OROROORORRRORRORORORROROOOOORRRRORROROOORROOORK

BasicCard

Decl are Command &H40 &H10
Get Bal ance (Bal anceg&)

Status =
If Status = swConmmandOK Then
CheckFunds =
El se
Cal | LogError (Status)
CheckFunds = Fal se
End | f
End Function

010

Get Bal ance (Bal ance& —Pp» 11101¢

(Bal ance& >= Wt hdr awnal &)

Function CheckFunds (Wt hdrawal &
Rem Check that the balance in the card
Rem i s enough to cover the withdrawal

=
o
=
o

RPORPOORFROORFRORFROFROOORFROOR

10100111001010010010010

fOI—‘I—‘OI—‘I—‘HOHOC orpR

%
=2

001011101010011100101001001011001 ¢—

.

Eepr om NunServices = 0
Type Service
Bal ance&
SecuritylLevel
End Type

Eeprom Dynami c ServicelList() As Service

Command &H40 &H10 Get Bal ance (Bal ance&)
Rem Return the balance in the card

Bal ance& = 0
For | =1 To NunBervices

Bal ance& = Bal ance& + _
Servi celLi st (1).Bal ance&
Next |
End Conmmand

The Compact, Enhanced, and
Professional BasicCards

A ZeitControl

cardsystems GmbH

The ZeitControl BasicCard Family

The Compact, Enhanced, and Professional BasicCards

Document version 4.50
19" April 2003

Author: Tony Guilfoyle
e-mail: development@ZeitControl.de

Copyright© ZeitControl cardsystems GmbH
Siedlerweg 39
D-32429 Minden
Germany

Tel: +49 (0) 571-50522-0
Fax: +49 (0) 571-50522-99
Web sites:
http://www.ZeitControl.de
http://www.BasicCard.com

http://www.zeitcontrol.de/
http://www.basiccard.com/

Overview

Like most computer hardware, the price of smart cards is steadily decreasing, while performance and
capacity are improving all the time. You can now buy a fully-functional computer, the size of your
thumb-nail, for just a euro or two. However, before the BasicCard arrived, the cost of developing
software for smart cards was out of all proportion to the cost of the hardware. A typical development
project might take six months and cost a quarter of a million euros. This was a major barrier to the
widespread use and acceptance of smart cards.

But now you can program your own smart card in an afternoon, with no previous experience required.
If you can program in Basic, you can design and implement a custom smart card application. With
ZeitControl’s BasicCard, the development cycle of writing code, downloading, and testing takes a few
minutes instead of weeks.

This document describes ZeitControl’s BasicCard family: the Compact BasicCard, the Enhanced
BasicCard, and the Professional BasicCard. A BasicCard contains 256-1686 bytes of RAM, and 1-31
kilobytes of user-programmable EEPROM. The EEPROM contains the user’s Basic code, compiled
into a virtual machine language known as P-Code (the Java programming language uses the same
technology). The user’s permanent data is also stored in EEPROM, either as Basic variables, or in the
BasicCard’s directory-based file system. The RAM contains run-time data and the P-Code stack.

The smallest BasicCard, the Compact BasicCard, contains 1 kilobyte of EEPROM. How much Basic
code can you squeeze into this card? While no exact figure can be given, our experience suggests a
ratio of about 10-20 bytes of P-Code to every statement of Basic code. Assuming on average one
statement every two lines (for comments and blank lines), this works out at 100-200 lines of source
code. And the Series 4 Professional BasicCards can hold 30 times as much.

To create P-Code and download it to the BasicCard, you need ZeitControl’s BasicCard support
software. This software is free of charge, and can be downloaded at any time from ZeitControl’s
BasicCard page on the Internet (www.BasicCard.com). The support software runs under Microsoft®
Windows® 98/NT/2000. With this support package, you can test your software even if you don’t have a
card reader, by simulating the BasicCard in the PC. The package contains a fully-functional Multiple
Debugger, that can run Terminal and BasicCard programs simultaneously. So you can try out your idea
for a smart card application without it costing you a cent.

The Smart Card Environment

Obviously, programming a smart card is not the same as programming a desktop computer. It has no
keyboard or screen, for a start. So how does a smart card receive its input and communicate its output?
It talks to the outside world through its bi-directional 1/O contact. Communication takes place at 9600
baud or more, according to the T=0 and T=1 protocols defined in ISO/IEC standards 7816-3 and 7816-
4. But this is completely invisible to the Basic programmer — all you have to do is define a command in
the card, and program it like an ordinary Basic procedure. Then you can call this command from a ZC-
Basic program running on the PC. Again, the command is called as if it was an ordinary procedure.

The BasicCard operating system takes care of all the communications for you. It will even encrypt and
decrypt the commands and responses if you ask it to. All you have to do is specify a different two-byte
ID for each command that you define. (If you are familiar with ISO/IEC 7816-4: Interindustry
commands for interchange, you will know these two bytes as CLA and INS, for Class and Instruction.)

Here is a simple example. Suppose you run a discount warehouse, and you are issuing the BasicCard to
members to store pre-paid credits. You will want a command that returns the number of credits left in
the card. So you might define the command GetCustomerCredits, and give it an ID of &H20 &H02
(&H is the hexadecimal prefix):

http://www.basiccard.com/

Eeprom CustonmerCredits ' Declare a permanent |nteger variable

Conmand &H20 &HO2 Get CustomerCredits (Credits)
Credits = CustonerCredits
End Conmand

You can call this command from the PC with the following code:

Const swComandOK = &H9000

Decl are Command &H20 &HO2 Get CustonerCredits (Credits)
Status = GetCustonerCredits (Credits)

If Status <> swCommmandCOK Then GoTo Cancel Transacti on

The value &H9000 is defined in ISO/IEC 7816-4 as the status code for a successful command. This
value is automatically returned to the caller unless the ZC-Basic code specifies otherwise. The return
value from a command should always be checked, even if the command itself has no error conditions —
for instance, the card may have been removed from the reader.

It’s as simple as that. Of course, there is a lot more going on below the surface, but you don’t have to
know about it to write a BasicCard application.

Technical Summary

All BasicCard families (Compact, Enhanced, and Professional) contain:

a full implementation of the T=1 block-level communications protocol defined in ISO/IEC
7816-3: Electronic signals and transmission protocols, including chaining, retries, and WTX
requests;

a command dispatcher built around the structures defined in ISO/IEC 7816-4: Interindustry
commands for interchange (CLA INS P1 P2 [Lc IDATA] [Le]);

built-in commands for loading EEPROM, enabling encryption, etc.;
a Virtual Machine for the execution of ZeitControl’s P-Code;

code for the automatic encryption and decryption of commands and responses, using the AES,
DES, or SG-LFSR symmetric-key algorithm.

Enhanced and Professional BasicCards contain in addition:

a directory-based, DOS-like file system;
IEEE-compatible floating-point arithmetic.

The functionality of the Enhanced BasicCard family can be further extended using Plug-In Libraries.

Professional BasicCards contain in addition:

a Public-Key algorithm (RSA or EC);

a full implementation of the T=0 byte-level communications protocol defined in ISO/IEC
7816-3: Electronic signals and transmission protocols;

the SHA-1 Secure Hash Algorithm.

The data sheet on the next page contains details of available BasicCards versions, and the
cryptographic algorithms that they support.

Development Software
The ZeitControl MultiDebugger software support package consists of:

ZCPDE, the Professional Development Environment;

ZCMDTERM and ZCMDCARD, debuggers for Terminal programs and BasicCard programs;
ZCMBASIC, the compiler for the ZC-Basic language;

ZCMSIM, for low-level simulation of Terminal and BasicCard programs;

BCLOAD, for downloading P-Code to the BasicCard;

KEYGEN, a program that generates random keys for use in encryption;

BCKEYS, for downloading cryptographic keys to the Compact and Enhanced BasicCards.

Compact BasicCard

Version EEPROM RAM Protocol Encryption Floating-Point Support File System
| zC11 | 1K | 256bytes| T=1 | SG-LFSR | None | No |

Enhanced BasicCard
Version EEPROM RAM Protocol Encryption Extras FP Support File System

ZC3.1 2K 256 bytes T=1 DES Full Yes
ZC3.2 4K 256 bytes T=1 DES Full Yes
ZC3.3 8K 256 bytes T=1 DES Full Yes
ZC3.4 16K 256 bytes T=1 DES Full Yes
ZC3.5 6K 256 bytes T=1 DES EC-FSA' Full Yes
ZC3.6 14K 256 bytes T=1 DES EC-FSA' Full Yes
ZC3.7 2K 256 bytes T=1 DES Full Yes
ZC3.8 4K 256 bytes T=1 DES Full Yes
ZC3.9 8K 256 bytes T=1 DES Full Yes

1 EC-FSA: Fast Signature Algorithm for Elliptic Curve Cryptography
Plug-In Libraries for the Enhanced BasicCard: EC-161, AES, SHA-1, IDEA

Professional BasicCard*
Version PK Algorithm EEPROM RAM Protocol Encryption Extras FP Support File System

ZC4.5A RSA 30K 1K |T=0,T=1 AES SHA-1| Partial® Yes
ZC4.5D RSA 30K 1K |T=0,T=1 DES SHA-1| Partial® Yes
ZC54 EC-167 16K 1K | T=0, T=1|AES & DES| SHA-1 Full Yes
ZC55 EC-167 31K 2K |T=0, T=1|AES & DES| SHA-1 Full Yes

! See Professional BasicCard Datasheet for more information
2 Single-to-String conversion not supported

Public-Key Algorithms
Name Description Key size Reference
RSA Rivest-Shamir-Adleman algorithm 1024 bits IEEE P1363: Standard
EC-167 Elliptic Curve Cryptography over the field GF(2'*") 167 bits Specifications for Public
EC-161 Elliptic Curve Cryptography over the field GF(2'°®) 161 bits Key Cryptography

Symmetric-Key Algorithms

Name Description Key size Reference
AES Advanced Encryption Standard 128/192/ Federal Information Processing Standard
256 bits FIPS 197
DES Data Encryption Standard 56/112 bits ANSI X3.92-1981: Data Encryption
Algorithm
SG-LFSR Shrinking Generator — Linear 64 bits D. Coppersmith, H. Krawczyk, and Y.
Feedback Shift Register Mansour, The Shrinking Generator,

Advances in Cryptology — CRYPTO ’93
Proceedings, Springer-Verlag, 1994

IDEA International Data Encryption 128 bits X. Lai, On the Design and Security of
Algorithm Block Ciphers, ETH Series in
Information Processing, v. 1, Konstanz:
Hartung-Gorre Verlag, 1992

Data Hashing Algorithms

Name Description Reference
SHA-1 Secure Hash Algorithm, revision 1~ Federal Information Processing Standard FIPS 180-1

Communication Protocols
Name Description Reference
T=0 Byte-level transmission protocol ISO/IEC 7816-3: Electronic signals and
T=1 Block-level transmission protocol transmission protocols

Contents

Part I: User’s Guide

1. The BasicCard

11
1.2
1.3
1.4
15
1.6
1.7
1.8

Processor Cards

Programmable Processor Cards

BasicCard Features
BasicCard Programs
BasicCard Program Layout
The Compact BasicCard
The Enhanced BasicCard
The Professional BasicCard

2. The Terminal

2.1
2.2

The Terminal Program
Terminal Program Layout

3. The ZC-Basic Language

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23

The Source File

Tokens

Pre-Processor Directives
Data Storage

Data Types

Arrays

Data Declaration
User-Defined Types
Expressions

Assignment Statements
Program Control
Procedure Definition
Procedure Declaration
Procedure Calls

Procedure Parameters
Built-in Functions
Encryption

Random Number Generation
Error Handling
BasicCard-Specific Features
Terminal-Specific Features
Miscellaneous Features
Technical Notes

