
OutputStream os = soc.getOutputStream();
os.write(b);

© F. Boyer, UGA Basics of Distributed Programming — Info4

19

Pursuing on our Client/Server over TCP

import java.io.*;

// SERVER side

while (true) {

// wait for a connectl

Socket soc = server.ac
// send the date to th
Date date = new Date()
byte[] b = date.toStri
OutputStream os = socC

os.write(b);

import java.io.*;

// CLIENT side

String date = 5

Socket soc = new Socket(serverHost,serverPort);

InputStream is = soc.getInputStream();
byte[] b = new byte[100];

int nb = is.read(b);

if (nb>0) date =
System.out.println(”Date:

new String(b);
" + date);

© F. Boyer, UGA

Basics of Distributed Programming — Info4

20

Not so simple..

// SERVER side

OutputStream os = soc.getOutputStream();
Date date = new Date();

byte[] b = date.toString().getBytes();
os.write(b);

Is this correct ?

// CLIENT side

InputStream is = soc.getInputStream();
byte[] b new byte[100];

int nb = is.read(b);

If (nb>0) date = new String(b);

© F. Boyer, UGA Basics of Distributed Programming — Info4

Not so simple..

// SERVER side

OutputStream os = soc.getOutputStream();
Date date = new Date();

byte[] b = date.toString().getBytes(); 1) data is

B UALES(12) § sent by packets, it may
just not be fully received

Is this correct ? No..

// CLIENT side
InputStream is = soc.getInputStream(); 2) strings encoding may

l?yte[] b = BEw byte[100]; differ on client and server
int nb = is.read(b);

If (nb>0) date = new String(b);

Y .

Socket stream

IP packets

© F. Boyer, UGA Basics of Distributed Programming — Info4 22

Checking that all bytes are received

// SERVER side

OutputStream os = soc.getOutputStream();
DataOutputStream dos = new DataOutputStream(os);
Date date = new Date();

byte[] b = date.toString().getBytes();
dos.writeInt(b.length);

dos.write(b);

// CLIENT side

InputStream is = soc.getInputStream();
DataInputStream dis = new DatalnputStream(is);
int length = dis.readInt();

byte[] b = new byte[length];

dis.readFully(b);

date = new String(b);

Send the length of data as
prefix (or use a marker at
the end of data)

Use writeint method of
DataOutputStream
(endianness proof)

© F. Boyer, UGA

Basics of Distributed Programming — Info4

23

Example of using an end-mark

// Echo SERVER (exchanging lines of characters)

while (true) {
Socket soc = server.accept();

InputStream is = soc.getInputStream();

“\n” is used as the
end-mark in the

© F. Boyer, UGA Basics of Distributed Programming — Info4

InputStreamReader isr = new InputStreamReader(is); :
BufferedReader br = new BufferedReader(isr); method readLme())
OutputStream os = soc.getOutputStream();
OutputStreamReader osr = new OutputStreamReader(os);
BufferedWriter bw = new BufferedWriter(osr);
String line = br.readLine();
bw.write(line);
bw.newLine();
bw.close();
}
24

Paying attention to String encoding

// SERVER side

OutputStream os = soc.getOutputStream();
DataOutputStream dos = new DataOutputStream(os);
Date date = new Date();

byte[] b = date.toString().getBytes(“UTF-8");
dos.writeInt(b.length);

dos.write(b);

// CLIENT side

InputStream is = soc.getInputStream();
DataInputStream dis = new DatalInputStream(is);
int length = dis.readInt();

byte[] b = new byte[length];

dis.readFully(b);

String date = new String(b,“UTF-8");

Encoding may differ
from one VM to
another

Advice is to use
UTF-8/UTF-16

© F. Boyer, UGA Basics of Distributed Programming — Info4

25

Paying attention to String encoding

// SERVER side
OutputStream os

DataOutputStream dos =
new Date();

Date date =

soc.getOutputStream();
new DataOutputStream(os);

dos .writeUTF (date.toString());

// CLIENT side

InputStream is= soc.getInputStream();

DataInputStream dis =
dis.readUTF();

String date =

new DataInputStream(is);

Other option for
exchanging strings

o writeUTF
e readUTF

(manage the length &
use UTF-8)

© F. Boyer, UGA

Basics of Distributed Programming — Info4

26

Flushing data to send

// SERVER side
OutputStream os = soc.getOutputStream();

DataOutputStream dos=new
DataOutputStream(os);

Date date = new Date();
dos.writeUTF (date.toString());
dos.flush();

// CLIENT side
InputStream is = soc.getInputStream();

DataInputStream dis = new
DataInputStream(is);

String date = dis.readUTF();

Do we need to flush the data to
send?

