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Abstract—In this paper, we propose a reconfiguration protocol
that can handle any number of failures during a reconfiguration,
always producing an architecturally-consistent assembly of com-
ponents that can be safely introspected and further reconfigured.
Our protocol is based on the concept of Incrementally Consistent
Sequences (ICS), ensuring that any reconfiguration incrementally
respects the reconfiguration contract given to component devel-
opers: reconfiguration grammar and architectural invariants. We
also propose two recovery policies, one rolls back the failed
reconfiguration and the other rolls it forward, both going as
far as possible, failure permitting. We specified and proved the
reconfiguration contract, the protocol, and recovery policies in
Coq.

Index Terms—Dynamic reconfiguration, Component models,
Robustness

I. INTRODUCTION

A current trend in dynamically reconfigurable systems is the
use of a model-driven approach to govern the evolution and
maintenance of component assemblies [3][5][11][20]. In this
approach, an administrator (or an autonomic tool) is provided
with a component-based model of the software architecture
of the complex system he manages. As needed, he can
introspect that model to analyze the current architecture and
shape a desired software architecture. Given as input these
two architectures, a reconfiguration protocol is responsible for
driving the effective evolution of the managed system from its
current architecture towards the desired target architecture.

Traditionally, a reconfiguration protocol is based on an
architectural diff that compares the current and target architec-
tures, producing a set of elementary reconfiguration operations
to apply on software components [21][3][13][15][23]. Through
this apply process, the reconfiguration protocol evolves the
component assembly from its current architecture towards the
desired one, one reconfiguration operation at a time. In [21],
the authors discuss the crucial role of this protocol: a safe
ordering of reconfiguration operations.

A safe ordering must respect the reconfiguration contract
under which components have been programmed. This con-
tract classically defines a reconfiguration grammar specifying
legal sequences of reconfiguration operations per component.
With this knowledge, developers design each component as
a finite state machine that reacts to the reconfiguration op-
erations issued by the reconfiguration protocol. As briefly
described in [21], the traditionally-accepted ordering is the one
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derived from the reconfiguration protocol originally introduced
in [17].

We argue that this traditional ordering suffers from two main
limitations today. Firstly, component models have evolved
since then, introducing different semantics on component
dependencies, optional and mandatory [8][9][10][25], which
controls if components are started or stopped. This evolution
of the component paradigm induces an evolution of the pro-
gramming contract given to component developers, extending
the reconfiguration grammar and introducing architectural in-
variants. While we suspect that the impacts on the ordering
of reconfiguration operations has been considered by modern
component-based systems, to the best of our knowledge, these
impacts have never been discussed in any published materials.

Secondly, the traditional ordering does not support failures
occurring at reconfiguration time. A component may indeed
fail to successfully apply a reconfiguration operation. To face
this limitation, [13][14][19] advocate a rollback strategy based
on inverse operations. However, this approach only tolerates
a single failure since the rollback only succeeds if all inverse
operations succeed. Given that inverse operations are regular
reconfiguration operations, there is no guarantee that they will
succeed. In case an inverse operation fails, the rollback must
be interrupted, leaving human administrators or autonomic
managers with the difficult task of introspecting and repairing
a partially rollbacked and potentially inconsistent assembly.

The contributions of our work are the following. First, we
propose the first reconfiguration protocol that orders recon-
figuration operations such as to respect the reconfiguration
contract given to component developers, fulling specifying
both the reconfiguration grammar and the architectural invari-
ants that must be respected. Second, our protocol is robust,
respecting the reconfiguration contract even in the case of
multiple failures occurring during a reconfiguration. Third, we
formalized the complete protocol and proved it using the Coq
proof assistant [4], providing one of the strongest degree of
guarantee currently available with formal methods.

The core principle behind our solution is that the reconfigu-
ration protocol always evolves the component assembly from
one consistent architecture to another consistent architecture,
only through a path of architecturally consistent architectures.
This approach permits to manage failures as regular reconfig-
urations: when a component fails to execute a requested oper-
ation, our protocol stops, marks the component as failed, and



then propagates the effects of that failure throughout the com-
ponent assembly. Since this propagation is a reconfiguration, it
may induce further failures that are processed identically. Once
the impacts of all failures have been propagated, the managed
system is architecturally consistent, which means that it can be
safely introspected and further reconfigured. Importantly, this
means that an administrator or an autonomic tool can safely
introspect this architecture and decide how to best repair the
occurred failures.

The remaining of the paper is structured as follows. Sec-
tion II discusses component models. In Sections IIT and IV, we
detail our reconfiguration protocol in the absence of failures,
while Section V is devoted to the robust version of the
protocol. Section VI evaluates the proposed protocol. Finally
we discuss related works in Section VII and we conclude in
Section VIIIL.

