
Towards Dynamic Component Isolation in a Service

Oriented Platform

Kiev Gama and Didier Donsez

University of Grenoble, LIG, ADELE team

kiev.gama@imag.fr, didier.donsez@imag.fr

Abstract. When dealing with dynamic component environments such as the

OSGi Service Platform, where components can come from different sources

and may be known only during runtime, evaluating third party components

trustworthiness at runtime is difficult. The traditional namespace based isolation

and the security mechanisms provided in the Java platform (the base platform

for OSGi) can restrict the access of such components but can not provide fault

isolation. In this paper we present a dynamic component isolation approach for

the OSGi platform, based on a recently standardized Java mechanism. When an

untrusted component is activated during runtime, it is isolated in a fault

contained environment but it can still collaborate with the application. If it is

observed that the untrusted code does not bring any threat to the application, at

runtime it can be dynamically promoted to the safe environment. Tests have

been performed in a controlled environment where misbehaving components

hosted in the sandbox were not able to disturb the main application.

1 Introduction

In Component Based Software Development (CBSD) one may not know in advance

the impacts (e.g. runtime incompatibilities, errors leading to application crashes) of

integrating third party components into an application. During development

components can be tested (e.g. unit testing) as individual blackbox entities but

component vendors may face combinatorial explosions when trying to validate their

products against possible system configurations, and these combinations still grow if

components can still be integrated after deployment of the system [39]. This is exactly

the case of dynamic platforms where one may not predict which components are

going to be deployed during application execution.

The OSGi Service Platform [29] is a component framework for the Java Platform,

and is an example of such type of dynamic platform where components can be

deployed, started, stopped or updated during runtime without stopping application

execution. In dynamic environments as OSGi it is a frequent scenario having

dependencies to service interfaces known at compile time but during runtime having

the corresponding service implementations provided by possibly untrusted

components dynamically deployed. The usage of OSGi in software industry has

gained a strong momentum after the Eclipse Platform became one of its main adopters

[10]. A large COTS market around OSGi is emerging [30] where third party

2 Kiev Gama and Didier Donsez

components are becoming available increasingly, but defining their quality and

trustworthiness is not a precise task. COTS quality models do exist, but they are

difficult to be used due to the large quantity of attributes to be measured and the lack

of information provided by component vendors [20]. The reliability characteristic

(maturity, recoverability and fault tolerance as sub-characteristics) of those models is

indirectly one of the attributes of component trustworthiness, which can be defined as

measured and perceived dependability (a combination of reliability, safety,

robustness, availability and security) [34].

As previously mentioned, fault isolation is an issue closely related to the reliability

characteristic and can make composites stronger. It is indeed an essential theme in

CBSD, since the strength of a composition is defined by its weakest component [39].

Since fault is a concept that has a very wide scope, we consider the concept from [23],

which says that faults are the cause of errors (deviations from correct state) which

may lead to system failures, thus being a threat to dependability. A detailed analysis

[31] on component vulnerabilities in Java Service Oriented Platforms shows that

some of them are caused by the lack of CPU and memory isolation between

components, which is fundamental for fault isolation. OSGi uses class loader based

namespace isolation, giving a sort of pseudo-isolation between components.

However, namespace isolation is not robust enough for a multiple component vendor

scenario where one cannot assure that such third party code behaves correctly. As all

components and objects coexist in the same memory space without any mechanism

that ensures object domains or other elaborate ways of isolation, components may

introduce faults in applications:

− Inconsistencies and silent errors in the system when dynamicity is mishandled by

components [7], caused by different factors such as incorrectly refactored

applications and components.

− A component crash (e.g. stack overflow, out of memory exception) may bring the

whole application down.

The objectives of this paper are: to provide a review on standard isolation

mechanisms in the Java platform; and to present a component isolation approach for

OSGi, based in one of the analyzed Java isolation mechanisms. The proposed

mechanism allows untrusted components to execute in a fault contained sandbox that

allows clean termination of components preventing any harm to the core (trusted)

components environment enhancing applications’ robustness and reliability. Our

solution is based on a standardized Java Specification Request (JSR) that addresses

isolation. However, by adding such isolation barriers, we are aware that a component

communication overhead will be introduced. The intention is not to isolate each and

every component since it would annihilate one of OSGi’s main advantages, which is

the fast communication between services and components.

The rest of this paper is organized as follows: section 2 details the standard

isolation approaches in the Java Platform; section 3 analyzes the usage of those

mechanisms for component isolation in different Java editions; section 4 highlights

OSGi’s isolation limitations; section 5 presents our proposed model and its

implementation; section 6 describes related work; and finally, section 7 concludes and

presents our perspectives.

Towards Dynamic Component Isolation in a Service Oriented Platform 3

2 Standard Isolation Mechanisms in Java

In this section we explore the standard isolation mechanisms that we have identified

in the Java platform: namespace-based isolation, OS-based isolation and a relatively

recent approach based on a sort of domain isolation.

2.1 Namespace-based Isolation

As explained in [24], the class loader mechanism in Java provides the ability to

dynamically load classes during application execution enabling features such as lazy

loading; unloading of classes; multiple namespaces; and user extensibility through

user defined class loading policies. These multiple namespaces are the standard form

for achieving isolation in Java, where a class type is uniquely determined by the

combination of class name and class loader. To better illustrate namespaces with class

loaders, consider that two class loaders A and B co-existing in the same running

application can load different versions of a foo.Bar class. Each class loader can

apparently provide instances of the same class but in fact the provided foo.Bar objects

are of different classes. By considering a fully qualified name notation to differentiate

each class, as the one used in [24], we have something like <foo.Bar, A> and

<foo.Bar, B> which visibly do not correspond to the same class.