© ©O© 00 N O o

11
11
12

13
13
13

16
16
16
18
21
22
22
23
24
25
27
28
31
33
35
36
37
39
42
42
43
44
48
49

4. Files and Directories

4.1
4.2
4.3
4.4
45
4.6
4.7
4.8
4.9
4.10
411
412

Directory-Based File Systems
The BasicCard File System
File System Commands
Directory Commands
Creating and Deleting Files
Opening and Closing Files
Writing To Files

Reading From Files

File Locking and Unlocking
Miscellaneous File Operations
File Definition Sections

The Definition File FILEIO.DEF

5. Support Software

5.1
5.2
53
5.4
5.5
5.6
5.7
5.8
5.9

Hardware Requirements

Installation

File Types

Physical and Virtual Card Readers

Windows-Based Software

The ZCPDE Professional Development Environment
The ZCMDTERM Terminal Program Debugger

The ZCMDCARD BasicCard Program Debugger
Command-Line Software

6. Plug-In Libraries

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

RSA: The Rivest-Shamir-Adleman Library

AES: The Advanced Encryption Standard Library
EC-167: The 167-Bit Elliptic Curve Library
EC-161: The 161-Bit Elliptic Curve Library
SHA-1: The Secure Hash Algorithm Library
IDEA: International Data Encryption Algorithm
MATH: Mathematical Functions

MISC: Miscellaneous Procedures

51
51
52
53
54
58
58
60
61
62
64
64
65

67
67
67
67
69
69
71
73
75
77

83
83
87
88
92
97
98
99
100

Part Il: Technical Reference

7. Communications

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Overview

Answer To Reset

The T=0 Protocol

The T=1 Protocol

Commands and Responses

Status Bytes SW1 and SW2

Pre-Defined Commands

The Command Definition File COMMANDS.DEF

8. Encryption Algorithms

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

The DES Algorithm

Implementation of DES in the BasicCard

Certificate Generation Using DES

The AES Algorithm

Implementation of AES in the Professional BasicCard
The SG-LFSR Algorithm

Implementation of SG-LFSR in the Compact BasicCard
SG-LFSR with CRC

Encryption —a Worked Example

9. The ZC-Basic Virtual Machine

9.1
9.2
9.3
9.4
9.5
9.6
9.7

The BasicCard Virtual Machine
The Terminal Virtual Machine
The P-Code Stack

Run-Time Memory Allocation
Data Types

P-Code Instructions

The SYSTEM Instruction

10. Output File Formats

10.1
10.2
10.3
10.4

Index

ZeitControl Image File Format
ZeitControl Debug File Format
List File Format
Map File Format

106
106
106
107
112
113
114
117
134

137
137
138
142
142
142
145
145
146
147

155
155
155
156
157
157
158
164

168
168
171
174
176

178

Part |

User’s Guide

1. The BasicCard

1.1 Processor Cards

A processor card looks like this:

4)

Acme

Processor Cards

Inc.

\. J

Most of this is just plastic. The important part is the metallic contact area:

This area has the same layout as a standard telephone card. However, a telephone card contains only
memory, while a processor card contains a CPU as well — in effect, a complete miniature computer. A
typical processor card today might contain 8-32 kilobytes of ROM (Read-Only Memory) for the
operating system machine code, 1-64 kilobytes of EEPROM (Electrically Erasable, Programmable
Read-Only Memory) for the data in the card, and 256-2048 bytes of RAM (Random Access Memory).
The EEPROM is the ‘hard disk’ of the card — data written to EEPROM retains its value when the card
is powered down.

The single most important aspect of processor card design is security. That’s what processor cards are
for. If | want to make telephone calls for free, I can buy the equipment to make my own telephone
cards — but the reward is not proportional to the effort required (not to mention the risk of detection).
But if those telephone cards contained real money, instead of just telephone credits, there would be
plenty of people working on making illegal copies.

So for cards that contain so-called electronic cash that can be spent like real money, a processor card is
required. The processor protects access to the memory, using tamper-proof hardware design coupled
with high-security software algorithms.

1.2 Programmable Processor Cards

Communication with a processor card is by means of a command-response protocol. When a card is
inserted in the reader, a command-response session is initiated:

Acme
—. Processor Cards
Inc.
I
Terminal Card Reader Processor Card
Reset Card ——»
< Answer To Reset (ATR)
Command >
< Response
Command >
< Response
etc.

The processor card is the passive partner in this exchange. After sending the Answer To Reset, it does
nothing until it receives a command from the Terminal. Then after sending the response to this
command, it waits passively for the next command, and so on. The command-response protocol used
by most processor cards is defined in the 1SO standard documents ISO/IEC 7816-3: Electronic signals
and transmission protocols and ISO/IEC 7816-4: Interindustry commands for interchange. These
documents are summarised in Chapter 7: Communications.

1.2 Programmable Processor Cards

Until recently, programming a processor card was a major undertaking. The following skills were
involved:

» Assembly language programming. Although ‘C’ compilers were available for some processor
cards, it was not possible to write the whole operating system in ‘C’.

e Byte-level communication protocols, such as the T=0 protocol.

» Block-level communication protocols at the command-response level.
e Programming at the hardware level for writing to EEPROM.

e Security algorithms. You had to write your own.

You would also need a complex (and expensive) development environment. And on top of everything,
after submitting your program to the chip manufacturer, you would have to wait for two or three
months, while it was burned into ROM in several thousand chips, before you could test it in a real card.

However, the situation has improved. Programmable processor cards are now available. The heart of a
programmable processor card is its P-Code interpreter. You write a program for the card, in Java or
Basic (the two languages currently available on the market). This is compiled into so-called P-Code,
which is a machine-independent language that looks like machine code. The P-Code is downloaded to
the card, where it is executed by the interpreter. And if your code doesn’t work first time, you can
download a new version into the same card. So the development cycle is closer to what most
programmers are used to.

1. The BasicCard

1.3 BasicCard Features

The BasicCard is a programmable processor card, with a P-Code interpreter optimised for executing
programs written in Basic. It was designed with four criteria in mind at all times. It had to be:

Inexpensive The development software is free of charge — you can download the latest version

from our web site at any time at www.BasicCard.com. And most versions of the
BasicCard cost less than half as much as other currently-available programmable
processor cards.

Easy to program Everybody can program in Basic — or if they can’t, they can pick it up in an

afternoon. That’s all you need to program the BasicCard. A command from the
Terminal to the BasicCard is defined and called just like a Basic function. The file
system in the BasicCard looks just like a regular diskette. Encryption has been made
as simple as possible to implement — you just turn it on or off. And EEPROM data is
read and written just like RAM data.

Secure State-of-the-art cryptographic algorithms are available for all BasicCard types:

Professional BasicCard

« public-key cryptography: RSA, or EC over GF(2*°")
« the AES Advanced Encryption Standard
e the SHA-1 Secure Hash Algorithm

Enhanced BasicCard

e DES Data Encryption Standard
e Plug-In Libraries: AES, SHA-1, EC over GF(2'®®), and the IDEA International
Data Encryption Algorithm

Compact BasicCard
e the Shrinking Generator algorithm designed by D. Coppersmith, H. Krawczyk,
and Y. Mansour — see 8.6 The SG-LFSR Algorithm for details

The security of the BasicCard implementation is enhanced by our cryptographic key
generation program — see 5.9.4 The Key Generator KEYGEN.EXE for more
information.

ISO-compliant In the ZC-Basic programming language, defining your own 1SO-compliant command

is as easy as declaring a function. Just as importantly, 1SO-defined commands, such
as SELECT FILE and READ RECORD, can be programmed in ZC-Basic. So you
can implement your own 1SO card, or call an existing 1SO card from a ZC-Basic
Terminal program. See 7.5 Commands and Responses for more information.

The operating systems in all BasicCards contain the following features:

A full implementation of the T=1 communications protocol defined in ISO/IEC 7816-3:
Electronic signals and transmission protocols, including chaining, retries, and WTX requests. The
Professional BasicCards contain the T=0 protocol as well.

These protocols define the structure and duration of the bits and bytes that constitute the messages
in a command-response session. See 7.3 The T=0 Protocol and 7.4 The T=1 Protocol for more
information.

Pre-defined commands for downloading programs and data to the BasicCard, enabling automatic
encryption, etc.

These commands are described in 7.7 Pre-Defined Commands.

A Virtual Machine for the execution of ZeitControl’s P-Code.

The compiler ZCMBASIC compiles ZC-Basic source code into P-Code, an intermediate language
that can be thought of as the machine code for a Virtual Machine. (The Java programming
language uses the same technology, although the P-Code instruction set is not the same.) The P-
Code is downloaded to the card using the BCLOAD Card Loader program. Then the Virtual
Machine in the BasicCard executes the P-Code instructions at run-time.

www.BasicCard.com

1.4 BasicCard Programs

1.4 BasicCard Programs

BasicCard programs are written in the ZC-Basic language, which is a modern procedure-oriented
Basic, with special features for the processor card environment. It is described in Chapter 3: The ZC-
Basic Language.

A BasicCard program is specified in a single source file (which may, however, include other source
files). This file will typically have a .BAS extension.

1.4.1 Image Files

The compiler can create a ZeitControl Image File (with .IMG extension) from your BasicCard program
source file. This image file can then be downloaded to a BasicCard; or it can be run in the ZCMSIM
P-Code interpreter together with a Terminal Program — see 5.9.2 The P-Code Interpreter
ZCMSIM.EXE for details.

1.4.2 Debug Files

If the BasicCard program is to be run in the ZCMDCARD BasicCard debugger, the compiler must
create a ZeitControl Debug File (with .DBG extension). This is simply a ZeitControl Image File with
symbolic debugging information included. Image files and debug files are described in Chapter 10:
Output File Formats.

1.4.3 Card Program Files

The ZCMDCARD BasicCard debugger works with simulated BasicCards. A simulated card is
described by a Card Program File, with extension .ZCC. This file contains the simulated EEPROM,
which retains its contents between program runs, and various other data, such as source filename, card
type, and compiler options. A single source file may be the basis for several Card Program files, each
running the same program, but with different data stored in simulated EEPROM.

1.5 BasicCard Program Layout

A BasicCard program consists of initialisation code and procedure definitions. Programs for the
Enhanced and Professional BasicCards can also contain optional file definition sections.

1.5.1 Initialisation Code

The first block of code that is not contained inside a procedure definition is initialisation code: it gets
executed when the first user-defined command is called from the Terminal. Initialisation code is not
required, but it can be useful for certain things; for instance, checking that the card has not been
cancelled by the issuer, or that the expected files and directories are present.

1.5.2 Procedure Definitions

ZC-Basic has three types of procedure: subroutines, functions, and commands. Each procedure is self-
contained — nested procedure definitions are not allowed, and GoTo and GoSub statements can only
transfer control to labels within the current procedure. Subroutines and functions are familiar to Basic
programmers — a subroutine is a block of code that can be called from other procedures, and a function
is a subroutine that returns a value. The command, however, is special to ZC-Basic; it is the mechanism
by which the Terminal program communicates with the BasicCard program.

According to the I1SO standard document ISO/IEC 7816-4: Interindustry commands for interchange,
each command is assigned a unique two-byte ID. This is all the ZC-Basic programmer needs to know
about ISO standards. For the curious, these two bytes are known as CLA and INS (for Class and
Instruction); the full command-response protocol defined in the standard is described in 7.5
Commands and Responses. The two-byte ID must be supplied between the Command keyword and
the name of the command. Here is an example (&H is the hexadecimal prefix):

1. The BasicCard

Command &HB80 &H10 Get Cust oner Nane (Nane$)
Name$ = Cust oner Nane$
End Conmmand

Then whenever the BasicCard receives a command from the Terminal with CLA = &H80 and
INS = &H10, the operating system in the card automatically executes the GetCustomerName
command.