II. COMPONENT MODEL

This section briefly recalls the growing consensus amongst
component models [8][9][10][25] regarding the concept of a
component, its lifecycle, and its dependencies, as well as the
reconfigurability of a component assembly.

A component is a software entity that defines a set of exports
and imports. Exports describe services that the component
is willing to provide while imports describe services that it
requires to function properly. Hence, a component assembly
can be shaped by wiring imports to exports. Imports are
given either a mandatory or optional semantics; while optional
imports may be wired or unwired at any time during the
lifetime of a component, mandatory imports should be wired
before a component is started. In other words, to be fully
functional, a component must have all its mandatory imports
wired to exports.

The main reconfiguration operations that are provided are
the following.

Reconfiguration operations

e CONSTRUCT/DESTRUCT components
e WIRE/UNWIRE components
e START/STOP components

Each component implements all these reconfiguration op-
erations in a component-specific manner but following a
reconfiguration contract including a reconfiguration grammar
and architectural invariants. The reconfiguration grammar, as
depicted in Figure 1, specifies in which order and in which
conditions a reconfiguration operation may be invoked. This
grammar relies on three main lifecycle states for a component:
STOPPED, STARTED, and FAILED. When first constructed,
a component is in the STOPPED state, meaning it is not
functional yet. A component may reach the STARTED state
once it is resolved, i.e., once all its mandatory imports are
wired. A component may fail at any time, reaching the FAILED
state. Once failed, a component may be removed from the
assembly.

Architectural invariants, defined below, constrain the ar-
chitecture of a component assembly that corresponds to the
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Fig. 1. Reconfiguration grammar

description of which component compose the assembly, what
are their lifecycle states and how they are wired together. More
preciselly, architectural invariants correlate the components
lifecycle with the semantics of their imports (optional vs
mandatory). These invariants define an architecturally consis-
tent assembly of components, meaning an assembly that can
be safely introspected and reconfigured by an administrator
or an autonomic tool. They are not to be confused with
higher-level invariants that capture application-specific and
domain-specific knowledge. For instance, application-specific
invariants might state that an application only works if all
components are started, or that certain components may be
stopped and the application is still operational. Hence, an
architecturally-consistent assembly might not be functional
from an overall application perspective, but it is reconfigurable
in order to re-establish a functional assembly.

Definition 1. Architectural invariants

All started components have all their mandatory imports
wired.

All started components are wired only to started compo-
nents.

There are no wires to/from failed or destructed compo-
nents

There are no cycles through mandatory imports'.

(14)

The reconfiguration grammar along with the architectural
invariants define the reconfiguration contract that enables com-
ponent developers to approach the design of a component as a
Finite State Machine. For instance, once started, a component
has the guarantee that all its mandatory imports have been
wired. Reversely, any component will be stopped before its
mandatory imports are unwired. This contract is therefore the
cornerstone of component design, helping developers to master
the difficult challenge of designing components that can be
dynamically reconfigured.

Notation

In the sequel, we use letters ¢, d to range over components,
and v,w to range over wires. A wire w links an import @
of a component ¢ to an export ¢ of another component ¢’;
we denote the source(c) by w.src and the destination(c’)
by w.dst. We also use letter o to range over reconfiguration
operations, which we separate into down operations: stop(c),

IThis is a widely-accepted mod-

els [8][91[10][25].
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unwire(w), destruct(c), fail(c),
construct(c), wire(i, e), start(c).

and up operations:

III. RECONFIGURATION CHALLENGE

A reconfiguration protocol [3][13][15][21][23] reconfigures
a component assembly according to a desired target archi-
tecture (specifiying which components should compose the
system, what are their lifecycle states, and how they should be
wired together according to Section II). Each reconfiguration is
organized as a session with two phases, as depicted in Figure 2.
In the prepare phase, a working copy of the current architec-
ture can be freely reshaped to define the target architecture®.
Then, during the commit phase, the reconfiguration protocol
evolves the managed system towards the target architecture by
applying reconfiguration operations.

The challenge of a reconfiguration protocol consists in find-
ing a correct sequence of reconfiguration operations. Indeed,
a naive approach consisting in computing an architectural
diff [17][21] and directly applying the corresponding recon-
figuration operations may violate the reconfiguration contract.
A very simple example illustrates this.

