
Distributed Systems

Fundamentals – Shared Store

Fabienne Boyer
Reprise du cours d‘Olivier Gruber

Université Joseph Fourier

Projet ERODS (LIG)

Message Fundamentals

λ Today's Lecture
λ The problem:

- Sharing data between multiple processes (read and write access)
- When accessing something means acquiring a copy through messages
- When updating a local copy requires sending notification messages

λ Discussing consistency
- How are the different processes seeing each other reads and writes?

λ Multi-cores – memory Illustration
λ Could be JVM – object store

cache
update

write
request

Core Core Core

memory
write

Core Core Core

memory
read

L1 cache L1 L1

MEMORY MEMORY

λ Notations
λ Read operation at process Pi on data x returning the value a

- Ri(x)a
λ Write operation at process Pi on data x writing the value b

- Wi(x)b
λ Time flows from left to write
λ All data items are initialized to NIL

P1:
P2:

W1(x)a
R2(x)NIL R2(x)a

reading default NIL value sometime before the read, P2 replica is updated
with the value written by P1

Useful Notations

λ Processes
λ We have N processes
λ We have a shared data store with data items

P1: R(x)___1 W(x)2 R(x)_________2 R(x)_____2

x=1 Store x=2

read
write-
through

P2: R(x)___1 R(x)____1 R(x)_____2

Shared Store

λ Discussion
λ Like a normal shared memory, requires the use of synchronization
λ Poor performance (latencies)

P1: R(x)___1 W(x)2 R(x)_________2 R(x)_____2

x=1 Store x=2

read
write-
through

P2: R(x)___1 R(x)____1 R(x)_____2

Shared Store

λ Introducing local caches
λ One local cache per process
λ Shorter latencies, but we need a consistency protocol

- Store must remember who has a cached copy of each data item
- Must be able to callback caches to install updates

P1: R(x)___1 W(x)2 R(x)2 R(x)2

x=1

x(1)=1

x=2 x=2

Store x(1,2)=2

update

read write-
through

x=1 x=2

P2: R(x)___1 R(x)1 R(x)2

Cache

Cache

x(1,2)=1

Shared Store

λ Introducing cache flushes
λ Caches may overflow, we need to flush some cached data items

P1: R(x)___1 W(x)2

x=1

x(1)=1

x=2

Store x(1,2)=2

update

read write-
through

x=1 x=2

P2: R(x)___1 R(x)1 R(x)2

Cache

Cache

x=?

flush

x(1,2)=1

Shared Store

λ Cache Design
λ How do we maintain the store copy lists?
λ So to avoid unnecessary update messages

P1: R(x)___1 W(x)2

x=1 x=2

Store

update

read

write-
through

x=1 x=2

P2: R(x)___1 W(x)3 R(x)3

Cache

Cache

x=?
flush

x=3

unnecessary
update

x(1)=1 x(1,2)=1 x(1,2)=2 x(1,2)=3

Shared Store

λ Cache Design
λ Maintaining the store copy lists

- Background messages
- Time-To-Live caches

P1: R(x)___1 W(x)2

x=1 x=2

Store

update

read

write-
through

x=1 x=2

P2: R(x)___1 W(x)3 R(x)3

Cache

Cache

x=?

x=3

flush

x(1)=1 x(1,2)=1 x(1,2)=2 x(2)=3 x(2)=2

Shared Store

λ Cache Design
λ Use FIFO communication channels!

- With TCP/IP, requires to keep sockets open
- With UDP, you need to implement FIFO/lossless

P1: R(x)___1 W(x)2 R(x)___1 R(x)1

x=1 x=2

Store

update

read write-
through

x=1 x=2

P2: R(x)___1 R(x)1 R(x)2

Cache

Cache

x=1 x=?
flush

x(1)=1 x(1,2)=1 x(1,2)=2

reading an old value

Shared Store

λ Overview
λ Shared data store
λ Cache with flush and consistency protocol over FIFO channels

P1: R(x)___1 W(x)2 R(x)___2 R(x)2 R(x)3

x=1

x(1)=1

x=2

Store x(1,2)=2

update

read write-
through

x=1 x=2

P2: R(x)___1 R(x)1 R(x)2 W(x)3

Cache

Cache

x=2

x(1,2)=1

x=?

flush

x(2)=2 x(1,2)=2

write-
through

x=3

x(1,2)=3

x=3

Shared Store

P1:
P2:

W1(x)a
W2(x)b

P3:
P4:

R3(x)a
R4(x)a

R3(x)b
R4(x)b

P1
x=a;

P2
if (x==a)
 x=b;

P3
switch(x)
case a:

 …
case b:

 ...