The basic loading mechanism is based on a delegation principle inside a hierarchy.

Before loading a given class, a child class loader asks its parent for that class. If the

immediate parent can not find the class, this delegation continues until the top of the

hierarchy. The hierarchy of class loaders defines that children can “see” the classes

loaded by their parent, but not the contrary. Following that principle, sibling class

loaders also can not share class definitions. However, this mechanism isolates code in

different namespaces but does not ensure object instances living in isolated address

spaces. Thus, namespaces do not bring the necessary robustness because faults in

code residing in a class loader can affect other parts of the application.

2.2 OS-based Isolation

This type of isolation is enforced by Operating System protection boundaries (e.g.

processes in separated memory spaces). In Java this can be done with a combination

of techniques by breaking a single application into multiple pieces running on

different VMs (i.e. different processes) allowing application to be located in separate

address spaces managed by the OS. Such type of isolation enables fault containment,

thus a crash in a component would not bring the whole system down. However, using

separate address spaces requires using relatively expensive inter-process

communication in order to allow collaboration between the isolated components. In

the case of Java it can be achieved either through sockets or higher level protocols

such as RMI-IIOP. A significant disadvantage of such approach is exactly such type

of cross-boundary communication overhead, as well as the memory footprint for each

VM instance. Also, in the case of a component bringing a part of the application

down, the restart of the crashed part would need to wait for the whole bootstrap of the

4 Kiev Gama and Didier Donsez

VM and the component container/runtime. This solution may be resource consuming,

especially in small devices, but in server application cases such as [22] the decision of

isolating several web applications in different VMs had an acceptable performance

overhead that was taken into account in their analysis.

2.3 Domain Isolation

The JSR 121 [15] is a relatively recent standardization effort for application isolation

in Java. It defines the notion of Isolate, a first class representation of a strong isolation

container with an API to control their lifecycle. The model proposed by the Isolate

API does not specify how Isolates should be implemented. The strategy is

implementation specific and could range, for example, from a per-isolate operating

system process (e.g. using a standalone JVM) approach, to all-isolates in one process

(i.e. same JVM) approach. The latter is used in the reference implementation provided

by Sunlabs in the Multitasking Virtual Machine (MVM) [4], which realizes Isolates

using a multitasking approach. The MVM allows several Java applications to run in

the same OS process, where each isolate is a logical instance of the JVM, with

logically separated heaps, and no objects that can be directly shared. A basic set of

resources, like runtime classes and shared libraries, is shared by all isolates but

applications run in complete isolation. In case of an application failure, only that

application is impacted, not the JVM. Other applications are completely shielded from

that application failure. Besides isolation, other advantages are the low memory

footprint for multiple applications in the same VM and quick application startup.

The isolation achieved with Isolates is completely transparent. Legacy Java

applications can be executed in Isolates without needing any additional changes.

However, applications can be aware of the existence of Isolates and explicitly use the

API. Although isolated, Java applications can achieve collaboration through

previously existing mechanisms such as sockets and Remote Method Invocation

(RMI), or through Links, which are part of the Isolate API. They provide a low-level

layer for communication through basic data types such as byte arrays, buffers,

serialized objects and sockets. The usage of isolates can make applications more

robust by adding fault containment and clean application termination, serving also as

a basis for enabling other features such as the Resource Consumption Management

API [19].

3 Component Isolation in the Java Platform

Given the standardized mechanisms, we provide in this section a brief analysis of

component isolation using such mechanisms in the Java Platform and the respective

approaches for component collaboration across isolation boundaries. From the Java

standard and enterprise editions we describe the isolation in Applets and Enterprise

Java Beans (EJB), respectively; in the Java micro edition (ME) we show isolation in

Towards Dynamic Component Isolation in a Service Oriented Platform 5

two application models: Midlets and the Xlets, from the CLDC1 and the CDC2,

respectively; and finally we see the isolation approaches in Java Card Applets.

3.1 Applets

The isolation achieved with class loaders combined with security policies is

fundamental for guaranteeing a sandbox where applets have restricted visibility of

other applications and controlled access to system resources, enforced by security

verifications. This ensures that untrusted code (the applets) does not cause harm (e.g.

accessing and damaging the file system) to the underlying system. The namespace

based isolation through different class loaders guarantees that if a web page loads

applets from different locations they do not have access to each other.

Applets are present in Java since the initial versions, when composition models

were rudimentary and in the case of applets it could be done by placing the applets in

the same web page [39] and letting them communicate via the AppletContext object.

This can be possible only in the case of applets from the same code base, that is, the

same directory on the server. Such rudimentary composition can not be possible when

applets come from different locations.

3.2 Enterprise Java Beans

Isolation of EJBs is usually done in two flavors: either through class loaders

namespaces or by isolating components in different JVMs. In the former case,

isolation fits in the class loading delegation principle previously described. Although

there is no fixed structure for class loaders in Java EE, each vendor has its own

implementation that follows the same principles. Fig. 1, based on an illustration from

[1], illustrates a class loader hierarchy in Java EE.