Let’s suppose that we have a simple assembly with three
started components ¢, ci, and co, with a mandatory wire w
from ¢ to cy. Let’s further suppose that the administrator
gives a target architecture where the three components are also
started, but where w now points to ce. The diff will produce
only two operations: unwire(w) and wire(c, c2). While the
architecture is consistent before and after the reconfiguration,
it goes through an inconsistent state: as soon as we apply the
unwire operation, we violate invariant (I;) since we have a
started component (¢) with an unwired mandatory import.

In order to always respect the reconfiguration contract,
the managed system should always be reconfigured through
incrementally consistent sequences:

Definition 2. Given an architecture A, an incrementally
consistent sequence (ICS) is a sequence o1,...,0, of re-
configuration operations such that:

2Note that the target architecture may also be selected from a version space
or generated through model-driven generative approaches.

unwired(w) =
if mandatory(w) stopped(w.src)
unwire(w)
stopped(c) =
for all w such that w.dst = ¢
if mandatory(w) stopped(w.src)
else unwired(w)
stop(c)
destructed(c) =
for all w such that w.src = ¢ or w.dst = ¢
unwired(w)
destruct(c)

Fig. 3. Propagation rules

1) for all i € [0,n], the architecture A; obtained by
successively applying the i first operations o1, . ..,0; to
A is consistent (Definition 1);

2) for all i € [1,n], the operation o; is allowed in the
state A; by the reconfiguration grammar (Figure 1).

Intuitively, a sequence is incrementally consistent if it can
be applied incrementally to a system without ever violating
the reconfiguration contract: architectural invariants (Defini-
tion 1) and reconfiguration grammar (Figure 1). Note that
incrementally consistent sequences can be composed to build
larger sequences that remain incrementally consistent. The
next section details how our reconfiguration protocol computes
and applies incrementally consistent sequences (ICSs).

IV. RECONFIGURATION PROTOCOL

When a reconfiguration session commits, using the current
and target architectures as inputs, the reconfiguration protocol
computes and applies an ICS that evolves the managed system
into the target architecture. To compute such an ICS, two
phases are necessary.

The first phase focuses on down operations, computing a
first architectural diff between the current and target archi-
tectures, called the Apply Down Set (ADS) (see Listing 1).
The ADS only contains down reconfiguration operations and
may be incomplete, as explained earlier. Hence, rather than
considering the ADS as a set of reconfiguration operations
that should be applied, the ADS is considered as a set of
reconfiguration goals that should be reached. For instance,
if we have an operation unwire(w) in the ADS, we will
consider that we have a goal unwired(w). Similarly, if we
have an operation stop(c), we will consider that we have a
goal stopped(c).

The difference between a reconfiguration operation and its
corresponding reconfiguration goal is that a reconfiguration
operation is a standalone operation whereas a goal may require
other goals to be reached in order to preserve the architectural
invariants. For instance, in the previous example, the goal
unwired(w) requires the goal stopped(w.src) to be reached
to preserve the invariant (I7).

Our protocol uses the propagation rules given in Figure 3
to saturate the ADS with the missing reconfiguration opera-
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Fig. 4. Ordering to obtain an ICS

tions, producing the Saturated Apply Down Set (SADS). The
first rule translates an unwired goal into the corresponding
unwire operation but also generates a stopped goal if the
wire to be removed is mandatory—thus enforcing the invari-
ant (I;). The second rule translates a stopped goal on a
component ¢ into the corresponding stop operation but also
generates additional goals to preserve the invariant (I3). The
third rule translates a destructed goal into the corresponding
destruct operation but also generates unwired goals for
all wires connected to or from the destructed component—
thus preserving the invariant (/3). Note that this propagation
always terminates; the only case where the algorithm could
loop is when trying to stop a component belonging to a
cycle of mandatory wires, which is precisely forbidden by the
invariant (Iy).

Then our protocol obtains a first ICS by ordering the
operations in the SADS such as to respect the reconfiguration
grammar, as depicted in Figure 4. Furthermore, the stop
operations are also ordered as to respect the invariant (I5).
Applying this ICS on the managed system ends the first down
phase of the commit. Note that to apply an ICS on the managed
system, the necessary quiescence must be established at the
level of the component runtime [17].

The second phase of the commit is concerned with up
operations. To obtain the Apply Up Set (AUS), it is necessary
to process an up diff between the current architecture that
has just evolved through down operations, and the unchanged
target architecture. Note that this up diff may only be com-
puted after the down diff has been computed and saturated,
as the saturation may forces additionnal down operations to
be processed, which will require a larger set of up operations
to reach the target architecture.