A command behaves like a cross between a function and a subroutine: it is defined like a subroutine (as
above), but called like a function (see 2.2 Terminal Program Layout). The BasicCard operating
system fills in the return value that gets passed back to the Terminal program. This return value
consists of the two status bytes SW1 and SW2 defined in ISO/IEC 7816-4. The return value of a
command should always be checked; for instance, the card may have been removed from the reader, or
the reader may have lost power for some reason. If SW1=&H90 and SW2=&HO00, or if
SW1 = &H61, then the command completed successfully. Otherwise a problem has occurred that
prevented successful execution of the command.

These two status bytes are available as pre-defined variables in the BasicCard, so you can define your
own error codes. For convenience of access, the two-byte Integer variable SW1SW?2 is also defined.
For instance:

Eeprom Bal ance As Long : Rem Decl are permanent (Eeprom variable
Const InsufficientCredit = &H6FO0
Conmand &HB0 &H20 Debi t Account (Anpunt As Long)
I f Bal ance < Anmount Then
SWSW2 = InsufficientCredit
El se
Bal ance = Bal ance - Anount
End |f
End Command

Notes:

« You don’t need to specify SW1 and SW2 if the command completes successfully. They are set to
&H90 and &HO00 before the command is called.

e If you specify values for SW1 and SW2 other than the two indicators of successful completion
(SW1SW2 = &H9000 or SW1 = &H®61), the operating system throws away the response data and
just returns the two status bytes to the Terminal program. (This is in accordance with ISO/IEC
7816-4.) In the Professional BasicCard, you can override this behaviour — see 3.3.3 Options and
6.8.8 SW1-SW2 Processing for details.

e Your own SW1-SW?2 error codes can take any values. However, for ISO compliance, or if you are
programming a Professional BasicCard that uses the T=0 protocol, the high nibble of SW1 must
be 6, i.e. SW1 = &H6X. You should also avoid assigning new meanings to ZC-Basic’s own error
codes. ZC-Basic’s error codes are listed in 7.6 Status Bytes SW1 and SW2; you can avoid any
clashes if you use SW1 = &H6B or &H6F (except SW1-SW2=&H6F00).

1.5.3 File Definition Sections

The Enhanced and Professional BasicCards contain a Windows-like file system, with directories
organised in a tree structure. There are several ways to access files and directories in the BasicCard.

< From within the BasicCard itself, files can be created, read, and written with exactly the same
statements that you would use in a Basic program running under DOS or Windows. There are also
some special statements for setting access conditions on files and directories, to restrict access
from Terminal programs. These access conditions can depend on cryptographic keys, user
passwords, etc.

e From a Terminal program, the BasicCard looks just like a diskette, with the special drive name
“@ ”. If the access conditions permit it, you can create, read, and write files and directories in the
BasicCard as if it was a floppy disk.

e You can initialise directory structures and files in a BasicCard program with File Definition
Sections.

10

1.6 The Compact BasicCard

1.5.4 Permanent Data

Most BasicCard applications will contain permanent data, that retains its value while the BasicCard is
powered down. Permanent data is stored in EEPROM (Electrically Erasable, Programmable Read-Only
Memory). In the Enhanced and Professional BasicCards, you can store permanent data in files, but in
the Compact BasicCard permanent data must be stored in Eeprom variables. An example of an
Eeprom variable was given in the previous section;

Eeprom Bal ance As Long : Rem Decl are permanent (Eeprom) variable

The variable Balance declared here can be read or written just like a regular variable. Eeprom strings
and arrays can also be declared. This can be a very convenient way of storing permanent data, in all
types of BasicCard.

Writing to EEPROM can take up to 6 milliseconds, so the possibility is always present that the card
will lose power in the middle of the write operation. The Enhanced and Professional BasicCards
automatically log all EEPROM write operations, to enable them to recover in the event of power loss.
The Compact BasicCard has no such recovery mechanism, so EEPROM data may be left in an
inconsistent state. In the Compact BasicCard, therefore, important Eeprom data should be duplicated
to protect against possible corruption if the card is powered down during an EEPROM write operation.
For example:

Eeprom Bal ance As Long : Rem A very inportant piece of data
Eepr om ShadowBal ance As Long
Eeprom Committed = Fal se

Conmand &HB0 &H30 ChangeBal ance (NewBal ance As Long)
ShadowBal ance = NewBal ance
Committed = True
Bal ance = ShadowBal ance
Committed = Fal se
End Command

Then in the initialisation code:

If Comm tted Then
Bal ance = ShadowBal ance
Committed = Fal se

End If

This technique guarantees that Balance will never be left in an inconsistent state.

Note: In the Compact BasicCard, power loss during memory allocation can lead to corruption of the
EEPROM heap. For this reason, we recommend that you avoid ReDim statements and assignment of
variable-length strings in all Compact BasicCard code that may be executed after the card is issued to
the end user. (The Enhanced and Professional BasicCards always protect themselves against heap
corruption, so no such caution is necessary in these cards.)

1.6 The Compact BasicCard

A single version of the Compact BasicCard is available:
BasicCard ZC1.1 Contains 1K of user-programmable EEPROM. Available since June 1998.

1.7 The Enhanced BasicCard

The original Enhanced BasicCard — the Series 2 Enhanced BasicCard — is no longer supported. The
current Enhanced BasicCard is the Series 3 Enhanced BasicCard:

BasicCard ZC3.1 Contains 2K of user-programmable EEPROM. Available in large quantities
only — contact ZeitControl for details.

BasicCard ZC3.2 Contains 4K of user-programmable EEPROM. Available in large quantities
only — contact ZeitControl for details.

11

1. The BasicCard

BasicCard ZC3.3 Contains 8K of user-programmable EEPROM. Available since December
1999.

BasicCard ZC3.31 Functionally identical to BasicCard ZC3.3.

BasicCard ZC3.4 Contains 16K of user-programmable EEPROM. Available since December
1999.

BasicCard ZC3.5 Contains 6K of user-programmable EEPROM, and the Elliptic Curve Fast
Signature Algorithm (EC-FSA). Available since February 2000.

BasicCard ZC3.6 Contains 14K of user-programmable EEPROM, and the Elliptic Curve Fast

Signature Algorithm (EC-FSA). Available since February 2000.

The two EC-FSA cards contain a proprietary algorithm that can generate a 161-bit Elliptic Curve
signature in 1.2 seconds.

BasicCard ZC3.7 New 2K version, equivalent to BasicCard ZC3.1.
BasicCard ZC3.8 New 4K version, equivalent to BasicCard ZC3.2.
BasicCard ZC3.9 New 8K version, equivalent to BasicCard ZC3.3.

These three new versions were required due to hardware changes in the chip, but the functionality is
unchanged.

1.8 The Professional BasicCard

With the arrival of the Professional BasicCard series, ZeitControl has revolutionised its own
BasicCard development process. Two major factors have changed:

1. The BasicCard Operating System is contained in programmable Flash ROM, so that new
BasicCard versions can be produced on demand, without the costly procedure of burning the code
into ROM.

2. ZeitControl’s MultiDebugger development software no longer needs to know the details of each
BasicCard version in advance — each Professional BasicCard version comes with its own
Configuration File, that contains everything that the software needs to know. So a new
Professional BasicCard version can be produced without having to make any changes to the
software.

All Professional BasicCards contain a built-in public-key cryptography algorithm: ZC4.x series cards
support the RSA algorithm, and ZC5.x series cards support the EC-167 algorithm (Elliptic Curve
cryptography over the finite field GF(2'*"), as defined in IEEE standard P1363).

The minor version number (the x in ZC4.x and ZC5.x) indicates that the amount of user-programmable
EEPROM in the card is approximately 2* kilobytes.

Currently available Professional BasicCards:

User-programmable
Version EEPROM T=0 T=1 AES DES RSA EC-167 SHA-1

ZC45A 30K v | vV |V v v

7C4.5D 30K v | v v | Vv v

7C5.4 16K v | vV | vV | V v | v

7C5.5 31K v | vV | vV | V v | v

From time to time, new versions of the Professional BasicCard will appear, and new features will be
added to existing cards. See the Professional BasicCard Datasheet on ZeitControl’s BasicCard web
site www.BasicCard.com for the most up-to-date information.

The version number of the card, along with its software revision number, is returned by the card as an
ASCII string in the response to the GET STATE command (see 7.7.3 The GET STATE Command).

12

www.BasicCard.com

2. The Terminal

2.1 The Terminal Program

The ZC-Basic language was designed with the BasicCard in mind. But it can also run in a PC, with or
without a card reader attached to the serial port. You can write a stand-alone ZC-Basic program to do
your monthly accounts, or to help you solve crosswords, or whatever you like.

A ZC-Basic program that runs on a PC is referred to in this documentation as the Terminal program.
Usually it will communicate with one or more ZC-Basic programs running in (real or simulated)
BasicCards — the BasicCard programs.

The compiler can create executable files, image files, and debug files from a Terminal program source
file — see 5.9.1 The ZC-Basic Compiler ZCMBASIC.EXE for details.

2.1.1 Executable Files

The compiler can create standard executable files (files with .EXE extension), that will run as
programs in a DOS box under Windows® 98. Such programs can’t communicate with a simulated
BasicCard — if they call any BasicCard commands, then a real BasicCard must be present. Also, such
programs are not self-modifying, so they can’t execute Write Eeprom statements (see 2.2.4
Permanent Data below).

Command-line parameters passed to the executable file can be accessed from ZC-Basic in the pre-
defined string array Param$ (1 To nParams) — see 3.21.10 Pre-Defined Variables.

2.1.2 Image Files

For more flexibility during program development, the compiler can also create a ZeitControl Image
File (with .IMG extension) from your Terminal program source file. The ZCMSIM P-Code interpreter
can then run this Terminal program together with a BasicCard program running in a real or simulated
BasicCard — see 5.9.2 The P-Code Interpreter ZCMSIM.EXE for details.

2.1.3 Debug Files

The compiler can also produce Debug Files (with .DBG extension), which are simply ZeitControl
Image Files with debugging information included. These files are used by the ZCMDTERM Terminal
Program debugger. Image files and debug files are described in Chapter 10: Output File Formats.

2.1.4 Terminal Program Files

The ZCMDTERM Terminal Program debugger saves the data for a given Terminal Program in a
Terminal Program file, with .ZCT extension. This file contains the source filename, the compiler
options, and various other data.

2.2 Terminal Program Layout

A Terminal program consists of the main procedure and procedure definitions. BasicCard commands
are declared in command declarations, after which they can be called just like functions.

The Terminal program is executed by ZeitControl’s P-Code interpreter, in one of three ways:

e asastand-alone executable file ((EXE) created by the compiler;
e by the ZCMSIM P-Code interpreter, from an Image File ((IMG);
e by the ZCMDTERM Terminal Program debugger, from a Debug File (.DBG).

13

2. The Terminal

The P-Code interpreter can run BasicCard programs simultaneously in the PC in simulated BasicCards,
or it can communicate with genuine BasicCards via a card reader — a ZeitControl Chipi® or
CyberMouse® card reader connected to a serial port or a USB port, or any other PC/SC-compatible
card reader.

2.2.1 The Main Procedure

The main procedure starts at the first statement that is not contained inside a procedure definition, and
ends at the start of the next procedure definition (or the end of the source file). The Terminal program
begins execution at the first statement in the main procedure, and continues until it reaches the end of
the main procedure, or until an Exit statement is executed.

2.2.2 Procedure Definitions

Procedure definitions in the Terminal program consist of functions and subroutines, exactly like a
regular Basic program. Each procedure is self-contained — nested procedure definitions are not allowed,
and GoTo and GoSub statements can only transfer control to labels within the current procedure.