Class loaders in grey, on the top of the hierarchy on Fig. 1, are the standard Java

class loaders provided by the platform. The other class loaders represent a general

Java EE class loading scheme. Every Enterprise Application Archive (EAR) will have

its own class loader that will provide each application with its own namespace [1]. All

EJBs of the EAR will be loaded by the same class loader, thus sharing the same

namespace. Each Web Application Archive (WAR) is deployed with its own class

loader and will not have class visibility to other sibling application.

The whole EJB model was conceived with distribution in mind, thus remote

communication is supported by the component container. The infrastructure for EJB

communication is based in a message based IPC approach that uses the RMI-IIOP

protocol. Thus EJBs can also be isolated by separating them in different VMs. A

crash in one component would not directly affect components hosted in other VMs.

However, this choice leads to problems such as scalability and memory footprint. The

cost of isolating components in separate VMs hosting heavyweight runtimes such as

EJB containers would be expensive in terms of resources; communication overhead

and coordination. An experimental isolation approach [14], which is detailed on the

1 Connected Limited Device Configuration. http://java.sun.com/products/cldc/
2 Connected Device Configuration. http://java.sun.com/javame/technology/cdc/index.jsp

6 Kiev Gama and Didier Donsez

related work section, takes advantage of isolates for providing different levels of

isolation in J2EE servers.

EAR
class loader

EAR
class loader

Extensions

class loader

Extensions

class loader

Sys. classpath
class loader

Sys. classpath
class loader

Bootstrap

class loader

Bootstrap

class loader

child parent

EJB
class loader

EJB
class loader

WAR
class loader

WAR
class loader

EAR
class loader

EAR
class loader

EJB
class loader

EJB
class loader

WAR
class loader

WAR
class loader

WAR
class loader

WAR
class loader

Fig. 1. Classloader delegation hierarchy in a Java EE Server.

3.3 Midlets

The Mobile Information Device Profile (MIDP) for CLDC introduces the concept of

MIDlets, which are managed applications with a life cycle similar to Java applets.

MIDP has been conceived to execute in constrained devices where Java MIDlets

would usually execute one at a time with security constraints concerning aspects such

as visibility of types restricted to the same MIDlet suite. The MIDlet security model

enforces that each MIDlet suite must run in isolation, but concerns were mostly

related to type visibility since initial versions of MIDP executed one MIDlet at a time.

Starting from MIDP 3.0 [18], parallel execution of MIDlets is specified. The Inter-

MIDlet Communication (IMC) protocol, similar to sockets, would allow two MIDlets

to establish communication by means of a channel, enabling communication and

possibly some rudimentary composition such as in the case of applets. Although

communication is possible using the IMC protocol, runtime isolation is enforced:

MIDlets must not be able to have access to the variables or memory from each other,

having their own executing spaces. They will always run in different contexts when

executed. The isolation concept also applies to the usage of shared libraries (LIBlets),

with the set of classes and resources of a LIBlet behaving (e.g. per-context static

variable value) as if they were packaged with the MIDlet.

Towards Dynamic Component Isolation in a Service Oriented Platform 7

Multitasking is already being used as a way for isolating applications with less

memory footprint [36] in CLDC devices. The Sqwak Virtual Machine [38] is another

multitasking VM targeting the CLDC but for the Information Module Profile [16],

which consists on a profile for devices without graphical display capabilities. Both of

those approaches are based on Isolates, which appears to be the next generation

standard for multitasking in upcoming JVMs.

3.4 Xlets

The Personal Basis Profile (PBP) [17] for CDC provides an application model based

on Xlets which are managed applications originally defined for the Java TV API. The

Xlet application model resembles Java applets and MIDlets, providing also small

applications with life cycle (init, start, pause, destroy). PBP provides a means of

communication between Xlets with the Inter-Xlet Communication (IXC) mechanism,

which uses a subset of Java RMI. Xlets executing in the same virtual machine are able

to exchange objects across class loader boundaries. Although such communication

takes place in the same VM, it relies on RMI proxies. An Xlet can register an object

in the IXC registry. Other Xlets running on the same VM can perform a lookup in the

registry to retrieve the object that is bound to the queried name. The result is a

dynamically generated stub that implements the same remote interface of that object.

Since code is running in different class-loaders, the class definitions are not shared.

The client Xlet must have the same interface type of the requested object packaged

with its application so it can correctly retrieve the corresponding stub instances.

The approach above described fits in the initial CDC VM monolithic versions that

provide class loader based namespace isolation. The CDC Application Management

System (AMS) [37] introduces process-based application management, where all Java

applications run in native processes coordinated by the AMS. The IXC would

continue working as the communication mechanism between Xlets, but in a more

robust environment with fault isolation and clean application removal.

3.5 Java Card Applets

In the Java Card platform, applications are called applets (card applets for

disambiguation). A firewall mechanism isolates card applets from each other by mean

of contexts, which are separate protected object spaces. It enforces security

constraints and provides a secure environment where card applets may not access

each other's functionality unless explicitly specified through shareable interfaces (SI).

These contexts provide a sort of object domain in terms of data visibility, but do not

provide fault isolation. The separate spaces and security mechanisms do not prevent

an unhandled fault from halting the VM, as described in its specification: “As the Java

Card virtual machine is single-threaded, uncaught exceptions or errors will cause the

virtual machine to halt”. Thus, a misprogrammed card applet that provokes a

StackOverflowError, for example, affects all loaded applets. This applies also

to the most recent Java Card specification (v. 3.0), which in addition to context

isolation also provides code isolation in the connected edition. This type of isolation

8 Kiev Gama and Didier Donsez

is implemented using the traditional class loader delegation hierarchy that provides

separate class namespaces. Communication between card applets is still through SIs,

but with the class loader hierarchy principle implies that the SI implementations be

loaded by a higher level class loader so they can be visible to all card applets, which

are all potential invokers of the shared object.