The AUS obtained from the up diff is saturated by definition
since architectural invariants do not require any propagation
regarding up operations. This AUS needs to be ordered into
an ICS, using the ordering algorithm (Figure 4). Furthermore,
as it was the case for stop operations, start operations are also
ordered as to respect invariant (I3). Applying this ICS ends
the second up phase of the commit.

Putting it all together, the two phases of the commit
are summarized below, explaining the algorithm given in
Listing 1:

1) Down Phase. Our protocol first computes the ADS by
processing a diff between the current (A¢) and target
(A7) architectures, saturates the ADS into the SADS,

commit(Ac, A7) {
// Reconfigure the architecture (Ac) of the managed system
// to match the target architecture (Ar)
assert(consistent(A¢c) && consistent(Ar));

ADS, AUS: sets of reconfiguration goals
SADS, SAUS: sets of reconfiguration operations
ICS: sequence of reconfiguration operations

// down phase
ADS = diff_down(Ac,AT);
SADS = propagate(Ac, ADS); // see propagation rules
ICS = order(Ac,SADS); // see Figure 4
¢ = apply(Ac,ICS);

// up phase

AUS = diff_up(A,,Ar);

ICS = order(Ar,AUS); // see Figure 4
¢ = apply(A¢,ICS);

assert(isomorph(AZ%,Ar));
return (A¢);

Listing 1. Commit algorithm

orders the SADS into an ICS, and finally applies that
ICS on the managed system, which evolves it to a new
current architecture Af..

2) Up Phase. Our protocol computes the AUS by process-
ing a diff between A}, and A, orders this AUS into an
ICS, and applies this ICS on the managed system with
the architecture A’., which evolves it to a new current
architecture AY..

At the end of the commit, the architecture of the managed
system (Af.) is isomorphic to the desired target architecture
(A7), and the system has been reconfigured through two ICS.

We conclude this section with an illustrative example.
Consider the managed system with the current architecture
A¢ from Figure 5, with four started components d, ¢, c¢q,
and co, mandatory wires w from d to ¢ and w; from c
to ¢1, and an optional wire v from ¢; to ¢ (invariant (Iy)
holds since it concerns only mandatory wires). Take A as
target architecture, where the wire w; is now replaced by a
mandatory wire wy from c to cs.

v
e
1 02

¢ [dl=1e]

c1

Fig. 5. Example of a reconfiguration session



The Apply Down Set returned by the first
architectural diff is just the singleton {unwired(w;)}.
By the above propagation rules, we get the
following saturated set of  down operations:
SADS = {unwire(w;),unwire(w), stop(c), stop(d)}.
This set is ordered into the following ICS:
ICS = wnwire(v), stop(d), stop(c), unwire(wy). Note

that the component d has to be stopped first because of its
mandatory dependency on c. By applying this sequence on
the managed system, we get an architecture A, where c,d
are stopped, and w is the only wire (see Figure 5). We can
finally engage in the up phase.

The second architectural diff between A, and Ap gives
the set: AUS = {wire(ws),wire(v), start(c), start(d)},
which is ordered as follows into the following ICS: IC'S =
wire(ws), start(c), start(d), wire(v). As expected, applying
this ICS on A, results in a managed system which is isomor-
phic to Ar.

V. ROBUST PROTOCOL

During the commit phase of a reconfiguration session, fail-
ures may occur since reconfiguration operations are invoked
on components and components may fail executing these
reconfiguration operations. We assume that a reconfiguration
operation that fails when invoked on a component ¢ only
impacted that component c. This section discusses how our
protocol recovers from such failures.

When a reconfiguration operation fails, the reconfiguration
protocol suspends the on-going reconfiguration and starts a
recovery process. This recovery process must not only mark
the component that just failed as FAILED, but it must also
propagate the impacts of that failure throughout the managed
system.

robust_commit(Ac,Ar) {
// Reconfigure the architecture (Ac) of the managed system
// to match the target architecture (Ar)
assert(consistent(Ac) && consistent(Ar));

[A,FailedComp] = commit(Ac,Ar);
if (FailedComp == null) return [A,0];
else return recover_current(A’c,{FailedComp});

}

recover_current(Ac,FailedSet) {
// account for failed components in the managed system
SADS = propagate(Ac, FailedSet);
ICS = order(Ac,SADS);
[A FailedComp] = apply(Ac,ICS);
if (FailedComp == null)
return [A¢,FailedSet];
else
return recover_current(A¢ FailedSet U {FailedComp});