e Not obviously at each
write

e Can be made when bytes
to send have been
accumulated in the
stream

e [t forces the transfer of
the data into the low level
buffers

e Closing a stream forces a
flush

© F. Boyer, UGA

Basics of Distributed Programming — Info4 27

Sending and receiving objects

// SERVER side

while (true) {
Socket soc = server.accept();
OutputStream os = soc.getOutputStream();
Date date = new Date();
ObjectOutputStream oos=new ObjectOutputStream(os);
oos.writeObject (date);
oos.close();

// CLIENT side

Socket soc= new Socket(serverHost,serverPort);
InputStream is = soc.getInputStream();
ObjectInputStream ois = new ObjectInputStream(is);
Date date = (Date) ois.readObject();

ois.close();

We can also exchange
any object that
implements the
Serializable interface

© F. Boyer, UGA Basics of Distributed Programming — Info4

28

Object Serialization

B Object > byte[], byte[] > Object
B Any class may implement the Serializable interface

If it does, instances of that class can be serialized
B Serialization is a deep copy
Recursive serialization along object references

Sharing is respected

deserialization

=

serialization

= [[111

B We'll see more on serialization later

© F. Boyer, UGA Basics of Distributed Programming — Info4 29

Outline

H Introduction to sockets

B Point-to-point communication with TCP sockets (in Java)

B Point-to-point communication with UDP sockets (in Java)

B Group communication with sockets

B Client-server programming with sockets

© F. Boyer, UGA Basics of Distributed Programming — Info4

30

Java sockets over UDP

B Communicating in the unconnected mode

UDP protocol allows to send packets of data, called datagrams

A datagram is an independent self-contained message whose
arrival and arrival time are not guaranteed

© F. Boyer, UGA Basics of Distributed Programming — Info4

31

Java classes related to UDP

B java.net.DatagramPacket

Represents a data packet

% Essentially a byte buffer
% Maximum length given by DatagramSocket. getReceiveBufferSize()

Includes an InetAddress and port number

B java.net.DatagramSocket

Used for sending and receiving datagram packets

© F. Boyer, UGA

Basics of Distributed Programming — Info4 32

Example of Java sockets/UDP

import java.net.*;
// SERVER side

int port = 1234;
DatagramSocket soc = new DatagramSocket(port);

while (true) {

byte[] buf = new byte[256];

DatagramPacket packet = new DatagramPacket (buf, buf.length);
serverSoc.receive (packet);

String request=new String(packet.getData());

byte reply = new byte[128];
InetAddress clientAddr = packet.getAddress();
int clientPort = packet.getPort();

soc.send(packet);

packet = new DatagramPacket(reply, reply.length, clientAddr, clientPort);

© F. Boyer, UGA Basics of Distributed Programming — Info4

33

Example of Java sockets/UDP

import java.net.*;
// SERVER side

int port = 1234;
DatagramSocket serverSoc

while (true) {

byte[] buf = new byte]
DatagramPacket packet
serverSoc.receive (pach

byte[] reply = ..
InetAddress clientAdd
int clientPort = packe
packet = new Datagram
soc.send (packet) ;

import java.net.*;
int serverPort 1234;
String serverHost = ...;

// SERVER side

DatagramSocket soc new DatagramSocket();

byte[] buf =
InetAddress serverAddr=InetAddress.getByName(serverHost);
DatagramPacket packet new DatagramPacket (buf,
buf.length, serverAddr, serverPort);

clientSoc.send(packet);

packet new DatagramPacket (buf, buf.length);
soc.receive (packet);

String reply=new String(packet.getData());
System.out.println(reply);"

© F. Boyer, UGA

Basics of Distributed Programming — Info4 34

Outline

H Introduction to sockets

B Point-to-point communication with TCP sockets (in Java)

B Point-to-point communication with UDP sockets (in Java)

B Group communication with sockets

B Client-server programming with sockets

© F. Boyer, UGA Basics of Distributed Programming — Info4

35

Java Multicast

B Based on UDP sockets
Datagram packets (same as before)

Java class MulticastSocket extends DatagramSocket

B Relies on IP-level multicast
Multicast IP adresses

Class D addresses are reserved for multicast
In the range 224.0.0.0 to 239.255.255.255

A multicast group is just a multicast address and port

© F. Boyer, UGA Basics of Distributed Programming — Info4

36

Java Multicast

B Multicasting to a group

Create a datagram packet

Make a normal UDP send, to the group InetAddress and port

B Joignhing a multicast group

Create the multicast socket with the group port
Join the multicast group, use the multicast address

Receive messages multicasted to the group

B Leaving a multicast group

Explicit departure

© F. Boyer, UGA

Basics of Distributed Programming — Info4

37

Joining a group and receiving messages

import java.net.*;

int groupPort = 5000;
InetAddress groupAddr = InetAddress.getName(”225.4.5.6");