3.6 Summary

The predominant way for component isolation in Java is by means of class loaders,

which allow separate namespaces that give less robust isolation. However a trend

towards multitasking in the embedded market is observed as a means to enhance

isolation. The utilization of Isolates allow programmatic access to an API for starting

and controlling the execution of an application container that transparently provides

strong isolation, enabling fault containment and a much more robust isolation

mechanism than the one provided by class loaders. EJBs components can take

advantage of isolation either with namespaces or in separate VMs, since these

components where conceived for a distributed model where inter-VM communication

is natural, but choosing to host individual EJBs in separate VMs leads to a rather

complicated problem that would compromise scalability. Table 1 presents a summary

of some isolation characteristics for each analyzed type of component approach.

Table 1. Isolation overview on the Java Platform

Component/Application

Model

Isolation

mechanism

Fault

Containment

Collaboration

Java Applets Namespace No Direct access

Local EJB Namespace No Direct access

Remote EJB OS based Yes RMI-IIOP

Midlets (MIDP 3) Domain based3 Yes Socket-like

Xlets4 OS based Yes IXC (RMI)

JavaCard V.2.x Applets Domain-like5 No Direct access

JavaCard V.3 Applets,

Connected edition

Namespace No Direct access

4 Isolation in OSGi

The OSGi framework is a dynamic service platform for the construction of modular

Java applications, allowing the installation, uninstallation, update and startup of

components and services with no application reboot. OSGi components are called

bundles, which are the platform’s unit of deployment consisting of jar files with

3 If utilizing the CLDC MVM
4 Considering the utilization of the CDC AMS
5 There is no traditional classloading in JavaCard v2.2.2, but its isolation model through

firewalls does not provide fault isolation, as in JSR121 domain isolation

Towards Dynamic Component Isolation in a Service Oriented Platform 9

custom manifest attributes for defining, for example, information about versioning,

package (type) dependencies and provided packages. Optionally bundles may provide

services, which are published in a central registry that can be queried by service

consumers, allowing component collaboration with loose coupling through service

interfaces. After service binding, the consumer code directly references the servant

object, without any proxies

The isolation level in OSGi is in fact a sort of enhanced namespace isolation by

means of individual class loader instances provided for each bundle. The class loading

mechanism follows some policies for loading types, basically considering the

information provided by the Import-Package and Export-Package manifest attributes.

Instead of a child to parent visibility in a tree hierarchy, the class loading in OSGi is

rather a graph (Fig. 2), where sibling class loaders may provide classes between them.

Fig. 2. Illustration of the classloading graph in OSGi.

Misprogrammed components are a concern since component developers that target

the OSGi platform need to be aware of the dynamics in the environment, needing to

appropriately release references to departed objects. When a service becomes

unregistered, the referrer code is notified and must release the reference to the

corresponding service. This unregistration may be due to a service implementation

reacting (e.g. unregistering itself) to application or environment changes or due to the

service providing bundle going to a process of deactivation (stopped, updated or

uninstalled). Such type of dynamic events may happen frequently in such type of

platform, and may incur problems known as stale references [7]. Static validation at

load time would be a possibility for checking the occurrence of such problems, but

that process is too costly, especially if the target platform runs on a resource limited

device.

Bundle
class loader
Bundle

class loader
Bundle

class loader
Bundle

class loader

System Bundle

class loader

System Bundle

class loaderBundle
class loader
Bundle

class loader

Bundle
class loader
Bundle

class loader

Parent/System

class loader

Parent/System

class loader

importer exporter

10 Kiev Gama and Didier Donsez

5 Dynamic Component Isolation

The OSGi specification tries to be as simple and lightweight as possible. Its direct

object referencing brings the advantage of fast communication but it may impose

problems if components do not handle correctly the inherent dynamicity of that

platform. Other sorts of misbehavior, especially from untrusted third party

components may also introduce faults, but such cases do not necessarily concern

malicious components since a fault may happen due to lack of proper testing, or

integration issues, for example. Security policies and class loading provide a limited

level of isolation but no robustness.

Software-based isolation [40] introduces the concept of sandboxes for isolating in

the process level untrusted modules and for providing fault containment, which is

seen as a strategy for preventing error propagation across defined boundaries [27].

The term sandboxing has gained a wider sense throughout the years and now is often

used to generally describe similar isolation techniques for preventing the underlying

system to be harmed.

Therefore, in order to achieve such containment we needed to establish boundaries

for separating components. Although there are custom VMs that provide object

isolation in the Java platform through non-standard mechanisms, we wanted a

solution focusing on technology that is standardized. We have chosen Java Isolates as

our isolation boundaries for a few reasons: Isolates come from an official

specification (JSR-121); its concepts are a trend for isolation and multitasking

approaches that have been already tested with success in CLDC VMs; it continues to

serve as an enabler for other features such as the ongoing effort of the resource

consumption API [19] for Java.