}

Listing 2. Robust commit algorithm

The corresponding robust_commit algorithm, given in List-
ing 2, wraps the regular commit(Ac,Ar) algorithm given

earlier in Listing 1. When a failure occurs, the regular commit
suspends itself and returns the identification of the component
that just failed. The robust commit enters its recovery process
(recover_current), starting with a (FailedSet) that only contains
the component that just failed. It computes a saturated ADS
(SADS) for accounting this failure in the managed system,
using the three previous propagation rules (Figure 3) and the
following one for failed goals:
failed(c) =
for all w such that w.src = c or w.dst = ¢
unwired(w)

fail(c)

This SADS is then ordered into an ICS by ordering the
operations as depicted in Figure 4. Overall, this ICS prop-
agates the impacts of the failure throughout the managed
system and terminates by marking the component as FAILED.
Since applying this ICS invokes reconfiguration operations
on components, cascading failures may occur. Handling and
recovering such failures is no special case. The on-going
recovery suspends itself, the component that just failed is
added to the set of failed components, and a new recovery is
attempted. This fixpoint always terminates since the number
of components that may fail is finite. When this recovery
eventually completes, the managed system is architecturally
consistent.

From the perspective of the managed system, the entire
recovery phase appears as a sequence of ICSs, all interrupted
by new failures but for the last one that manages to complete
the recovery of a consistent assembly.

VI. EVALUATION

We evaluated our reconfiguration protocol along three main
aspects. First, we validated that our protocol always behaves
as expected. Second, we evaluated the usability of our ICS-
based approach to support advanced recovery policies. Third,
we evaluated the scalability of our protocol.

A. Proving the Protocol

To validate that our protocol always does what it is supposed
to do, we formalized and proved the entire protocol using
the Coq proof assistant [4]. Coq is an interactive theorem
prover, in the sense that it can be used to certify mathematical
proofs, using an interactive process where the user progres-
sively writes the proof with the help of the assistant. Unlike
automatic theorem provers or testing-based approaches, the
user has to provide a complete proof, a complex task that
makes it possible to consider arbitrarily complex problems,
providing one of the strongest degree of guarantee currently
available with formal methods. In particular, we proved that all
our algorithms behave correctly in all possible cases, including
the ones that could not be tested due to material restrictions
(memory or time).

The Coq development consists of about 2000 lines of Coq
code that can be browsed online [1]. Given two finite sets of
Components and Imports, an architecture is modeled by a
record:



Record arch :={
status: Component — Status;
wires: Component*Imports — option Component

}

where status is a function indicating whether a given com-
ponent is started, stopped, or failed, and wires is a function
describing how the imports of a component are wired to
other components. Reconfiguration operations are represented
using an union type op, and we define the meaning of
these operations using a function apply: archxop — arch.
Accordingly, we model the propagation algorithm as a function
propagate: archxop — list op, and the architectural diff
algorithm as a function of type arch*arch — 1ist op. Using
these functions together with auxiliary functions for sorting
lists of operations, we define a commit function, that takes a
current architecture and a target architecture and produces a
list of reconfiguration operations to be applied.

To model failures, we assume an arbitrary function:

eapply:

archxop*list Component — arch 4 Component

which applies a given operation to an architecture (knowing
that the components given by list Component are failed)
and can either return the new architecture, if the operation
could successfully be applied, or return a newly failed com-
ponent. We then define the robust_commit function as a
fixpoint which uses the above eapply function to simulate an
execution where an arbitrary number of failures may occur.

While we could state the various properties that should
be ensured by the protocol using only 14 theorems, 153
intermediate lemmas were required to prove them. Among the
high-level theorems, we proved that:

1) the commit algorithm always produces ICS, which
means by definition of an ICS that the architectural
invariants and the reconfiguration grammar are never
violated;

2) without failures, the commit algorithm always evolves
the source architecture to the target architecture;

3) the robust-commit algorithm properly acknowledges
failed components, whatever the number of failures;

4) all algorithms terminate.

Among the auxiliary lemmas, we had to prove that: 1. the
propagation algorithm produces saturated sets of reconfigu-
ration operations; 2. the above saturated sets can always be
ordered into an ICS; 3. the architecture reached after the down
phase makes it possible to reach the target architecture using
up operations only; 4. the diff algorithms are complete.

B. Leveraging our Protocol

We leverage our protocol to design two recovery policies—
Roll-Forward Policy (RFP) and Roll-Backward Policy (RBP),
see Listing 3—that both exploit the incremental consistency
of our approach. In case of failures, the RFP policy is an
automated attempt to pursue the reconfiguration as far as
possible towards the desired target, failure permitting. From
our previous work on repair management [24], it appeared

that doing as much as possible of the originally intended
reconfiguration may help the administrator to analyze and
understand the failure and its impacts. Conversely, the RBP
policy is an automated attempt to rollback the reconfiguration
session as much as possible, failure permitting as well.