MulticastSocket soc = new MulticastSocket (groupPort);
soc.joinGroup (groupAddr) ;

byte buf[] = new byte[1234];
DatagramPacket packet = new DatagramPacket(buf, buf.length);
soc.receive(packet);

soc.leaveGroup (groupAddr) ;
Soc.close();

}

© F. Boyer, UGA Basics of Distributed Programming — Info4

38

Sending to a group

import java.net.¥*;

int groupPort = 5000;
InetAddress groupAddr = InetAddress.getName(“225.4.5.6");

MulticastSocket soc = new MulticastSocket();

byte buf[] = new byte[1l0];
For (int i=0; i<buf.lenght; i++)
buf[i] = (byte)i;

DatagramPacket packet = new DatagramPacket(buf, buf.length, groupAddr,
groupPort);

Byte ttl = 1;
soc.send(packet, ttl);

soc.close();

}

© F. Boyer, UGA Basics of Distributed Programming — Info4

Java Multicast

B Limitations
IP multicast is supported by many routers

% But most Internet providers forbid IP multicast
% Over the public Internet, multicast is simply not available

Usable on local LAN

B If you need multicast features, use a Middleware solution
Middleware built above IP or UDP or TCP/IP
% Using point to point messages
% Provides different properties(ordererd, reliable, ..)

© F. Boyer, UGA Basics of Distributed Programming — Info4 40

Outline

H Introduction to sockets

B Point-to-point communication with TCP sockets (in Java)

B Point-to-point communication with UDP sockets (in Java)

B Group communication with sockets

B Client-Server programming with sockets

© F. Boyer, UGA Basics of Distributed Programming — Info4

41

Socket-based Server Design

B Server: a process that receives requests from remote clients,
"execute" the requests and replies to the clients

B Socket-based: clients and server communicate through the
socket layer

client requests

=N Network ~ request
etwor '
clients] « processing

server responses

remote server

© F. Boyer, UGA Basics of Distributed Programming — Info4 42

Server design

B Three main models

Sequential: a given thread processes incoming requests in
sequence

Parallel : multi-threaded (most common case) or multi-processes

Replicated: a same request is processed by several threads or
processes

© F. Boyer, UGA Basics of Distributed Programming — Info4 43

Multi-threaded TCP Server

client socket server port ~listening socket

\ listening thread

\I _comm. socket

_client port

Parallel

| VA worker
7 threads

© F. Boyer, UGA Basics of Distributed Programming — Info4 44

Multi-threaded TCP server: basic design

class MultiThreadedTCPServer {

public static void main(String[] args) throws IOException {
initComm();
while (true) {
Socket soc= socListen.accept();
// create a new worker for each client
Worker worker = new Worker(soc).start();

Class Worker extends Thread {
Worker (Socket soc) {..}
public void run(){
// receive request from soc, process it and reply to client
// do this as many times as required (session-oriented communication)
// at the end, close soc

}

© F. Boyer, UGA Basics of Distributed Programming — Info4 45

Multi-threaded TCP server: pool-based design

client
requests

/]

Gain thread

Vol V AN

_

worker threads

P VAVAY;

Request queue

(prod-cons buffer)

request
processing T

/

server

server
responses

© F. Boyer, UGA

Basics of Distributed Programming — Info4

46

Multi-threaded TCP server: pool-based design

class MultiThreadTCPServer {
public static void main(String[] args) throws IOException {
initComm() ;
ProdCons clientsBuffer = new ProdCons(..);
while (true) {
Socket soc= socListen.accept();
clientsBuffer.put(soc);

Class Worker extends Thread {
Message m;
Worker (ProdCons clientsBuffer) {this.clientsBuffer = clientsBuffer;}

public void run(){
while (true)/{
Socket soc= clientsBuffer.get();
// receive request from soc, process it and reply to client
// do this as many times as required (session-oriented communication)
// at the end, close soc

}

© F. Boyer, UGA Basics of Distributed Programming — Info4 47

Multi-threaded UDP server

class MultiThreadServer {
public static void main(String[] args) throws IOException {
initComm() ;
while (true) {
Message message = receiveMessage();
Worker worker = new Worker (message).start();

Class Worker extends Thread {
Message m;
Worker (Message m) {this.message = m;}
public void run(){
// get request and client port from m,
// process request
// reply to client

© F. Boyer, UGA Basics of Distributed Programming — Info4

48

Multi-threaded UDP server: pool-based design

class MultiThreadUDPServer {
public static void main(String[] args) throws IOException {
initComm() ;
ProdCons messagesBuffer = new ProdCons(..);
while (true) {
Message message = receiveMessage() ;
messagesBuffer.put (message);

Class Worker extends Thread {
Message m;
Worker (ProdCons messagesBuffer) {this.messagesBuffer = messagesBuffer;}

public void run(){
while (true)/{
Message message = messagesBuffer.get();
// process the message
// reply to client
}
}

© F. Boyer, UGA Basics of Distributed Programming — Info4 49