Our component isolation mechanism for the OSGi platform tries to increase

application robustness and dependability, in such a way that we can provide a

sandbox where untrusted components are put in quarantine in a separate container

where they can execute without harming (either intentionally or unintentionally) the

application. In case a component misbehaves, or becomes stale, the sandbox can be

restarted and the component can be safely terminated without needing to bring down

the whole application. This type of isolation fills the well-isolated pre-condition for

microrebooting [3] (individual rebooting of fine-grain application components).

However, even if components are designed independently they are meant to

collaborate as a part of a framework [28]. We have a means for isolating components

but they still need to collaborate. Communication across boundaries is also provided

in our approach, which is detailed in the next sub-sessions.

The implementation of the isolation solution described here was done in

OpenSolaris with Sunlabs’ Multitasking Virtual Machine6 (MVM). We have patched

the Apache Felix7 v. 1.4.0 OSGi implementation for enabling the isolation solution

using the JSR121 (Isolate API).

6 http://mvm.dev.java.net
7 http://felix.apache.org

Towards Dynamic Component Isolation in a Service Oriented Platform 11

5.1 Isolation Mechanism

The solution provided in [8] uses services as the grain of isolation. The principle is

also applied here, but in a coarser grain. While that solution focuses on service

isolation via proxies in the same VM, the one described here focuses on separating

components in isolated domains. The semantics is the same, as generalized in the

meta-model from Fig. 3.

Service

IsolatedEntity

Component

IsolationPolicy

1

0..*

Application

Fig. 3. Meta-model with the general isolation approach used either with services or components

At runtime, when a given entity (i.e. a service or a component) is about to be

activated (retrieved in the case of a service, and started in the case of a component)

then the system verifies if that entity must be isolated, and proceeds with the isolation

process if necessary.

Since OSGi consists of a dynamic platform, our isolation model also needs to be

dynamic. The sandboxing is done selectively, and at runtime, only for untrusted

components which are then grouped in the sandbox. Faults are quarantined in that

isolated container, and can not interfere in the main environment. The mechanism

also allows the component to be promoted from the quarantine to the main platform

during application runtime, currently upon human decision based on application

behavior observation. For the dynamic component isolation, upon installation of an

OSGi bundle, the customized framework performs a policy verification against the

bundle jar file in order to know if it must be isolated or not. Implementations for the

policy verification may vary: it can be done based on signed jar files, CRC

verification, etc.

Our current policy implementation simply verifies a list of known jar files to see if

the deployed jar is known. If the jar does not pass the verification, it is installed in the

main platform but marked as “untrusted”. At startup time, when dependencies have

been resolved, the platform will not start the untrusted jar in the main platform, but

install that untrusted bundle and its dependencies on the sandbox and then perform the

start up in the isolated environment, as illustrated in Fig. 4 showing that bundle C

depends on types provided by bundle B which is also deployed in the sandbox but not

started. As there is no dependency to Bunde A, there is no need to copy it to the

sandbox. Thus, there are some rules concerning deployment:

12 Kiev Gama and Didier Donsez

− The main platform will always have all application bundles deployed, but no

untrusted bundle in the started state;

− The sandbox will have untrusted bundles plus their dependencies, but no

dependency in the started state, unless a dependency is also an untrusted bundle;

− No replicated bundle will be in the started state in both platforms at the same time.

Main OSGi OSGi sandbox

STARTED RESOLVED STARTEDSTARTED RESOLVED

JVM

Isolate Isolate

BundleA BundleB BundleC

?

BundleC

?

BundleB

Fig. 4. Current deployment approach for dependency resolving in the sandbox. Untrusted

bundles are also deployed in the main platform, but started only in the sandbox.

Although the duplication of components can increase memory footprint, and

potentially load the same classes both in the main platform and in the sandbox, there

are mechanisms that could reduce the cost of loading the same class representation

multiple times in custom application class loaders [5], which is the case in OSGi. By

hosting a component in a separate object domain (the sandbox) there will also be

performance impact of the communication cost for trespassing the domain barrier if

the sandboxed component needs to use services from a component in the main OSGi

platform, and vice-versa.

5.2 Components Communication

In the OSGi platform, components establish communication through services

which is done directly. In the case of our OSGi isolation mechanism, if an untrusted

component needs to use a service provided by a trusted component, or vice-versa, the

method calls need to cross the isolation boundaries that separate the service consumer

and provider. This is done transparently by dynamic service proxies over a simple

communication protocol which we have implemented. There is a two step process for

retrieving a service instance in OSGi: query the service registry for a

ServiceReference object, and then use that object for retrieving the actual

service instance. In our implementation, if the requested service reference is not found

in the local registry, the query is sent to the isolated platform. In case of a match the

requestor gets an IsolatedServiceReference object, which is an instance of

ServiceReference, and then requests the corresponding service which would be

a dynamic proxy implementing the requested service interface. The proxy delegates

Towards Dynamic Component Isolation in a Service Oriented Platform 13

the calls to the isolated platform using our protocol. The usage of service proxies

evidently adds an overhead for proxy creation and subsequent method calls on the

proxy. The service orientation without the communication overhead is one of the

advantages of OSGi over other service oriented platforms. However, the goal of our

proposed isolation mechanism is not to completely forbid the OSGi’s standard

proxyless service referencing. In the mechanism described here, the communication

between services co-located in the same container is still done via direct object

referencing.