// Policies for reconfiguring the architecture (Ac) of the
// managed system

RFP_commit(Ac,Ar) { // Roll-Forward Policy
[A,FailedSet] = robust_commit(Ac,Ar);
if (FailedSet == ()) return Af;
A’ = recover_target(Ar,FailedSet); // recover reachability
return RFP_commit(A_,T’);

}

RBP_commit(Ac,Ar) { // Roll-Backward Policy
[A,FailedSet] = robust_commit(Ac,Ar);
if (FailedSet == ()) return A
'T = recover_target(Ac FailedSet); // recover reachability
return RFP_commit(A,Ar);

}

recover_target(Ar,FailedSet) {
// account for failed components in target arch. (Ar)
SDAS = propagate(Ar, FailedSet)
ICS = order(Ar,SADS);
[A%-,_] = apply(Ar,ICS); // cannot fail
return A%;

Listing 3. Roll-Forward and Roll-Backward commit algorithms

In fact, these two policies differ in their choice of the target
architecture after a failure. For the Roll-Forward policy, we
keep the original target architecture (A in the RFP_commit
algorithm). For the Roll-Backward policy, we toss away the
original target architecture and replace it with the initial
architecture A; that the managed system had before it was
reconfigured.

Whichever is the new target architecture, it must be revised
to incorporate the failures that occurred. This is performed
by the (recover_target) algorithm given in Listing 3. Please
note that, since the target architecture is purely abstract,
reconfiguring it cannot induce cascading failures. With a target
architecture that is now reachable, our protocol can resume
its normal processing, pushing towards the chosen target
architecture, either roll-backing or roll-forwarding.

Notice that the Roll-Forward algorithm is a fixpoint, pushing
towards the chosen target as far as possible. Note also that
the Roll-Backward algorithm switches to the Roll-Forward
algorithm upon the occurrence of the first failure. The rationale
is that, despite new failures, the commit should keep pushing
towards the initial architecture of the system.

C. Case Study

In this section, we illustrate the use of our protocol to man-
age a Web application server whose architecture is depicted
in Figure 6(a). In the figure, A; and A, represent an HTTP
Daemon, T} and 75 represent a Servlet Engine, and DB,
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Fig. 6. Typical clustered Web architecture

represents a database server. All imports in the architecture
are mandatory.

1) Deployment Scenario: The first management task is the
initial deployment of the Web server. The administrator starts
with an initial current architecture that is empty and shapes
the desired target architecture depicted in Figure 6(a). When
the administrator commits the session, the reconfiguration will
result in the deployment of the overall system. The down phase
of our protocol computes an empty Apply Down Set since the
current architecture of the managed system is empty. The up
phase of our protocol (see Listing 1) computes the following
Apply Up Set:

Apply Up Set / commit algorithm

construct: Ty, To, DB,
wire: (11, DB;), (15, DBy)
start: Th, Ty, DB,
construct: A, As

wire: (A1, T1), (As, T5)
start: A1, As

Our protocol then orders this Apply Up Set into the follow-
ing ICS:

ICS / commit algorithm

construct: Ay, Ao, Ty, To, DBy
wire: (A1, Th), (A2, T3), (Th, DBy), (T, DBy)
start: DBl, Tl, TQ, Al, AQ

Without failures, the apply of this ICS results in the
deployment of the desired clustered Web server. Let’s now
force a failure to occur upon wiring Tomcat to the database
system (e.g., wire(11, D B1)). The administrator may choose to
suspend the reconfiguration session, knowing that the resulting
system is consistent and reconfigurable. In this particular
instance, the administrator would probably prefer to use the
Roll-Forward Policy (RFP_commit algorithm in Listing 3)
because isolated failures during a deployment usually do not
justify to rollback the entire deployment.

The Roll-Forward policy executes the recover_current algo-
rithm (Listing 2) that accounts for the failure of the Tomcat
instance 7% and produces the following ICS: fail(7}). Indeed,
propagating the failure of 73 has no effects since no compo-
nents were wired to 71} at the time it failed.

A1 T1

DB1 A1 T1

/ A2 T2

Target Architecture

DB1

A2 T2

DB2

Effective Architecture

Fig. 7. Target architecture with two databases

Then the Roll-Forward policy executes the recover_target
algorithm (Listing 3) that accounts for the failure of 77 in the
target architecture. 77 is marked as failed, which propagates in
isolating 77 (failed propagation rule). Removing mandatory
wires to 17 propagates into stopping components depending
on these wires (unwired propagation rule). Ultimately,
this produces the following ICS: stop(A;), unwire(A;, T1),
fail(77), leading to the target architecture that is depicted in
Figure 6(b).