P4
switch(x)
case a:

 …
case b:

 ...

R2(x)a

P1 x=a

x=a
x=a

P4

P3

P2

W1(x)a

The problem

P1:
P2:

W1(x)a
W2(x)b

P3:
P4:

R3(x)a
R4(x)a

R3(x)b
R4(x)b

P1
x=a;

P2
if (x==a)
 x=b;

P3
switch(x)
case a:

 …
case b:

 ...

P4
switch(x)
case a:

 …
case b:

 ...

R2(x)a

write
request

x=a

x=a

x=b

x=b

P1 P2

P3

P4

R2(x)a
W2(x)b

The problem

λ Consistency definition
λ Essentially a contract between processes and a data store

λ Different models are possible
λ How would we describe the behavior of our shared store?

cache
update

write
request

P1: R(x)___1 W(x)2

x=1

x(1)=1

x=2

Store x(1,2)=2

update

read write-
through

x=1 x=2

P2: R(x)___1 R(x)1

Cache

Cache

x(1,2)=1

x=?

flush

x(2)=2

Consistency Models

λ Defined by Lamport (1979)
λ Memory works as expected with multiple processes

The result of any execution is the same as if the read and write operations
by all processes on the data store were executed in some sequential order
and the operations of each individual process appear in this sequence
in the order specified by its program.

P1:
P2:

W1(x)a

R3(x)b R3(x)a
W2(x)b

R4(x)b R4(x)a

P3:
P4:

sequentially consistent

possible equivalent sequential order:

 W2(x)b R3(x)b R4(x)b W1(x)a R3(x)a R4(x)a

Sequential consistency

P1:
P2:

W1(x)a

R3(x)b R3(x)a

W2(x)b

R4(x)b R4(x)a

P3:
P4:

Store

P1:
P2:

W1(x)a

R3(x)b R3(x)a
W2(x)b

R4(x)b R4(x)a

P3:
P4:

Sequential Consistency

P1:
P2:

W1(x)a

R3(x)b R3(x)a
W2(x)b

R4(x)b R4(x)a

P3:
P4:

 W2(x)b R3(x)b R4(x)b W1(x)a R3(x)a R4(x)a

Different possible equivalent sequential orders,
as if executed by a single processor,
on the same memory content

Sequential Consistency

P1:
P2:

W1(x)a

R3(x)b R3(x)a
W2(x)b

R4(x)b R4(x)a

P3:
P4:

 W2(x)b R3(x)b R4(x)b W1(x)a R3(x)a R4(x)a

Different possible equivalent sequential orders,
as if executed by a single processor,
on the same memory content

Sequential Consistency

The result of any execution is the same as if the read and write operations
by all processes on the data store were executed in some sequential order
and the operations of each individual process appear in this sequence
in the order specified by its program.

P1:
P2:

W1(x)a

R3(x)b R3(x)a
W2(x)b

R4(x)a R4(x)b

P3:
P4: not sequentially consistent

no possible equivalent sequential order:

 W2(x)b R3(x)b W1(x)a R3(x)a R4(x)a R4(x)b

 W1(x)a R3(x)a R4(x)a W2(x)b R3(x)b R4(x)b

can't read the value b from x

violate P3 local sequential order

Sequential Consistency

P1:
P2:

W1(x)a

R3(x)b R3(x)a

W2(x)b

R4(x)a R4(x)b

P3:
P4:

Store

P1:
P2:

W1(x)a

R3(x)b R3(x)a
W2(x)b

R4(x)a R4(x)b

P3:
P4:

Sequential Consistency

P1:
P2:

W1(x)a

R3(x)b R3(x)a

W2(x)b

R4(x)a R4(x)b

P3:
P4:

Store

P1:
P2:

W1(x)a

R3(x)b R3(x)a
W2(x)b

R4(x)a R4(x)b

P3:
P4:

Sequential Consistency

λ Non-Sequential Executions
λ Impossible when a totally-ordered multicast is used to multicast updates
λ In other words, the system we just built only permit sequential executions

P1:

P2:

W1(x)a

W2(x)b

P3:

P4:

R3(x)b R3(x)a

R4(x)a R4(x)b

Impossible, would violate totally-order multicast
The multicast will reorder the received update messages

Sequential Consistency

λ Weaker Consistency
λ Harder to use, potentially more parallelism
λ Causality

- If an event E2 is caused or may be influenced by an event E1
- Causality requires that everyone sees the event E1 before the event E2

Writes that are potentially causally related must be seen by all processes
in the same order. Concurrent writes may be seen in a different order on
different machines.