2.2.3 Command Declarations

Before you can call a BasicCard command, you must declare it, so that the ZC-Basic compiler knows
the two ID bytes of the command, and the types of the command parameters. Apart from the two ID
bytes, a command declaration looks like a subroutine declaration. Here are declarations of the three
example commands from 1.5 BasicCard Program Layout:

Decl are Command &H80 &H10 Get Cust onmer Nane (Nane$)
Decl are Command &H80 &H20 Debit Account (Amount As Long)
Decl are Command &H80 &H30 ChangeBal ance (NewBal ance As Long)

Calling these commands is just like calling a function:

St at us = Get Cust oner Name (Nane$)

If Status <> &H9000 And (Status And &HFF00) <> &H6100 Then
Print "GetCustonmerNane: Status = &H'; Hex$ (Status)
GoTo Retry

End I f

You should always check the return value, even if the command itself has no error conditions, in case a
communication problem has occurred (such as the card being removed from the reader). If you prefer,
you can use the pre-defined variables SW1, SW2, and SW1SW2, which contain the status bytes from
the most recently called command:

Cal | GCet Cust oner Nane (Nane$)

If SWSW <> &HI000 And SWL. <> &H61 Then
Print "GetCustonerNane: Status = &H'; Hex$ (SWLSW2)
GoTo Retry

End I f

See 7.6 Status Bytes SW1 and SW2 for a list of ZC-Basic status codes. The file
Basi cCar dPr o\ | nc\ Commands. Def defines these status codes in Const statements, so you can
refer to &H9000 and &H61 as swCommandOK and swlleWarning respectively if you include this
file in your program — see 3.3.1 Source File Inclusion. Alternatively, you can call the subroutine
CheckSW1SW?2(), which is defined in the file COMMERR.DEF. If a communications error has
occurred, this subroutine prints a suitable error message and exits.

2.2.4 Permanent Data

ZC-Basic contains a very convenient mechanism for the reading and writing of permanent data in the
BasicCard: you just declare data of storage type Eeprom, and the BasicCard operating system does the
rest. Although the Terminal program contains no genuine EEPROM data, this useful feature is
available in Terminal programs as well, if they were loaded from a ZeitControl Image File (or Debug
File). Eeprom data in a Terminal program is written back to the image file in two circumstances:

14

2.2 Terminal Program Layout

1. On program exit, if the appropriate options were specified:

e inthe ZCMDTERM Terminal Program debugger, checking the Save Terminal EEPROM
entry in the Terminal Program Options dialog box;

» with the -W parameter on the ZCMSIM command line (see 5.9.2 The P-Code Interpreter
ZCMSIM.EXE).

2. When the Terminal program executes a Write Eeprom statement (see 3.21.7 Saving Eeprom
Data).

Note: The Write Eeprom statement is only valid if the Terminal program is running in the ZCMSIM
P-Code interpreter or the ZCMDTERM Terminal Program debugger. Programs containing Write
Eeprom statements can’t be compiled into executable files.

15

3. The ZC-Basic Language

The ZC-Basic programming language is a fully functional, modern Basic, with function and subroutine
calls, user-defined data types, file 1/0, and pre-processor directives. In addition, it has some special
features for the smart card environment, including command definition and invocation, 1/O encryption,
and file access control.

In this chapter, the following conventions are observed:

e ZC-Basic keywords are printed in bold text.

e Statement fields that must be supplied by the programmer are printed in italic text.

e Programming examples are printed in f i xed-wi dt h bol d text.

e Optional statement fields are enclosed in [square brackets].

« Alternatives are separated by a vertical bar and enclosed in braces, e.g. { ByVal | ByRef }.

File 1/0 in ZC-Basic is described in Chapter 4: Files and Directories.

3.1 The Source File

A ZC-Basic program must consist of a single compilation unit — there is no linking stage. This lets the
compiler work out the storage requirements of the whole program, so that it can use the limited RAM
as efficiently as possible. You may, however, split your source into several files and #Include them all
in a master source file.

The source consists of lines, which may be logically extended with the line continuation character “_
(underscore). Each line consists of statements, separated from each other with “:” (colon). A comment
character “*” (single quote) causes the rest of the line to be ignored (unless it occurs inside a string). The
Rem keyword may also be used to introduce a comment, but it is only allowed at the beginning of a
statement. For instance:

X=0 ' Conment i ntroduced by comment character
Rem OKto use Remon its own line...
Y=0: Z=0: Rem ...but here we need the col on
3.2 Tokens

At the lowest level, a source program consists of a sequence of tokens. There are four kinds of token:
constants, identifiers, reserved words, and special symbols. Except for string constants, tokens may not
contain spaces or tabs.

A constant can be an integer, a floating-point number, or a string. Integer constants are decimal by
default; the prefixes &O (or just &) and &H denote octal and hexadecimal constants respectively.
Integer constants have the range —2147483648 to +2147483647.

If a constant contains a decimal point or an exponent (E or e), it is a floating-point constant. ZC-Basic
supports only single-precision floating-point numbers. Floating-point numbers are stored in IEEE
denormalised format, with an 8-bit exponent and a 23-bit mantissa. This gives a precision of 7 decimal
places, and a range of 1.401298E-45 to 3.402823E+38.

A string constant is any sequence of printable characters enclosed in double quotes “**’. To include non-
printable characters in a string constant, use Chr$(); the double quote itself is Chr$(34). For example:

X$ = Chr$(34) + "STRING' + Chr$(34) + Chr$(10) ' 10 = new |ine

Variables, procedures, etc. must be given names, or identifiers. In ZC-Basic, an identifier consists of
letters (A-Z, a-z) and digits (0-9), followed by an optional type character (@, %, &, !, $). It may be
any length. An identifier must start with a letter. The type character specifies the data type of a function
or variable, as follows:

16

Character: @
Data type:

Byte

%

Integer

&
Long

Single

3.2 Tokens

$
String

If a type character is not present, the default type is Integer (but you can change this default behaviour
with DefByte, DefLLng etc — see 3.22.2 DefType Statement). Case is not significant in ZC-Basic, so
ABC, AbC, and abc are considered identical. An identifier must not clash with a reserved word, which

is a word with a pre-defined meaning.

Here is a list of the reserved words in ZC-Basic:

Abs Access
As Asc

Bi nary By Ref
Car dl nReader CardReader
ChDri ve Chr$
Const CurDir
Def | nt Def Lng
Dim Dir
Eeprom El se
End ECF
File For

CGet Attr GoSub

| nKey$ | nput
Kill LBound
Let Li ne
Loop LTrin$
Name Next
Option O
PcscReader Peek
Private Public
Read ReDi m
Ri ght $ RnDi r
Sel ect Set Attr
Spc Sqrt
String String$
Ti me$ To
UCase$ Unl ock
Val H WENnd
Xor

And

At

Byt e
Case

Cl ose
CurDrive
Def Sng
Di sabl e
El sel f
Er ase
FreeFil e
GoTo

I nt eger
LCase$
Lock

M d$
Not

Qut put
Poke
Put

Rem
Rnd
Shar ed
Static
Sub
Tring
Unti |
Wi | e

Append
ATR

By Val
Certificate
Cs

Decl are

Def String
Do

Enabl e

Exit

Functi on
Hex$

I's

Left$

Log

MDi r

On

Over f | onCheck
Pol ynomi al s
Random
Reset Car d
RTri nf

Si ngl e

Step

Tab

Type

Val !

Wite

Applicationl D
Base

Cal |

ChDir
Command
Def Byt e
DES
Dynanmi c
Encryption
Explicit
Cet

| f

Key

Len

Long

Mod

Open
PcscCount
Print
Random ze
Ret urn
Seek
Space$
Str$

Then
UBound
Val &

WX

In addition to constants, identifiers, and reserved words, the following special symbols are recognised:

+ o~

Underscore (line continuation)

Left parenthesis
Plus

Multiply

Comma

Equals

Less than

Less than or equal to
Full stop or Period

Semi-colon

)

/

Single quote (comment character)

Right parenthesis
Minus

Divide

Colon

Not equals

Greater than

Greater than or equal to

Pre-processor directive or file number

Double quote (string delimiter)

17

3. The ZC-Basic Language

3.3 Pre-Processor Directives

Pre-processor directives are instructions to the ZCMBASIC compiler. For instance, they tell the
compiler which lines of source code to compile, and whether these lines should be written to the list
file if a listing is requested. They can also be used to specify various command-line parameters in the
source code itself — in this case, the compiler accepts the first occurrence of the parameter, so directives
in the source code are overridden by parameters on the command line.

A pre-processor directive begins with the hash character ‘#’, which must be the first character on the
input line (excluding spaces and tabs).
3.3.1 Source File Inclusion
The directive
#Include filename

causes the named file to be included and compiled as if it was part of the source file itself. Included
files can themselves contain #Include directives, nested to any depth. If filename contains any space
characters, it must be enclosed in double quotes (“filename”); otherwise the quotes are optional. The
compiler looks for the file in the following directories:

e first, the directory of the including file;

e next, directories specified in —1 parameters, in the order that they appear in the command line (see
5.9.1 The ZC-Basic Compiler ZCMBASIC.EXE);

e next, the current directory;

e next, directories specified in the Windows Registry variable
“HKEY_CURRENT_USER\Software\ZeitControl\BasicCardPro\ZCINC”;

« finally, directories specified in the ZCINC environment variable.
The ZCINC Windows Registry variable can be set from the ZCPDE Professional Development
Environment, via menu item Options|Environment|Compiler.
3.3.2 Library Inclusion
The directive
#Library filename

loads a ZeitControl Plug-In Library for the Enhanced BasicCard. See Chapter 6: Plug-In Libraries
for a list of currently available libraries. The compiler looks for the #Library file in the same
directories as it looks for #Include files — see 3.3.1 Source File Inclusion for details.

Notes:

e ZeitControl provides a definition file library.def for each library file library.lib. The definition file
contains the appropriate #Library directive, along with all the required declarations. You should
normally just #Include this definition file, rather than loading the library yourself with a #Library
directive.

e Terminal programs and Professional BasicCard programs don’t need the #Library directive, as
they use a different mechanism for loading Plug-In Libraries — see 3.13.2 Plug-In Library
Procedures.

3.3.3 Options

Professional BasicCards have options that can be selected using the #Option directive. At the time of
writing, the following options are available in some or all cards:

18

3.3 Pre-Processor Directives

Protocol Selection
#Option protocol[, protocol]

where protocol is either T=0 or T=1. This enables one or both communication protocols. All
Professional BasicCards support this option. Without this option, the enabled protocols depend on the
card version — see Professional BasicCard Datasheet for details.

Inverse Convention
#Option InverseConvention

By default, all cards use the Direct Convention to encode the bytes exchanged with the Terminal: logic
level ONE is high, and the least significant bit is sent first. Some cards also support the Inverse
Convention, where logic level ONE is low, and the most significant bit is sent first. You won’t need
this option unless you are using old card readers that don’t support the Direct Convention.

At the time of writing, this option is available in Professional BasicCards ZC5.4 (from Revision B) and
ZC5.5 (all revisions).

SW1-SW2 = &H9XXX Allowed
#Option Allow9XXX

Normally, if SW1-SW2 <> &H9000, and SW1 <> &H61, then ODATA is not sent — see 7.5
Commands and Responses. You can override this behaviour in some Professional BasicCards with
this option: if SW1-SW2 has the form &H9XXX, then ODATA is sent in the response. This behaviour
is enabled for every command. See 6.8.8 SW1-SW2 Processing for an alternative method.

At the time of writing, this option is available in Professional BasicCards ZC5.4 (from Revision B) and
ZC5.5 (all revisions).

3.3.4 Conditional Compilation

Sections of code can be included or excluded according to the values of constants defined earlier (or on
the compiler command line):

#If conditionl
code block 1
[#Elself condition2
code block 2]
[#Elself condition3
code block 3]
[#Else
code block n]
#EndIf

where condition1, condition2,... are constant numerical expressions, which may include symbols
defined in Const statements or on the compiler command line (with the “~Dsymbol” parameter — see
5.9.1 The ZC-Basic Compiler ZCMBASIC.EXE). Code block i is compiled if condition i is the first
non-zero condition.

Instead of testing the value of a numerical expression, you can test whether a constant symbol has been
defined:

#IfDef symboll
code block 1

[#ElselfDef symbol2
code block 2]

[#ElselfDef symbol3
code block 3]

[#Else
code block n]

#EndIf

19

3. The ZC-Basic Language

The directives #IfNotDef and #ElselfNotDef have the opposite sense to directives #1fDef and
#ElselfDef respectively.