This proof of concept has been implemented using javax.isolate.Links, a

JSR-121 specific API for communicating between Isolates, but the communication

layer has been abstracted in such a way that the details of the communication

implementation can be easily changed to another approach. In doing so, the

component isolation solution could be ported to non-multitasking VMs, but with the

additional cost of a whole JVM footprint (besides its startup). The Link usage could

be replaced by sockets, or even RMI. The protocol which we have written had a small

set of messages for installing untrusted bundles in the sandbox; querying services in

the isolated platform; invoking isolated services; sending framework events (Service

and Bundle). This initial implementation focused on feasibility before giving any

attention to performance. After performing simple microbenchmarks, we have

identified that service calls using our protocol over the Link implementation did not

perform better than ordinary RMI method calls outside the OSGi environment. More

than 2/3 of the overhead was exactly in the synchronization of reading and writing on

Links. Most likely this is due to the fact that the communication model used by

Isolates is very simple and frequent transmission of messages may cause a large

overhead [2]. Anyhow, optimizations can still be performed. Although it has

outperformed our approach, if we choose to use RMI this implies in more complexity

since it needs to add marker interfaces (javax.rmi.Remote) to the isolated

services needing to be called across domain boundaries, methods need to throw a

remote exepction and both isolated platforms (the main one and the sandbox) would

need their own RMI object servers to be managed.

Crashes due to misbehaving code from untrusted component bring only the

sandbox down, without any harm to the rest of the application. In such cases the

platforms coordinator needs to bring back the sandbox and reestablish the

communication channel that has been disrupted, by sending new and valid Link

objects to the main platform. During this process, before restarting the sandbox and

restablishing communication the main platform has to invalidate and to notify the

departure of all isolated proxy clients and IsolatedServiceReferences.

In our controlled experiment we automatically deployed untrusted bundles in the

remote platform after an attempt to install it in the main platform. The following test

cases were performed on components providing services using primitive types:

− StackOverflowErrors intentionally fired have brought isolated components

down along with the sandbox, but the sandbox could be automatically rebooted.

− Stale services (unregistered services that are still and erroneously being used by

service consumers) would have their isolated proxies invalidated, similar to [8].

Misprogrammed sandboxed bundles did not prevent the unregistered services from

the main platform from being appropriately released and garbage collected.

14 Kiev Gama and Didier Donsez

− Manual runtime promotion of sandboxed components to the main platform.

Although we have not addressed resource accounting, by using the sandboxing

approach we can enable that in the component level if we consider isolate one

component at a time. A multiple sandbox mechanism would add complexity

concerning deployment and communication coordination, but would be a way to

achieve fine grained isolation and resource accounting.

5.4 Current Limitations

As it was developed as a proof of concept, there are limitations in this isolation

approach that were not yet addressed: policy implementation is just based on a file

list, parameters and return types on proxied services are limited to primitives, Strings,

and arrays of those types; the current isolation solution enables only one “shared”

sandbox, where all untrusted components are executing. A misbehaving untrusted

component will affect (e.g. stale services, stale threads, sandbox crash) all

components that coexist in the sandbox. Only primitive, String attributes and

properties map are available in BundleEvent and ServiceReference that

come from an isolated platform. There is no unified identifier, that is, an untrusted

bundle has a given id in the main platform, and most likely a different id in the

sandbox platform.

6 Related Work

Other platforms already address the type of isolation we want to provide in OSGi

applications. For instance, Microsoft COM components can be either loaded in the

client application process or provided in an isolated process [25]. In the latter case, a

surrogate process (dllhost.exe) can load the DLL and act as a server. Communication

is transparently done via inter-process communication, bringing performance

overhead but enabling fault isolation between the client and the component server.

The Microsoft .NET platform addresses isolation as well, by means of Application

Domains [35], which are like lightweight processes using the same concept that Java

uses with Isolates. These domains have fault isolation: one domain can be terminated

without interfering in the other domains’ execution. Communication across domain

boundaries is done in an RPC fashion where objects are sent via marshalling.

Application domains can be dynamically loaded but would have unloading limitations

if used for implementing a dynamic platform [6] such as OSGi.

Singularity [11] is a Microsoft research micro-kernel OS built with managed code.

Instead of having processes isolation ensured by memory isolation, it uses software-

isolated processes which have a communication overhead smaller than ordinary OS

based process isolation. Secure object access is enforced by using static analysis (code

is verified ahead of execution), and by not allowing run-time code generation.

A research [2] performed on alternatives for Java application isolation and resource

accounting mentions component isolation as a means of preventing unwanted side

Towards Dynamic Component Isolation in a Service Oriented Platform 15

effects and full resource reclamation. The paper provides an overview of the issue by

presenting non-standard JVM solutions which try to tackle isolation and resource

accounting. The custom isolation solutions presented would not be suitable to the

dynamicity of OSGi, and even clash with its custom classloader approach. Our

technique tries to be compliant with standardized VM mechanisms, such as JSR121

(which is also mentioned in that work) as well as enabling the architecture to work

with multiple standard JVMs if no multitask VM is available. An experimental

approach [14] uses the Isolate API and the MVM for improving isolation in a J2EE

server. They evaluate different grains of isolation, like fine grained individual servlet

isolation, and coarse grained isolation where they introduce J2EE application

domains. Restructuring the code for isolating servlets individually was difficult,

which lead them to discard the implementation of other fine grained isolation cases

(e.g. EJBs). Coarse grain isolation of application domains combining the isolation of

whole J2EE applications with the isolation of sub-servers (e.g. WebServer, Database,

JMS) seemed to be a feasible choice for production servers.