P1:
P2:

W1(x)a
R2(x)a W2(x)b

P3:
P4:

R3(x)a
R4(x)a

W1(x)c

R3(x)c
R4(x)b

R3(x)b
R4(x)c

concurrent writes different orders

Causal Consistency

P1:
P2:

W1(x)a
R2(x)a W2(x)b

P3:
P4:

R3(x)b
R4(x)a

R3(x)a
R4(x)b

causal writes

P1:
P2:

W1(x)a
W2(x)b

P3:
P4:

R3(x)b
R4(x)a

R3(x)a
R4(x)b

removed the causal dependency: R2(x)a

R2(x)a

causally
consistent now

concurrent writes
non-causally related

not causally consistent
execution

cache
update

Causal Consistency

P1:
P2:

W1(x)a
W2(x)b

P3:
P4:

R3(x)b
R4(x)a

R3(x)a
R4(x)b

P1
x=a;

P2
x=b;

P3
switch(x)
case a:

 …
case b:

 ...

P4
switch(x)
case a:

 …
case b:

 ...

Sequential Consistency:
 both P3 and P4 see (a,b)
 both P3 and P4 see (b,a)

Causal Consistency:

 P3 see either (a,b) or (b,a)
 P4 see either (a,b) or (b,a)

Causal consistency covers 99% of
the natural programming cases...

If the assignments of P1 and P2 are not ordered,
how could the rest of the program depends
on that order?

Causal Consistency

P1:
P2:

W1(x)a
W2(x)b

P3:
P4:

R3(x)a
R4(x)a

R3(x)b
R4(x)b

P1
x=a;

P2
if (x==a)
 x=b;

P3
switch(x)
case a:

 …
case b:

 ...

P4
switch(x)
case a:

 …
case b:

 ...
Sequential Consistency:

 both P3 and P4 see (a,b)

Causal Consistency:

 both P3 and P4 see (a,b)

Obviously, the two writes are causally dependent,
Hence they must be seen in the order...

Since the assignments of P1 and P2 are ordered,
it would be obviously wrong to see the order (b,a)
on process P3 and P4

R2(x)a

cache
update

Causal Consistency

void lock(int i) {
 flags[i] = true;
 last = i;
 while (flags[1-i] && last==i);

}

void unlock(int i) {

 flags[i] = false;
}

P0:

P1:

W0(last)0

W1(last)1
updates

W0(flags[0])true

W1(flags[1])true

R0(flags[1])true R0(last)1

R0(flags[0])true R0(last)0

Both processes got the lock!

An example of a code that does not work on
a memory with causal consistency...

Because writes are causally independent,
they can be seen in different orders
by different processes

Peterson’s Algoritm

void lock(int i) {
 flags[i] = true;
 last = i;
 while (flags[1-i] && last==i);

}

void unlock(int i) {

 flags[i] = false;
}

P0:

P1:

W0(last)0

W1(last)1

delivery

W0(flags[0])true

W1(flags[1])true

R0(flags[1])true R0(last)0

R0(flags[0])true R0(last)0

P1 gets the lock first...

Using sequential consistency,
The writes are all totally ordered,
hence both processes see them in the same order.

delivery

delivery delivery

Two independent multicast,
since they are on different items.

Peterson’s Algorithm

λ Design
λ Requires that each process keeps tracks of which write operations it has seen

- One may use vector clocks for this
λ Replica coherence

- One vector clock per data item
λ Clock ticks on writes (as in causally-ordered multicast)

- On local writes, multicast update messages
λ Causally-ordered multicast of the value
λ Timestamped with the vector clock

Causal Consistency

P1:

P2:

W1(x)a

R2(x)a W2(x)b

P3:

P4:

R3(x)b

R4(x)a

R3(x)a

R4(x)b

4,1,0,0

4,0,0,0

impossible,
local value is b

4,1,0,0

4,0,0,0

4,1,0,0

a(4,0,0,0)

b(4,1,0,0)

b(4,1,0,0)

4,0,0,0

4,0,0,0

4,0,0,0

Causal Consistency

P1:

P2:

W1(x)a

R2(x)a W2(x)b

P3:

P4:

R3(x)b

R4(x)a

R3(x)a

R4(x)b

4,0,0,0

3,0,0,0

4,0,0,0

still impossible

4,1,0,0

4,0,0,0

4,1,0,0

a(4,0,0,0)

b(4,1,0,0)

delayed delivery

4,0,0,0 4,1,0,0

Causal Consistency

P1:

P2:

W1(x)a

R2(x)a W2(x)b

P3:

P4:

R3(x)b

R4(x)a

R3(x)a

R4(x)b

3,1,0,0

4,1,0,0

4,0,0,0

3,1,0,0

a(4,0,0,0)

b(3,1,0,0)

b(3,1,0,0)

4,1,0,0

4,0,0,0

3,0,0,0

3,0,0,0

3,0,0,0

Causal Consistency

λ Eventual Consistency
λ Weaker consistency, but rather easy to use

- Corresponds to a class of systems with simpler requirements
λ DNS example:

- Everybody reads, only the domain owner updates DNS records
λ It is ok to read out of date records for a while
λ Use lazy background update messages

- Eventually, copies will get consistent
λ Web example:

- Same reality about the Web and web page updates
- Even including in-network caching à la Akamai

Eventual Consistency

λ Are they related?
λ Consistency defines the behavior of your “distributed memory”
λ Synchronization provides tools to control a “distributed execution”

λ Absolutely
λ Even with a sequentially consistent memory, one needs mutual exclusion
λ Consistency protocols applied on every memory operations are costly
λ Considered memory consistency and synchronization is more efficient

Synchronization and Consistency

λ Let's discuss the Compare-And-Swap instruction...
λ Used in multi-core environment to implement mutual exclusion and other locks
λ To illustrate the difference between concurrency control and memory consistency

λ CAS principle
λ C-like code given below
λ Only works if the CAS instruction is atomic (hardware locking the memory bus)

boolean CAS(int *lock, int value, int new_value) {
 if (*lock==value) {
 *lock = new_value;
 return true;
 }
 return false;
}

void lock(int *lock, int owner) {
 while(!CAS(*lock, EMPTY, owner);
}

Synchronization and Consistency

P1:

P2:

 R1(*lock)EMPTY W1(*lock)P1

R2(*lock)EMPTY W2(*lock)P2

boolean CAS(int *lock, int value, int new_value) {
 if (*lock==value) {
 *lock = owner;
 return true;
 }
 return false;
}

Store

DOES NOT WORK!

We need a locking procotol to properly acquire locks
and we need a consistency protocol to properly
read and write correct values
In a multi core machine, the CAS instruction locks
the shared memory bus.

Synchronization and Consistency

λ Basic Idea
λ Avoid double work... since we need both consistency and synchronization protocols
λ For instance, we have since that acquiring a lock and sequential consistency
λ both require something based on the same technique as our totally-ordered
λ multicast based on logical clocks

λ Principles
λ Associate a monitor with one or more data items

- Called protected data items
λ Coordinate consistency and synchronization protocols

- Monitor operations must respect sequential consistency
λ Enter and leave critical sections are seen in the same order by all processes

- Data consistency
λ All writes on protected items must be visible locally before one
λ enters the critical section
λ Accesses (reads or writes) on protected items outside the critical
λ section are undefined

Synchronization and Consistency

p1 E(x) W(x)a W(x)b L(x)
p2 R(x)a R(x)b E(x) R(x)b
p3 R(x)a E(x) R(x)b
p4 R(x)b E(x) R(x)b

p1 E(x) W(x)a W(x)b L(x)
p2 E(x) R(x)a

possible execution

impossible to read the value a

Examples

Synchronisation and Consistency

λ Eager Approach
λ Only enters the critical section once all local copies are up to date

- Acquiring the critical section and receiving pending updates must be coordinated
λ When leaving the critical section

- Eagerly send local updates towards other replicas

P1:

P2:

E(x) W1(x)a L(x)

E(x) R2(x)a W2(x)b
x

P2: E(x) R3(x)a W3(x)b

impossible
must wait for the update

Release Consistency

λ Lazy Approach
λ Upon entering the critical section

- Pull missing updates on protected items
- Optimization: pigging back updates on granting access

λ When leaving the critical section
- Nothing needs to be done

P1:

P2:

 E(x) W1(x)a L(x)

E(x) R2(x)b W2(x)c L(x)

x=a

P2: E(x) R3(x)a W3(x)b L(x)
request

x=b
request

Entry Consistency

Discussing Consistency

P1:

P2:

E(x)E(y) W1(x)a W1(y)b L(y)L(x)

E(x) R2(x)a R2(y)NIL E(y) R2(y)b L(y)L(x)

x(a)

y(b)

stale read because it is not
within a critical section for data item y

P3: E(y) R2(y)b L(y)

λ Undefined Semantics
λ Accessing protected data items outside critical sections

y(b)