#EndIf has the alternative form #End If (with a space) for compatibility with the Basic End If
statement.

See also 3.3.12 Pre-Defined Constants.

3.3.5 Listing Directives

You can cause sections of code (or complete included files) to be omitted from the listing file with the
directive

#NoL.ist
The #NoL.ist directive is cancelled by #L ist.

3.3.6 Card State

By default, the BasicCard is switched to state TEST after a ZC-Basic program is downloaded. You can
override this with the #State directive:

#State { LOAD | PERS | TEST | RUN }

This is equivalent to the command-line parameter —Sstate (see 5.9.1 The ZC-Basic Compiler
ZCMBASIC.EXE).

3.3.7 Number of Open File Slots

Each open file in a ZC-Basic program is assigned an open file slot. The Terminal program has 32 open
file slots, so the maximum number of files that can be opened simultaneously is fixed at 32. In the
BasicCard, the default number of open file slots is 2, but this can be overridden with the #Files
directive:

#Files nFiles

with 0 <= nFiles <= 16. This number includes files opened in the BasicCard program and BasicCard
files opened from a Terminal program. The amount of RAM used by the file system is (6 * nFiles + 7)
bytes (unless nFiles is zero, in which case no file system is installed, so no RAM is required).

3.3.8 Stack Size
The #Stack directive specifies the size of the P-Code stack:
#Stack stack-size

This is equivalent to the compiler command-line parameter —Sstack-size (see 5.9.1 The ZC-Basic
Compiler ZCMBASIC.EXE). If no stack size is specified, the compiler works out for itself how big
the stack should be.

3.3.9 Message Directive
You can output a message at any point during compilation with

#Message message

The message is printed to the screen, and compilation continues unaffected.

3.3.10 Error Directive
You can define your own compiler error messages with the #Error directive. For instance:

#1f MaxLi neLength > 80
#Error MaxLi neLength too big (max 80)
#End| f

Then if anybody tries to compile the program with MaxLineLength defined as 100, say, the compiler
will issue the error message “#Error MaxLineLength too big (max 80)” and stop compilation.

20

3.4 Data Storage

3.3.11 Block Waiting Time
In a BasicCard program that uses the T=1 protocol, the BWT field in the ATR can be specified with
#BWT n

where n is a power of 2 between 1 and 512 inclusive. This Block Waiting Time specifies the time that
the card is given to execute a command, before the card reader returns with status swCardTimedOut.
It is expressed in tenths of a second (giving a maximum of 51.2 seconds). Its default value is 16 (1.6
seconds) in a Compact BasicCard, and 128 (12.8 seconds) in Enhanced and Professional BasicCards.

Cards that use the T=0 protocol are restricted to a WWT (Work Waiting Time) of 128, i.e. 12.8
seconds.

3.3.12 Pre-Defined Constants

According to the target machine (Terminal, Compact BasicCard, Enhanced BasicCard, or Professional
BasicCard), one of the following constants is pre-defined by the compiler (and has the value 1):

TerminalProgram CompactBasicCard EnhancedBasicCard ProfessionalBasicCard
For instance:

#I f Not Def EnhancedBasi cCard
#Error This program nmust be compiled for the Enhanced Basi cCard!
#EndI f

In BasicCard programs, the constants CardMajorVersion and CardMinorVersion are also defined.
For instance, in a program compiled for the Enhanced BasicCard ZC3.5, they take the values 3 and 5
respectively.

3.4 Data Storage

All variables in a ZC-Basic program belong to one of four data storage classes: Eeprom, Public,
Static, or Private.

3.4.1 Eeprom data

EEPROM is the BasicCard’s equivalent of a hard disk. It retains its contents while the card is powered
down in the customer’s pocket. EEPROM contains your ZC-Basic program (compiled into P-Code),
directories and files (in the Enhanced BasicCard), and all permanent variables (such as the customer’s
name or the credit balance in the card). For example:

Eeprom Cust oner Name$ = "" ' We don’t know custoner’s nane yet
Eepr om Bal ance& = 500 " Free 5-euro bonus for new nenbers

If you don’t specify an initial value, the data will be initialised to zero. This initialisation takes place
when the program (P-Code and data) is downloaded to the card.

Eeprom data has global scope — it can be accessed by all procedures in the program.

3.4.2 Public and Static data

The RAM data area contains Public and Static data, that retains its value as long as the BasicCard
remains powered up in the card reader. Public data has global scope; Static data has local scope — it
can only be accessed by the procedure that declared it.

Public and Static data can be initialised, just like Eeprom data. The initialisation takes place every
time the card is powered up.
3.4.3 Private data

Data declared in a procedure as Private exists only until the procedure returns. It is allocated on the
P-Code stack every time the procedure is called. It has local scope. Private data can be initialised with
constant values:

21

3. The ZC-Basic Language

Private LoopCounter = 100

This initialisation takes place every time the procedure is called. Uninitialised Private data is set to
zero when the procedure is called.

You don’t have to declare every variable before you use it. If the compiler meets a variable name that it
doesn’t recognise, it implicitly declares it as Private — unless you have overridden this behaviour with
the Option Explicit statement (see 3.22.4 Explicit Declaration of Variables and Arrays), or by
declaring the procedure itself Static (see 3.12 Procedure Definition).

3.5 Data Types

ZC-Basic supports the following data types:

Byte 1-byte unsigned integer. Range: 0 to 255.

Integer 2-byte signed integer. Range: —32768 to +32767.

Long 4-byte signed integer. Range: —2147483648 to +2147483647.

Single 4-byte single-precision floating-point number (denormalised IEEE format: 1 sign bit,

8-bit exponent, and 23-bit mantissa with implied msb=1 unless exponent is zero).
Precision: 7 decimal digits. Range: +/-1.401298E-45 to +/-3.402823E+38.

String Character string, up to 254 bytes long. Requires n+3 bytes of storage, where n is the
length of the string — a 2-byte pointer to an (n+1)-byte (Iength, data) pair.

String*n Fixed-length string, n bytes long, where n is a constant between 1 and 254. Requires n
bytes of storage.

You may also define your own data types — see 3.8 User-Defined Types.

Note: The Single data type is not supported in the Compact BasicCard. You may store Single data in
the Compact BasicCard, but you can’t perform floating-point arithmetic operations or string
conversions.

3.6 Arrays

An array in ZC-Basic can belong to any of the four data storage classes (Eeprom, Public, Private,
Static), and its elements may be of any type (Byte, Integer, Long, Single, String, String*n, or a user-
defined type). It may have up to 32 dimensions, and may contain up to 16K of data. In Compact and
Enhanced BasicCard programs, the upper and lower bounds for each dimension are subject to the
constraints:

-32 <= lower bound <= 31 and lower bound <= upper bound <= lower bound + 1023

All arrays are either Dynamic or Fixed. The upper and lower bounds of a Fixed array must be constant
expressions, and can’t be changed. The bounds of a Dynamic array can be any integer expression, and
the array can be re-sized at any time with a ReDim statement. However, the number of dimensions of a
Dynamic array can’t be changed.

If any of the subscripts in an array access is out of bounds, a run-time P-Code error is generated.
The ReDim statement has the following syntax:
ReDim array (bounds [, bounds, . . .]) [As type] [, array (bounds [, bounds, . . .]) [As type], . . .]

array If array has already been declared, it must be a Dynamic array, and one bounds
specifier must be present for each dimension. (In this case, As type is not required,
but if present it must match the type as originally declared.) If array has not yet been
declared, then the ReDim statement does double duty as a data declaration statement.
In other words, the statement

ReDim array (bounds [, bounds, . . .]) [As type]

is expanded to

22

bounds

3.7 Data Declaration

Dim Dynamic array ([, , .. .]) [As type]
ReDim array (bounds [, bounds, . . .])

(The Dim statement is described in 3.7 Data Declaration.)

The bounds specifier gives the upper and lower bounds for each dimension, in the
form [lower-bound To] upper-bound. If lower-bound is not given, it defaults to O,
unless otherwise specified in an Option Base statement (see 3.22.3 Array Subscript
Base).

An array can be cleared with the Erase statement:

Erase array [, array, . . .]

If array is Fixed, all its elements are set to zero. If array is Dynamic, its data area is freed. In either
case, if the elements of array are of type String, they are all freed.

3.7 Data Declaration

Data items and arrays are declared and initialised in a data declaration statement. A data declaration
statement consists of a sequence of data declarations separated by commas. Data may optionally be
initialised with constant values:

storage-class [Dynamic] data-declaration [=initial-value] [, data-declaration [=initial-value], . . .]

storage-class

Dynamic

data-declaration

This can be Eeprom, Public, Private, or Static. The keyword Dim is also allowed;
outside a procedure, Dim is a synonym for Public, and inside a procedure, it has the
same meaning as Private (or Static in a procedure declared as Static).

If the Dynamic keyword is present, then all arrays declared in the statement are
Dynamic arrays.

This field takes one of two forms:
1. For scalar (non-array) data, data-declaration has the form
name [As type] [At address]

The type of the variable name is determined as follows:

* by type if [As type] is present;

e otherwise, by the last character of name if it belongs to the following list:
Character: @ % & ! $
Data type: Byte Integer Long Single String

< otherwise, by the initial character of name, as specified in the most recent
DefType statement (see 3.22.2 DefType Statement).

By default, all initial characters are assigned to Integer type in ZC-Basic, as if by the
statement Deflnt A-Z.

The address of the variable name is automatically assigned by the compiler, unless
overridden by [At address]. If present, address takes the form var[+constant], where
var is the name of a previously declared variable. The new variable must be entirely
contained within the previously-declared variable.

2. If an array is being declared, data-declaration has the form
array (bounds [, bounds, . . .]) [As type]

The type of the elements of the array is determined as described above for scalar
variables. The form of the bounds specifier is described in the previous section under
ReDim. There is an additional possibility — the empty array syntax:

array ([, .. .]) [As type]

23

3. The ZC-Basic Language

This declares a Dynamic array, while deferring the allocation of the array to a later
time. The following example declares empty Dynamic arrays Al, A2, and A3 with
one, two, and three dimensions respectively:

Di m A1()
Di m A2(,)
Di m A3(,)

Otherwise, array is Dynamic if (i) the Dynamic keyword was specified; or (ii) any
of its bounds is non-constant.

If no initialisation data is present, the data item or array is initialised to zero (or empty strings in the
case of String data). In ZC-Basic, any type of data may be initialised, with two exceptions: Dynamic
arrays with non-constant initial bounds, and Private Dynamic arrays. Initialisation data must be
constant. If an array is initialised, the data must be specified in the order of the array elements, with the
leftmost subscript varying the fastest (‘column-major’ order). For instance, the following example
initialises each element of a 2x2 String array to contain an ASCII description of itself:

Option Base 1 ' Set |ower bound of arrays to 1
Private X$(2,2) = "X$(1,1)", "X$(2,1)", "X$(1,2)", "X$(2,2)"

If the end of the initialisation data is reached before the array has been filled, the rest of the array is
initialised to zero (or empty strings for a String array).

Fixed-length String*n data can be initialised in two ways: as a string, or as a list of bytes. These two
ways can be combined, but the string must be the last data item in the list. For example:

Eeprom S1 As String*5 "ABC' ' Padded with two NULL bytes
Public S2 As String*3 &HB1, &H82, &H83

Private S3 As String*7 = 3, 4, "XYZ'
Rem This is equivalent to:
Rem Private S3 As String*7 = 3, 4, 88, 89, 90, 0, O

3.8 User-Defined Types

ZC-Basic supports the user definition of structured data types:

Type type-name
member-name [As type] [, member-name [As type], . . .]
member-name [As type] [, member-name [As type], . . .]