Approaches like FreeBSD Jails [21] provide virtual environments that work as

isolated compartments where a user have access only to processes and files from its

own “jail” without having access to resources from other jails. Some approaches

targeting isolation in the OSGi platform use virtualization [33, 26] as a way for

isolating different customer platforms, that is, each provider would host their

components and services in its own virtualized platform without accessing other

providers’ environment. Access to services from the underlying platform can be

through a predefined subset [33] or transparently without restrictions [26]. However,

the virtualization happens in the same JVM, where multiple OSGi platform instances

execute. A malfunctioning component crashing in one platform would bring down all

virtualized OSGi instances. Another mechanism [9] combines JSR121 concepts with

an extensible VM. They present JVM domains which allow lightweight isolation with

the possibility to identify to what domain (i.e. a bundle) an object belongs to. They

took the design decision of keeping direct object referencing as a way to keep the fast

communication that exists in OSGi, however boundaries for fault containment are not

mentioned.

R-OSGi [32] deals with the communication between services located in OSGi

platforms in different machines, with the advantage of not being bound to any OSGi

implementation. Service consumer proxy bytecode is dynamically generated and

loaded as a bundle into the platform, which significantly increases the number of

executing bundles, but it is managed by the R-OSGi core. R-OSGi could also be seen

as a way of OSGi component isolation, but there is no complete unawareness of

distribution in the client code, which in the most transparent case still needs wrapper

code to adapt a system to distribution. In our approach we want to leave the isolation

decision to the executing platform based on the isolation policies.

Security policies are also a form of isolating a component from having access to

certain application APIs or system resources. Although security is an optional layer in

OSGi implementations, it adds fine grained access to services and types. It is possible,

for example, to prevent one component from having access to another by declaring

that one of its provided services needs access permission. A practical implementation

of OSGi application isolation enforced by security policies is presented in [12].

However, security policies would not provide fault containment in that case.

16 Kiev Gama and Didier Donsez

7 Conclusions and Perspectives

In this paper we have analyzed component isolation in the Java platform and in the

OSGi service platform, a dynamic component platform for Java. We have described

our dynamic component isolation approach for OSGi, implemented on top of a

mechanism based on an official standard for isolated domains in Java. Our

architecture allows its extension for working with multiple JVMs if no multitask VM

is available. The isolation approach we propose adds a fault contained sandbox for the

execution of untrusted components, enhancing application robustness and

dependability. Isolated components that misbehave or become stale can be

microrebooted by restarting only the sandbox, without bringing down the whole

application. However, choosing to enhance isolation levels between components

implies in a trade-off where the cost for components communication increase. The

initial mechanism constructed on top of JSR121 Links did not perform as well as

standard RMI calls (outside an OSGi environment). Our base tests using a controlled

environment have validated the dynamic isolation without losing the collaboration

between isolated components. Tests verified isolated faults, automatic sandbox

reboot, correct reclamation of unregistered services and dynamic promotion of

untrusted code to the trusted environment. This type of isolation could enable

resource accounting in the component level.

Next activities consist in working on the current limitations, especially the

improvement of the communication between isolates and the support to complex

types in interface methods, as well as implementing a two-level isolation which

combines the in-VM service isolation via proxies with the present component

isolation approach. Automation of the component’s promotion from the sandbox to

the main platform is also desired and also tests outside the controlled environment in

existing OSGi based applications are also necessary in order to validate our approach

in a real scenario.

Acknowledgements. Individual thanks to the anonymous reviewers for their valuable

feedback and Laurent Daynès from Sun Microsystems for his review, suggestions on

the paper, and the discussions about Isolates. Part of this work has been carried out in

the scope of the ASPIRE project (http://www.fp7-aspire.eu), co-funded by the

European Commission in the scope of the FP7 programme under contract 215417.

The authors acknowledge help and contributions from all partners of the project.

References

1. Allamaraju, S. et al. Professional: Java Server Programming J2EE, Wrox Press (2001)

2. Binder, W.: Secure and Reliable Java-Based Middleware – Challenges and Solutions. In: 1st

International Conference on Availability, Reliability and Security. ARES, pp. 662--669,

IEEE Computer Society, Washington, DC (2006)

3. Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., and Fox, A. 2004. Microreboot — A

technique for cheap recovery. In: 6th Conference on Symposium on Opearting Systems

Design & Implementation (2004)

Towards Dynamic Component Isolation in a Service Oriented Platform 17

4. Czajkowski, G., Daynès, L.:. Multitasking without Compromise: a Virtual Machine

Evolution. In: the 16th conference on Object-oriented programming, systems, languages,

and applications (OOPSLA), pp 125--138, New York, USA (2001)

5. Daynès, L., Czajkowski, G.: Sharing the runtime representation of classes across class

loaders. In: the European Conf. on Obj. Oriented Progr. Glasgow, UK (2005)

6. Escoffier, C., Donsez, D., Hall, R. S.: Developing an OSGi-like service platform for .NET.

In: Consumer Comm. and Networking Conf., pp. 213--217, USA (2006)

7. Gama, K., Donsez, D.: A Practical Approach for Finding Stale References in a Dynamic

Service Platform. In: CBSE 2008. LNCS, vol. 5282, pp.246--261, Springer

Berlin/Heidelberg (2008)

8. Gama, K., Rudametkin, W., Donsez, D.: Using Fail-stop Proxies for Enhancing Services

Isolation in the OSGi Service Platform. In: MW4SOC’08, pp.7--12, ACM, New York, NY