Committing this recovered target architecture allows to get
a managed system that is running despite a partial failure
during its deployment. Moreover, it is consistent and thus
ready to be reconfigured again.

2) Sizing Scenario: We consider adding a new database
server (DBs) and balancing the Tomcat servers over the
two database servers, as depicted in Figure 7. Being given
the current and target architectures of Figure 7, our protocol
computes the following Apply Down Set and Apply Up Set:

Apply Down Set Apply Up Set

- unwire: (Ty, DBy) - construct: DB
- start: DBy

- wire: (Ty, DBs)

Then, through propagation and ordering, our protocol gen-
erates the ICS given below which is a longer ICS because
the unwire(T>, D B;) propagates a stop operation on both the
Tomcat and Apache components. They are also longer because
of the larger up set to reach the target architecture. Indeed,
since the protocol just stopped a Tomcat and an Apache that
are not stopped in the target architecture, the diff for the up
phase will produce the extra start operations needed.

Down ICS Up ICS

- stop: As, Ty
- unwire: (Ty, DB)

- construct: DBy
- wire: (Ts, DB5)
- start: DBy, T, Ay

Without failure, the reconfiguration achieves sizing up the
clustered Web server. Let’s now force a first failure that occurs
on the start on D B,. The recover_current algorithm computes
the following ICS: unwire(T%, D B>), fail(D Bs).



A1 T1 DB A1 —> T1 DB4
(started) (started) (started) (started) (started) (started)
A2 T2 DB, A2
(stopped) stopped) stopped) (stopped) failed) (failed)

Recovered Effective
Architecture

Effective Architecture
(before DB2's failure)

Fig. 8. DB2’s failure during reconfiguration
A1 T1 DB A1 T1 DB
(started) (started/{started) (started) (started) (started
A2 T2 A2
(started) (started) (stopped) failed

Initial Target Architecture  Recovered Target Architecture

Fig. 9. Roll-Backward policy on DB2’s failure

This ICS would recover a consistent architecture if applied
entirely on the managed system. However, we will interrupt it,
considering the case of a cascading failure when attempting
to unwire the Tomcat instance T5. The fixpoint on the re-
cover_current generates a new ICS: unwire(As, T5), fail(T5),
fail(D Bs). This time, we will consider that the apply of this
ICS succeeds, meaning that the unwire on the Apache instance
Ag succeeds and the recovery completes with a final fail set
of {TQ, DBQ}

The Figure 8 shows the architecture of the managed system
before the first failure (occurring on the start of D B5) and after
the recovery process. Notice the post-recovery architecture is
architecturally consistent; the administrator can therefore in-
trospect the architecture, discover and understand the failures,
fix the reasons for the failures, if any, and ultimately issue one
or more reconfigurations to reach an acceptable configuration
of the overall system.

D. Protocol Scalability

In this section, we wish to discuss the scalability of our
protocol in terms of the number of reconfiguration operations
it issues.

Without considering failures, our protocol issues a number
of reconfiguration operations that is solely governed by the
complexity of the current and target architectures and their
relative distance. Given a current architecture Ao and a target
architecture Ap, the largest possible reconfiguration is to
destroy entirely A¢ and thereby entirely construct Ap. In this
worst case scenario, our protocol issues a maximum number
of operations that is less or equal than Ngestruct+Neonstruct
where Ngestruct 18 the number of operations needed to entirely
destruct A¢ and N opstruct 18 the number of operations needed
to entirely construct Ap.

More precisely, given an architecture with C' component
and W wires, the Ngestruct and Neonstruet DUMbers must
be smaller that 2C + W. Indeed, regarding Ngestruct, €ach
component may at most be STOPPED and DESTRUCTED,
while each wire may at most be UNWIRED. Regarding
Neonstructs €ach component may at most be CONSTRUCTED
and STARTED, while each wire may at most be WIRED.

Notice that the saturation of the Apply Down Set, which is
a fixpoint, does not change the evaluation of this maximum
number of operations. Indeed, at the most, this saturation
may only add one unwire operation per wire and one stop
operation per component, operations that are already included
in Ngestruct-

When considering failures, our protocol goes through a
recovery fixpoint that propagates the impacts of failures
throughout the current architecture. In the worst case, all
components will incrementally fail, in which case, the recovery
propagation will issue at most one unwire operation per wire
and one stop and fail operations per component. Consequently,
given an architecture A with C' component and W wires, we
can define Nyecover(A) as equal to 2C' + W. However, since
failures may occur at any time, we need to consider the number
Nyecover that is equal to the maximum of the N,.ccoper(A) for
all architectures the managed system is going through from
Ac to Ar.