End Type
type-name and member-name are regular identifiers. The type of each member can be Byte, Integer,

Long, Single, String*n, or another user-defined type. It may not be an array, or a String of variable
length. The total size of all the members must not exceed 254 bytes.

If var is a variable or array element of type type-name, then the members of var are referred to using
the syntax var.member-name (as in the ‘C’ programming language). For example:

Type Point: X!, Y!': End Type ' Character ‘!’ => type Single...

Type Rectangl e
Area As Single ' ...or the type can be declared explicitly
TopLeft As Point
Bott onRi ght As Poi nt

End Type

Sub Area (R As Rectangl e)
Wdth! = R BottonRight. X! — R TopLeft. X

Hei ght! = R BottonRight.Y!' — R TopLeft.Y!
R Area = Wdth! * Height!
End Sub

24

3.9 Expressions

A user-defined type can be copied as a unit, with a single assignment statement:
Public UnitSq As Rectangle = 0,0,0,1,1 ' BottonRight = (1.0,1.0)

Call Area (UnitSg) ' Fill in the Area
Public RA(10) As Rectangle
For | =1 To 10 : RA(l) = UnitSq : Next |

Variables or array elements of the same user-defined type can be compared for equality using = and <>
(but the comparison operators <, >, <=, and >= are not allowed).

3.9 Expressions

An expression is built up by applying operations to terms. For example:

X+ 5 " Apply ‘+ (addition) to terms X and 5
A(l) * Rnd ' Apply ‘* (multiplication) to terns A(l) and Rnd
S$ + "O" " Apply ‘+ (concatenation) to ternms S$ and "0"

A term can be one of the following:

e A constant: the type of a constant term is Byte, Integer, or Long (depending on the value of the
constant) for whole-number expressions, Single for floating-point expressions, and String for
string constants.

e A scalar variable, an array element, or a member of a variable or array element of user-defined
type.

e A function call. This can be a user-defined function or command, or a built-in function (such as
Abs, Sqrt, LBound, Chr$, or CurDir).

< An array name, with no parentheses (or an empty pair of parentheses). This returns the address of
the data area of the array, so that you can check whether a dynamic array has been allocated or not.
For instance:

Eeprom Dynamic A() ' Declare an Integer array

If A=0 Then RedimA (10) ' or ‘If A() = 0...°

An expression has one of the following types: Byte, Integer, Long, Single, String, boolean, or user-
defined. A boolean expression is an expression of type Integer that is the result of a comparison; it
takes the value True (-1) or False (0). Normally a boolean expression is treated the same as an Integer
expression; any exceptions are noted below.

3.9.1 Numerical Expressions

If exprl and expr2 are numerical expressions (i.e. expressions of type Byte, Integer, Long, Single, or
boolean), the following operations are allowed, grouped in descending order of priority:

—exprl Unary minus
Group 1
+ exprl Unary plus (has no effect)
Group 2 | Not exprl Bitwise complement
exprl * expr2 Multiplication
Group 3 | exprl/expr2 Division
exprl Mod expr2 Remainder
exprl + expr2 Addition
Group 4 .
exprl — expr2 Subtraction

25

3. The ZC-Basic Language

exprl < expr2 True if exprl is less than expr2
exprl <=expr2 True if exprl is less than or equal to expr2
Group 5) .
exprl > expr2 True if exprl is greater than expr2
exprl >=expr2 True if exprl is greater than or equal to expr2
exprl = expr2 True if exprl is equal to expr2
Group 6))
exprl <> expr2 True if exprl is not equal to expr2
Group 7 | exprl And expr2 Bitwise And
Group 8 | exprl Xor expr2 Bitwise exclusive-or
Group 9 | exprl Or expr2 Bitwise Or

The priority of an operator determines the order of the operations. For instance, 3 +-5* 7 is evaluated
as 3+ ((-5)*7),and AOrB And Cisevaluated as A Or (B And C).

Groups 1, 3, and 4 are the numerical operators. The type of the resulting expression is determined as
follows:

e If exprl or expr2 is Single, then the other is converted to Single if necessary, and the resulting
expression if of type Single.

e Otherwise, if exprl or expr2 is Long, then the other is converted to Long if necessary, and the
resulting expression if of type Long.

e Otherwise, exprl and expr2 are converted to Integer, and the resulting expression is of type
Integer.

Note: Even if exprl and expr2 are both Byte expressions, they are converted to Integer before any
operation is performed. (This means that the only expressions of type Byte are those consisting of a
single term.)

Groups 5 and 6 are the comparison operators. Exactly the same conversions are applied as for the
numerical operators, but the type of the resulting expression is boolean.

Groups 2, 6, 7, and 8 are the bitwise operators. Bitwise operations are never performed on Single
expressions; if exprl or expr2 is Single, it is converted to Long before a bitwise operation is
performed. If both exprl and expr2 are of boolean type, then the result is also of boolean type.

There is a special rule concerning the evaluation of expressions of boolean type:

If exprl and expr2 are both of boolean type, and one of the expressions
exprl And expr2 exprl Or expr2

occurs in the program, then expr2 is not evaluated if the value of the whole
expression can be deduced from the value of exprl alone.

In other words:

e ifexprlis False, then “exprl And expr2” is always False as well, so expr2 is not evaluated;
e ifexprlis True, then “exprl Or expr2” is always True as well, so expr2 is not evaluated.

This is important if the evaluation of expr2 has any side-effects. For instance:
If Xt =0 O F(1/X') > 100 Then Goto 100

If X! iszero, then 1/ X! is not evaluated (which would otherwise cause a run-time error), and the
function F is not called (which might, for instance, have changed Public data).

26

3.10 Assignment Statements

3.9.2 String Expressions

If either exprl or expr2 is of type String, then the other must be of type String as well: there are no
mixed numerical/string operations. The following string operations are allowed:

Group 1 | exprl + expr2 String concatenation
exprl < expr2 True if exprl is less than expr2
exprl <= expr2 True if exprl is less than or equal to expr2
Group 2 . .
exprl > expr2 True if exprl is greater than expr2
exprl >=expr2 True if exprl is greater than or equal to expr2
exprl = expr2 True if exprl is equal to expr2
Group 3 . .
exprl <> expr2 True if exprl is not equal to expr2

The resulting expression is of String type after string concatenation (Group 1), and of boolean type
after string comparison (Groups 2 and 3). The comparison operations in Group 2 are performed by
finding the first characters that differ in the two strings, and comparing their ASCII values. In ASCI|,
all lower-case letters are greater than all upper-case letters, so for instance “abc” is greater than “XYZ”.
For case-insensitive comparison, use UCase$ or LCase$ to convert both arguments to the same case.
For example:

If UCase$(S1$) > UCase$(S2$) Then T$ = S1$: S1$ = S2%: S2% = T3

3.9.3 Expressions of User-Defined Type

The only operation allowed on user-defined types is comparison for equality:

exprl = expr2 True if exprl is equal to expr2
Group 1

exprl <> expr2 True if exprl is not equal to expr2

The resulting expression is of boolean type.

3.10 Assignment Statements

An assignment statement has the form
[Let] var = expression

where var is a scalar variable, or an array element, or a member of a variable or array element of user-
defined type. The Let keyword is optional. The following rules apply:

e If var has numerical type (Byte, Integer, Long, or Single), then expression must have numerical
type.

e If var has type String or String*n, then expression must have type String.
e Ifvar has a user-defined type, then expression must have the same user-defined type.
There are four special string assignment statements:

[Let] Mid$ (string, start [, length]) = expression

[Let] Left$ (string, length) = expression

[Let] Right$ (string, length) = expression

[Let] string (n) = expression

Mid$ overwrites length characters of string with the value expression, starting from position start. (The
first character in the string has position 1.) A value of start less than 1 results in a run-time error; a
value of start greater than the length of string is not an error, but no characters are copied. If length is

27

3. The ZC-Basic Language

absent, or if start+length is greater than the length of string, the whole of rest of the string is
overwritten.

Left$ overwrites the first length characters of string with the value expression. If length is greater than
the length of string, the whole of string is overwritten.

Right$ overwrites the last length characters of string with the value expression. If length is greater than
the length of string, the whole of string is overwritten.

In ZC-Basic, string (n) is shorthand for Mid$ (string, n, 1). So the last statement in the above list
assigns the first character of expression to the nth character of string.

In the first three string assignment statements, only the first length characters of expression are copied
into string. If length is greater than the length of expression, then the destination sub-string is filled out
with NULL characters (i.e. ASCII zeroes).

3.11 Program Control

3.11.1 Exit Statements

An Exit statement jumps out of an enclosing block of code, according to the type of the statement:

Exit For Jumps to the statement following the innermost current For-loop.
Exit While Jumps to the statement following the innermost current While-loop.
Exit Do Jumps to the statement following the innermost current Do-loop.
Exit Case Jumps to the statement following the next End Select.

Exit Sub Returns from a subroutine to the calling procdedure.

Exit Function Returns from a function to the calling procdedure.

Exit Command Returns from a BasicCard command to the caller in the Terminal program.

Exit Exits the program. Exit in a Terminal program returns to the operating system; Exit
in a BasicCard program returns to the caller in the Terminal program.
Note: The Exit statement (with no parameters) exits the program immediately,
without freeing Private strings and arrays. This is not a problem in the Terminal
program, but it can cause pcOutOfMemory errors in subsequent commands in a
BasicCard program, until the card is reset. So you should only use such an Exit
statement in a BasicCard program if you detect an error condition that prevents the
card from continuing the command-response session.

3.11.2 Labels

There are two types of label in ZC-Basic: named labels, and line numbers. A named label is an
identifier followed by a colon. A line number is simply a decimal number, which may or may not be
followed by a colon. A label, of either type, may only be accessed from within the procedure that
defines it. Label names and line numbers must be unique within each procedure, but the same name or
line number can be used in two different procedures.
3.11.3 GoTo
The simplest program control statement is the GoTo statement:

GoTo label

label:
The program continues execution at the statement following label.

Note: You can’t use GoTo to jump from one procedure to another.

3.11.4 GoSub

A procedure can call its own private subroutines with the GoSub statement. Such a private subroutine
is not a procedure; it has no parameters, and no data of its own. It is simply a part of the procedure that
defines it. It returns with the Return statement:

28

3.11 Program Control

GoSub label

iéBeI:
subroutine-code

Return [return-label]

If return-label is specified in the Return statement, the subroutine returns there; otherwise it returns to
the statement following the GoSub call.

3.11.5 If-Then-Else
The If statement executes code depending on the value of a conditional expression:

If condition Then
code block
End If

The full form of the If-Then-Else block is as follows:

If conditionl Then
code block 1

[Elself condition2 Then
code block 2]

[Elself condition3 Then
code block 3]

[Else
code block n]

End If

Each condition is a numerical expression. code block i is executed if condition i is non-zero (true). If all
the conditions are zero (false), then code block n is executed.

If there are any statements on the same line after the Then of the initial If-statement, then this is a
single-line If-statement. In this case, the If-Then-Else block is terminated not with End If, but with the
end of the line. (This is the only place in the ZC-Basic language where a colon is not equivalent to an
end of line.) For instance:

If X =0 Then GoTo 100
If X< 0 Then X =0 : Elself X > 50 Then X = 50

This is equivalent to

If X =0 Then
GoTo 100
End If

If X < 0 Then
X=0

El self X > 50 Then
X = 50

End If

3.11.6 For-Loop

The For-loop executes a block of code a specified number of times:

For loop-var = start To end [Step increment]
[code block]
[Exit For]
[code block]

Next [loop-var]

loop-var A numerical variable, used to count the number of times the For-loop has been
executed.

29

3. The ZC-Basic Language

start A numerical expression, the initial value of loop-var.

end A numerical expression. The For-loop terminates when loop-var passes this value.
More precisely:
If increment >= 0, then the For-loop terminates when loop-var > end.
If increment < 0, then the For-loop terminates when loop-var < end.

increment The amount by which loop-var is incremented after each execution of the For-loop.
If [Step increment] is absent, increment takes the value 1.