(2008)

9. Geoffray, N., Thomas, G., Folliot, B., Clément, C.: Towards a new Isolation Abstraction for

OSGi. In: the 1st Workshop on Isolation and integration in Embedded Systems. M. Engel

and O. Spinczyk, Eds. IIES '08. ACM, New York, NY, pp 41--45 (2008)

10. Gruber, O., Hargrave, B. J., McAffer, J., Rapicault, P., Watson, T.: The Eclipse 3.0

platform: Adopting OSGi technology. IBM Systems Journal 44(2), pp 289--300 (2005)

11. Hunt, G. et al: An Overview of the Singularity Project. Technical Report MSR-TR-2005-

135, Microsoft Research (2005)

12. Jahn, M., Terzic, B., Gumbel, M.: Do not disturb my circles – Application isolation with

OSGi. OSGi Community Event, Berlin (2008)

13. Java Card Technology. http://java.sun.com/javacard/

14. Jordan, M., Daynès, L., Jarzab, M., Bryce, C., and Czajkowski, G. : Scaling J2EE™

application servers with the Multi-tasking Virtual Machine. Softw. Pract. Exper. 36 (6) May.

2006, pp. 557—580 (2006)

15. JSR 121: Application Isolation API Specification. http://jcp.org/en/jsr/detail?id=121

16. JSR 195: Information Module Profile. http://jcp.org/en/jsr/detail?id=195

17. JSR 217: Personal Basis Profile 1.1. http://jcp.org/en/jsr/detail?id=217

18. JSR 271: Mobile Information Device Profile 3. http://jcp.org/en/jsr/detail?id=271

19. JSR 284: Resource Consumption Management API. http://jcp.org/en/jsr/detail?id=284

20. Kalaimagal, S.,Srinivasan, R.: A retrospective on software component quality models.

SIGSOFT Software Engineering Notes 33, 6 Oct. 2008, pp. 1--10 (2008)

21. Kamp, P. H., Watson, R. N. M.: Jails: Confining the omnipotent root. In: Proceedings of the

2nd International SANE Conference (2000)

22. Kwiatek, M.: Cluster Architecture for Java Web Hosting at CERN. In: the 15th

International Conference on Computing In High Energy and Nuclear Physics, Mumbai,

India, pp.528--531 (2006)

23. Laprie, J., Randell, B.: Basic Concepts and Taxonomy of Dependable and Secure

Computing. IEEE Trans. Dependable Secur. Comput. 1, 1, pp. 11--33 (2004)

24. Liang, S., Bracha, G.: Dynamic Class Loading in the Java Virtual Machine. In:

OOPSLA‘98, pp. 36--44 (1998)

25. Lowy, J. 2001 COM and .NET Component Services. 1st. O'Reilly & Associates, Inc.

26. Matos, M., Sousa, A.: Dependable Distributed OSGi Environment. In: MW4SOC’08, pp.

1--6, ACM, New York, NY (2008)

27. Nelson, V.P.: Fault-Tolerant Computing: Fundamental Concepts. In: IEEE Computer,

23(7): pp 19--25 (1990)

28. Nierstrasz, O., Dami, L.: Component-Oriented Software Technology, Object-Oriented

Software Composition, Prentice Hall (1995)

29. OSGi Alliance. http://www.osgi.org

30. OSGi Alliance. About the OSGi Service Platform, Technical Whitepaper Revision 4.1, 7

June 2007, http://www.osgi.org/wiki/uploads/Links/OSGiTechnicalWhitePaper.pdf

18 Kiev Gama and Didier Donsez

31. Parrend, P., Frénot, S.: Classification of Component Vulnerabilities in Java Service

Oriented Programming (SOP) Platforms. In: CBSE 2008. LNCS, vol. 5282, pp.80--96,

Springer Berlin/Heidelberg (2008)

32. Rellermeyer, J. S., Alonso, G., Roscoe, T.: R-OSGi: Distributed Applications through

Software Modularization. In: the ACM/IFIP/USENIX 8th International Middleware

Conference (2007)

33. Royon, Y., Frénot, S., Mouel, F. L.: Virtualization of Service Gateways in Multi-provider

Environments. In: CBSE 2006, pp 385--392. Springer Berlin/Heidelberg (2006)

34. Schmidt, H.:Trustworthy components-compositionality and prediction. Journal of Systems

Software. 65, 3 (Mar. 2003), pp. 215-225.

35. Stutz, D., Neward, T., and Shilling, G. Shared Source Cli Essentials. O'Reilly (2002)

36. Sun Microsystems. Multitasking Guide-Sun Java Wireless Client Softw., Version 2.1, JME.

04/2008, http://java.sun.com/javame/reference/docs/sjwc-2.1/pdf-html/multitasking.pdf

37. Sun Microsystems. The CDC Application Management System. White Paper, June 2005.

http://java.sun.com/j2me/docs/cdc_appmgmt_wp.pdf

38. Squawk Java ME VM. https://squawk.dev.java.net/

39. Szyperski, C, Gruntz, D., Murer, S.: Component Software: Beyond Object-Oriented

Programming. Addison-Wesley, second edition (2002)

40. Wahbe, R., Lucco, S., Anderson, T. E., and Graham, S. L.: Efficient software-based fault

isolation. In: the 14th ACM Symposium on Operating Systems Principles. SOSP '93. pp.

203--216. ACM, New York, NY (1993)