Hence, even when considering failures, our protocol issues
less Operations than Ndestruct + Nconst’ruct + Nreco’uer» a
number of operations that is still linear with the complexity
of Az and A architectures and their relative distance. In the
use-case given in Section VI-C1, Ngesiruct 18 null as the initial
system is empty and N opstruct 18 equal to 14 (5 CONSTRUCT,
4 WIRE, and 5 START) and Np,opagate 1 also equal to 14 (4
UNWIRE, 5 STOP, and 5 FAIL).

VII. RELATED WORK

Many component models define a component lifecycle with
two states (started and stopped) controlled by the mandatory
and optional semantics of wires [8][9][10][25]. They provide
reconfiguration operations that add/remove components and
wires between components. However, these operations are in-
voked individually, with an immediate effect on the component
assembly. This means that anyone reconfiguring a component
assembly must take care of the following complex and error-
prone tasks. First, (s)he must apply reconfiguration operations
in the correct order. For instance, only start a component after
it has all its mandatory imports wired). Second, (s)he must
manually propagate the collateral effects of each reconfigu-
ration operation, such as stopping a client component before
stopping a server one). With a model-driven reconfiguration
approach, one simply shapes the target architecture, leaving
these tasks to the reconfiguration protocol.

Regarding approches that advocate model-driven reconfigu-
rations [14][13][15][19][21][27], the focus is mainly on on
the capture of application-specific architectural constraints,
mostly through the use of architectural styles [16][26]. Com-
plementary to the architectural constraints that we consider



in this paper, application-specific constraints do not require
to be incrementally preserved during a reconfiguration, they
only need to be preserved by the target architecture. In other
words, application-specific constraints intend to shape func-
tional architectures while architectural constraints guarantee
reconfigurable architectures.

Most of the above frameworks did not publish any de-
tails on their reconfiguration protocol, with the noticeable
exception of [21]. Their protocol orders reconfiguration opera-
tions following [17], only considering optional wires between
components—a choice that is consistent with their underlying
component platform [22]. Regarding failures, only a few
frameworks [13][14][19] published about fault-tolerance, all
advocating a rollback strategy based on the use of inverse
reconfiguration operations; a design that only supports a single
failure per reconfiguration.

[2] discusses failures occurring during recovery and states
that it is a hard challenge for autonomic systems. However,
the paper only presents early ideas, suggesting that component
dependencies can be used to plan the propagation of the
impacts of failures throughout a component assembly. The
paper also suggests that recovery should be structured as
a fixpoint, but does not give any details. In particular, no
algorithms are described.

The RAPIDware project [28] is another component frame-
work that shares similarities with our proposal. It proposes
a formal model [18] to verify that during and after recon-
figurations, the system remains in correct states in terms of
architectural and behavioral invariants. As [19], it proposes
a reconfiguration process that handles failures that appear at
commit time through inverse operations.

Finally, in a prior work [7], we related our verification
experience of an earlier version of the reconfiguration pro-
tocol. The focus of the paper was the formal verification
of our protocol using the CADP toolbox [12], only briefly
introducing our protocol as an example of a verification
process of interest to the community of formal methods. The
paper only sketched our protocol, including the notion of ICS
and its associated ordering algorithm (depicted in Fig 4). In
contrast, the presented paper discusses the complete protocol
at length, including its detailed design and detailed algorithms.
In particular, we acknowledge for the first time the novel
ordering of operations based on four steps: architectural diff,
saturate, order, and apply. Moreover, this paper also reports on
proving the protocol rather than verifying it, providing on-line
the complete specification in Coq. Finally, this paper includes
an evaluation of the protocol.

VIII. CONCLUSION

This paper summarized the growing consensus of mod-
ern component models and the corresponding reconfiguration
contract: reconfiguration grammar and architectural invariants.
It proposed a reconfiguration protocol based on the concept
of Incrementally Consistent Sequences (ICS), ensuring that
any reconfiguration incrementally respects this reconfiguration
contract. The proposed protocol resists any number of failures

during the reconfiguration, always producing an architecturally
consistent assembly of components that can be safely intro-
spected and further reconfigured. In that regards, we proposed
two advanced recovery policies, the Roll-Backward policy
that rolls back a failed reconfiguration and the Roll-Forward
policy that pushes towards the desired target architecture, both
policies going as far as possible, failure permitting. We fully
specified our protocol and proved it correct using the Coq
proof assistant and we evaluated its complexity (linear with
respect to the complexity of the desired reconfiguration).
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