The Exit For statement breaks out of the For-loop to the statement following the Next instruction.

loop-var is optional in the Next statement (but it can be useful as a reminder if the loop is large).

If For-loops are nested, the Next statement can specify more than one loop variable. For example:
For I =1 To 10: For J =1 To 10: A(l,J) =0 : Next I, J

Note: The Exit For statement breaks out of only the innermost For-loop, even if the Next statement
specifies more than one loop variable. So the following example prints the values 11 and 21:

For | =1 To 2 : For J =1 To 2
Print 10*1 + J : Exit For
Next |, J

3.11.7 While-Loop and Do-Loop

The While-loop is executed as long as condition is non-zero:

While condition
[code block]
[Exit While]
[code block]
Wend

The Do-loop has more flexibility:

Do [{While | Until} condition]
[code block]
[Exit Do]
[code block]

Loop [{While | Until} condition]

The optional [{While | Until} condition] may appear at the beginning or the end of the Do-loop, but
not both. If it appears at the end, then the loop is always executed at least once. If neither is present,
then the loop is executed endlessly until left by some other means (such as Exit Do or GoTo).

3.11.8 Select Case

The Select Case statement executes one of several blocks of code, depending on the value of a test
expression:

Select Case test-expression
Case case-test [, case-test, . . .]
[code block]

[Exit Case]
[code block]
Case case-test [, case-test, . . .]
[code block]
[Exit Case]
[code block]

[Case Else
[code block]
[Exit Case]
[code block]]
End Select

30

3.12 Procedure Definition

test-expression An expression of any type (numerical, String, or user-defined)

case-test This takes one of three forms:
expression True if test-expression = expression
exprl Toexpr2 True if exprl <= test-expression <= expr2
[1s] op expr True if test-expression op expr, where op is one of the six
comparison operators: < <= > >= = <>

The Is keyword is optional.
If test-expression is of user-defined type, only the first of these three forms is valid.

The Select Case statement executes the code following the first Case statement that contains a case-
test that is True. If more than one such Case statement exists, only the first is executed. If no such
Case statement exists, then the code following the Case Else statement is executed (and if there is no
Case Else statement, none of the code in the Select Case block is executed). The Exit Case statement
jumps to the statement following End Select.

3.11.9 Computed GoTo and Computed GoSub
You can jump to one of a list of labels depending on the value of a test expression:
On expression { GoTo | GoSub } labell [, label2, . . ., labeln]

expression An expression of type Integer. If it is equal to r, with 1 <=r <=n, then GoTo labelr
or GoSub labelr is executed. If expression < 1 or expression > n, execution proceeds
with the following statement.

3.12 Procedure Definition

A ZC-Basic program consists mainly of procedure definitions. Each procedure is either a Subroutine,
a Function, or a Command. The Private and Static variables declared in a procedure belong to that
procedure alone, and can’t be accessed from other procedures (such variables are said to have local
scope); Public and Eeprom variables can be accessed from all procedures (they have global scope).

3.12.1 Subroutine

The simplest procedure type is the subroutine. A subroutine returns no value to the caller, except
through its arguments. A subroutine definition is as follows:

[Static] Sub proc-name ([param-def, param-def, .. .])
[procedure code]

[Exit Sub]
[procdedure code]
End Sub
Static If the Static keyword is present in the definition, undeclared variables in the

procedure have Static storage class, instead of Private.

param-def [{ByVal | ByRef}] param-name[()] [As type], where param-name is a variable name
by which the parameter is accessed in procedure-code. See 3.15 Procedure
Parameters for a full discussion of parameters.

3.12.2 Function
A Function is a Subroutine that returns a value to the caller. A function definition is as follows:

[Static] Function proc-name ([param-def, param-def, . ..]) [As type]
[procedure code]
[proc-name = expression]
[Exit Function]
[procedure code]
End Function

31

3. The ZC-Basic Language

Static If the Static keyword is present in the definition, undeclared variables in the
procedure have Static storage class, instead of Private.

param-def [{ByVal | ByRef}] param-name[()] [As type], where param-name is a variable name
by which the parameter is accessed in procedure-code. See 3.15 Procedure
Parameters for a full discussion of parameters.

The return type of the function is determined as if proc-name were a variable name: from [As type] if
present; otherwise from the last character in proc-name if it is a type character (@, %, &, !, or 3$);
otherwise from the first character in proc-name. (The type characters are defined in 3.2 Tokens.) A
function can have any return type that is not an array.

Inside the function, proc-name behaves like a Private variable. It is initialised to zero when the
function is called, and its value is returned to the caller when the function exits.

3.12.3 Command

A command is defined like a subroutine, but you must specify the two ID bytes (CLA and INS) by
which the command will be invoked:

[Static] Command [CLA] [INS] proc-name ([PreSpec,] [param-def, param-def, .. .] [, PostSpec])
[procedure code]
[Exit Command]
[procdedure code]

End Command

Static If the Static keyword is present in the definition, undeclared variables in the
procedure have Static storage class, instead of Private.
CLA The ‘Class’ byte. All the pre-defined commands in the BasicCard have

CLA=&HCO, so you should avoid this value for your own commands, unless you
specifically want to override a pre-defined command. If CLA is not present, CLA
must be present in PreSpec.

INS The ‘Instruction’ byte. The compiler accepts any value; but in a card that uses the
T=0 protocol, this byte must be even, and the top nibble may not be 6 or 9. If INS is
not present, INS must be present in PreSpec.

PreSpec Pre-parameter specification. It may contain the following terms, in the following

order, and separated by commas:

CLA=constant An alternative way of specifying CLA

INS=constant An alternative way of specifying INS

Lc=0 Only relevant under the T=0 protocol
In a Professional BasicCard using the T=0 protocol, Lc=0 defines the command as
having no incoming data — a Case 2 command in the terminology of 7.3.2 APDU
Transmission by T=0. You only need to use this if:
e you are implementing a pre-existing T=0 command specification; or
e you want to minimise T=0 communications overhead to improve performance.

param-def [{ByVal | ByRef}] param-name[()] [As type], where param-name is a variable name
by which the parameter is accessed in procedure-code. See 3.15 Procedure
Parameters for a full discussion of parameters.

PostSpec Post-parameter specification, only relevant under the T=0 protocol. You only need to
use this if:
e you are implementing a pre-existing T=0 command specification; or
e you want to minimise T=0 communications overhead to improve performance.
It may take one of two forms:
Disable Le
Input Le

Disable Le defines the command as having no outgoing data — a Case 3 command in
the terminology of 7.3.2 APDU Transmission by T=0.

32

3.13 Procedure Declaration

Input Le is used to distinguish the two sub-cases of Case 4 commands — Case 4S.2
and Case 4S.3 in 7.3.6 Case 4: Incoming and Outgoing Data. In Case 4S.2
commands, ResponselLength is specified by the Terminal program in the Le
parameter, so the Terminal program must send Le before the command is executed;
in Case 4S.3 commands, the BasicCard decides for itself what ResponseLength
should be. Input Le defines the command as a Case 4S.2 command.

Notes:

1.

The special syntax “[Static] Command Else proc-name ([param-def, param-def, . ..])” defines a
default command in the card, that is called when the BasicCard receives a command with
unrecognised CLA and INS.

2. A Command parameter may not be an array.

3. A Command definition is only valid in a BasicCard program; it is not allowed in a Terminal
program.

4. If a Command parameter is a variable-length string, it must be the last (or only) parameter in the

list. In the Compact BasicCard, the compiler must know how long this string can be, so that it can
make sure the P-Code stack is large enough; you can specify a maximum length for the string with
the special syntax:

param-name <= maxlen
For example:
Command &H20 &HOO Set User Name(User | D, Nanme$<=25)

In the absence of this special syntax, maxlen defaults to 40. (The Enhanced and Professional
BasicCards use a more flexible mechanism, and the length of the string is limited only by the
requirement that the total parameter list be no larger than 255 bytes. So this special syntax is not
required.)

3.13 Procedure Declaration

The compiler can’t process a procedure call unless it knows what kinds of parameters the procedure
accepts. It knows this if the procedure has already been defined:

Function Square (X!) As Single
Square = Xl * X
End Function

Sub ()
Y! = Square (5.5) ' OK — Square al ready defined
End Sub

But the compiler won’t accept the following:

Sub S()
Y! = Square (5.5) " Error - Square not defined yet
End Sub

Function Square (X!) As Single
Square = Xl * X
End Function

To call a procedure before it is defined, you must provide a procedure declaration that tells the
compiler what it needs to know. A procedure declaration starts with the word Declare:

Declare Sub proc-name ([param-def, param-def, .. .])
Declare Function proc-name ([param-def, param-def, . ..]) [As type]
Declare Command [CLA] [INS] proc-name ([PreSpec,] [param-def, param-def, .. .] [, PostSpec])

If a declaration and a definition of the same procedure occur in the program, then they must match.

More precisely:

3. The ZC-Basic Language

« for a Function, the return type in the declaration must match the return type in the definition;
« fora Command, CLA and INS must be the same in the declaration and the definition;

e the types of the parameters must match exactly;

« the parameter-passing method (ByVal or ByRef) must be the same for each parameter.

However, the names of the parameters don’t need to match. Parameter names in a procedure
declaration are just place-holders; the only restriction is that they may not be reserved words (see 3.2
Tokens for a list of reserved words). For example:

Decl are Function Square (Z!') As Single

Sub S()

Y! = Square (5.5) ' OK - Square declared
End Sub

Function Square (X!) As Single
Square = Xl * X

End Function

OK — mat ches decl arati on

3.13.1 Command Declarations
A Command declaration has the following general form:
Declare Command [CLA] [INS] proc-name ([PreSpec,] [param-def, param-def, .. .] [, PostSpec])

The param-def fields are the same as in Function and Sub declarations. The PreSpec and PostSpec
fields are available for users who need precise control over the T=0 and T=1 Command APDU
parameters; otherwise they are not required.

CLA The ‘Class’ byte. All pre-defined commands in the BasicCard have CLA=&HCO, so
you should normally avoid this value for your own commands, unless you want to
override a pre-defined command. If CLA is not present, CLA must be present in
PreSpec, either here or in the procedure call — see 3.14.3 Calling a Command.

INS The ‘Instruction’ byte. The compiler accepts any value; but in a card that uses the
T=0 protocol, this byte must be even, and the top nibble may not be 6 or 9. If INS is
not present, INS must be present in PreSpec, either here or in the procedure call — see
3.14.3 Calling a Command.

PreSpec Pre-parameter specification. This field may contain any of the following terms, in the

following order, and separated by commas:

CLA=constant

INS=constant

P1=constant

P2=constant

P1P2=constant

Lc=constant
Each constant is a Byte expression, except P1P2, which is an Integer. See 7.5
Commands and Responses for definitions of these terms.

PostSpec Post-parameter specification. If present, this field takes one of the following forms:

Le=constant
Disable Le

Here, constant is a Byte expression; Disable Le specifies that Le is absent from the
command. See 7.5 Commands and Responses for a definition of Le.

3.13.2 Plug-In Library Procedures

In Terminal programs and Professional BasicCard programs, Plug-In Library procedures are called via
the SYSTEM instruction. They are declared as follows:

Declare Sub SysCode SysSubcode proc-name ([param-def, param-def, .. .])
Declare Function SysCode SysSubcode proc-name ([param-def, param-def, . ..]) [As type]

SysCode The Plug-In Library identifier, a Byte between &HCO0 and &HFF.
SysSubcode The procedure sub-code, any Byte value.

34

3.14 Procedure Calls

3.14 Procedure Calls

3.14.1 Calling a Subroutine
The recommended way to call a subroutine is
Call procedure-name ([[{ByVal | ByRef}] expression, [{ByVal | ByRef}] expression, .. .])

The expressions in the list must match the parameters in the subroutine declaration (or definition) in
number and type. (See 3.15 Procedure Parameters below for a fuller explanation.) If the subroutine
takes no parameters, then the parentheses are optional:

Call procedure-name [()]
Alternatively, ZC-Basic accepts the older subroutine call syntax (with parentheses not allowed):

procedure-name [[{ByVal | ByRef}] expression, [{ByVal | ByRef}] expression, . . .]

3.14.2 Calling a Function
A Function call returns a value, that can be used as a term in an expression. For example:
Xl = XI' + Square (X! +1)

A Function can also be called just as if it were a Subroutine, in which case the return value is simply
discarded.

3.14.3 Calling a Command

A Command is called as if it were a Function — although it is defined as if it were a Subroutine. The
reason for this is that the Terminal program automatically returns the command status word (SW1-
SW?2) as if it were the return value of a function. This command status word should always be checked,
as it is possible that communications were disrupted for some reason before the command could be
successfully completed in the BasicCard.

A Command call has the following general form:
var = command-name ([PreSpec,] arg-list [, PostSpec])

where the arg-list field is the same as in Function and Sub calls. The PreSpec and PostSpec fields are
available for users who need precise control over the T=0 and T=1 Command APDU parameters;
otherwise they are not required.

PreSpec Pre-parameter specification. This field may contain any of the following terms, in the

following order, and separated by commas:

CLA=expr

INS=expr

Pl=expr

P2=expr

P1P2=expr

Lc=expr
Each expr is a Byte expression, except P1P2, which is an Integer. See 7.5
Commands and Responses for definitions of these terms.

PostSpec Post-parameter specification. If present, this field takes one of the following forms:

Le=expr
Disable Le

Here, expr is a Byte expression; Disable Le specifies that Le is absent from the
command. See 7.5 Commands and Responses for a definition of Le.

An alternative method of calling a command:
Call command-name ([PreSpec,] arg-list [, PostSpec])

In this case, the command status word is available in the pre-defined variables SW1, SW2, and
SWI1SW2.

35

3. The ZC-Basic Language

3.15 Procedure Parameters

3.15.1 Parameter Passing

In traditional Basic, procedure parameters are passed by value or by reference. Passing by value means
that the procedure receives its own copy of the parameter; any changes it makes to this copy are lost
when the procedure returns. Passing by reference means that the address (or ‘reference’) of the
parameter is passed to the procedure; knowing its address, the called procedure can change the value of
a variable in the calling procedure.

In general, ZC-Basic can’t do this, because the BasicCard can’t change the value of a variable in the
Terminal program directly. However, it uses a write-back mechanism to achieve the same effect (and it
retains the keywords ByVal and ByRef, although they are not strictly accurate). With the exception of
String and array parameters, all parameters are passed by value (in the traditional sense); the value of
each parameter is pushed onto the P-Code stack before the procedure is called. The parameters are then
referenced like Private variables in the called procedure, and can be read or written directly. Then
when the procedure returns to the caller, any parameters that were passed ByRef are copied back from
the stack into their original locations.

By default, all parameters are passed ByRef (in the ZC-Basic sense). If the ByVal keyword is specified
in the procedure definition or declaration, then the following parameter is passed by value, and not
written back when the procedure returns. (The ByRef keyword is also allowed here, although it is
superfluous.) The parameter-passing method specified in the procedure definition or declaration can be
overridden for a particular procedure call by specifying ByVal or ByRef in front of a parameter. (Here
ByRef is not superfluous if the parameter was specified as ByVal in the procedure definition or
declaration.)

For the write-back mechanism to be invoked for a given parameter, the parameter-passing method must
be ByRef, and the expression in the procedure call must be an assignable expression — an expression
that can appear on the left-hand side of an assignment statement. If you don’t want a variable to be
changed by a called procedure, you can specify ByVal, or you can enclose the variable in parentheses
(which is a valid expression, but not an assignable expression). An example may make this clearer:

Declare Sub S (X, Byval Y, ByRef Z) ' ‘ByRef’ redundant here
Private A, B, C

Call S (A B, O ' A and C can change

Call S (ByvVal A ByRef B, O ' B and C can change

Call S (A+1, B, (O) " Nothing can change — ‘A+1’ and ‘' (Q)’

are not assignabl e expressions

For information on the maximum total size of a parameter list, see 3.23.1 Parameter Size Limits.

3.15.2 String Parameters

There is an important difference between parameters of type String and parameters of type String*n.
The former occupy 3 bytes on the P-Code stack, the latter occupy n bytes. So you should where
possible use String parameters rather than String*n parameters. However, a variable-length string
parameter to a Command is only allowed if it is the last (or only) parameter; any other string
parameters must be of fixed-length String*n type.

Note: You can pass a fixed-length string in a String parameter, or a variable-length string in a
String*n parameter; the compiler performs the necessary conversions. The parameter type only
determines how the string is passed to the procedure.

For more information on String parameters, see 3.23.3 String Parameter Format.

3.15.3 Array Parameters

An array parameter takes up just two bytes on the P-Code stack (the address of the array descriptor is
passed to the procedure — see 3.23.2 Array Descriptor Format).

An array parameter is specified in a procedure definition or declaration by a pair of parentheses after
the parameter name:
param-name() [As type]

36

3.16 Built-in Functions

The parentheses must be empty. To pass an array parameter in a procedure call, the array name is
sufficient; an empty pair of parentheses after the array name is optional. The type of the array must
match exactly the type of the parameter. For example:

Declare Sub S (A() As Integer) ' Parentheses required here
Dm X (10) As Integer, Y (20) As Long

Call S (X N ¢
Call S (X()) ' Also K — parentheses optional in call
Call S (V) " Error — Y is Long array, not Integer array

The number of dimensions of the array is checked at run-time. The following code will compile, but
will generate a run-time error:

Declare Sub S (A() As Integer)
DmX (5, 5, 5)
Call S (X

Sub S (A() As Integer)
A(2, 2) =0"' Run-tine error — paraneter X has 3 dinensions
3.15.4 Parameters of User-Defined Type

A parameter of user-defined type is passed to a procedure by pushing every member onto the P-Code
stack. The P-Code stack occupies precious RAM, so you should avoid passing large user-defined types
as procedure parameters. Otherwise, a parameter of user-defined type behaves just like a parameter of
numerical type.

3.16 Built-in Functions

3.16.1 Numerical Functions

Abs(X) Returns the absolute value of X (that is to say, X or —X, whichever is positive).
The type of the result is the type of X, unless X is Byte, in which case Abs(X) has
type Integer.

Rnd Returns a random number of type Long: —2147483648 <= Rnd <= 2147483647.
See 3.18 Random Number Generation.

Sqgrt(X) Returns the square root of X. The result is of type Single.

3.16.2 Array Functions

LBound(array [, dim]) These two functions return the lower and upper bounds of subscript dim in
UBound(array [, dim]) the given array. If dim is not present, the lower or upper bound for the first
subscript is returned. The result is of type Integer.

3.16.3 String Functions

string (n) Returns a string of length 1, containing the nth character of string. (The first
byte of the string has position 1.) It is shorthand for Mid$(string, n, 1).

Asc(string) Returns the ASCII value of the first character of string, as a Byte.

Chr$(char-code) Returns a string of length 1, containing the ASCII character with the given
char-code.

Hex$(val) Returns a string containing the hexadecimal representation of the Long
number val.

Left$(string, len) Returns the first len bytes of string.

LCase$(string) Returns string with all upper-case letters converted to lower-case.

Len(string) Returns the length of string, as a Byte.

37

3. The ZC-Basic Language

LTrim$(string)
Mid$(string, start[, len])

Right$(string, len)
RTrim$(string)
Space$(len)
Str$(val)

String$(len, char)

Trim$(string)
UCase$(string)
Val&(string[, len])

Vall(string][, len])

ValH(string], len])

Returns string with leading spaces and NULL bytes removed.

Returns len bytes of string, starting from position start. (The first byte of the
string has position 1.) If start > Len(string), the empty string is returned. If
start + len > Len(string) , or if len is absent, then the whole of string from
position start is returned. If start <= 0 or len < 0, a run-time error is
generated.

Returns the last len bytes of string.
Returns string with trailing spaces and NULL bytes removed.
Returns a string containing len space characters (ASCII 32).

Returns a string containing the decimal representation of val. If val is of
type Single, its value is given to 7 significant figures. Note: If val is of type
Single, use of this statement in an Enhanced BasicCard program will reduce
the amount of user-programmable EEPROM available — see 3.23.5 Single-
to-String Conversion for details.

Returns a string consisting of len characters with ASCII value char. If char
is itself a string, then the returned string consists of len copies of the first
character of char.

Returns string with leading and trailing spaces and NULL bytes removed.
Returns string with all lower-case letters converted to upper-case.

Returns the decimal number represented by string, as a Long value. If len is
present, it must be a variable (not an array element). This variable is set to
the number of characters used.

Returns the decimal number represented by string, as a Single value. If len
is present, it must be a variable (not an array element). This variable is set to
the number of characters used. Note: Use of this statement in an Enhanced
BasicCard program will reduce the amount of user-programmable EEPROM
available — see 3.23.5 Single-to-String Conversion for details.

Returns the hexadecimal number represented by string, as a Long value. If
len is present, it must be a variable (not an array element). This variable is
set to the number of characters used.

3.16.4 Encryption Functions

Note: These functions are not available in the Compact BasicCard.

Key(keynum)

DES(type, key, block$)

Certificate(key, data)

38

Returns key number keynum as a string. If no such key exists, a zero-length
string is returned. This function may also appear on the left of an assignment
statement:

Key(keynum) = string

In the Terminal program, Key is a pre-defined, Static array of strings:
Key(0 To 255) As String. In the Enhanced and Professional BasicCards,
only keys declared in Declare Key statements can be accessed, and the
length of each key is fixed; see 3.17.2 Key Declaration for details.

Performs a single DES block encryption or decryption operation, returning
the result as an 8-byte string. key is either a key number from 0 to 255, or a
string containing a cryptographic key. block$ is a string at least 8 bytes long.
See 3.17.6 DES Encryption Primitives for more information. Professional
BasicCards that support the AES Plug-In Library may not support this
function.

Returns a cryptographic certificate of data, as an 8-byte string. key is either
a key number from 0 to 255, or a string containing a cryptographic key. See
3.17.7 Certificate Generation for more information.

3.17 Encryption

3.16.5 Other Functions
Len(variable) Returns the size, in bytes, of a scalar variable (arrays are not allowed).

Len(type) Returns the size of a data type (e.g. Integer, or a user-defined type).

3.17 Encryption

3.17.1 Implementing Encryption

The Compact, Enhanced, and Professional BasicCards contain a sophisticated mechanism for the
encryption and decryption of commands and responses. For full details of the algorithms, see Chapter
8: Encryption Algorithms. To implement this mechanism for your commands:

1. Use the KEYGEN program to generate a key file, containing cryptographic keys (and primitive
polynomials for the SG-LFSR algorithm if you are programming for the Compact BasicCard).

2. Include the generated key file in both the Terminal program and the BasicCard program.

3. Include the file COMMANDS.DEF in the Terminal program, to define the StartEncryption,
ProEncryption, and EndEncryption commands.

4. Inthe Terminal program, turn automatic encryption on and off as follows:
Compact and Enhanced BasicCards:

Call StartEncryption (P1=algorithm, P2=keynum, Rnd)
Call EndEncryption()

Professional BasicCard:

Call ProEncryption (P1=algorithm, P2=keynum, Rnd, Rnd)
Call EndEncryption()

That’s all you have to do. An example program is provided in 8.9 Encryption — a Worked Example.

The program running in the BasicCard will usually want to know whether encryption is currently in
force. It can check this through the pre-defined variables Algorithm and KeyNumber, which contain
the two parameters P1 and P2 that were passed in the most recent StartEncryption command. If
encryption is not in force, both these variables have the value zero.

3.17.2 Key Declaration

The Declare Key statement declares a cryptographic key (the KEYGEN program outputs its keys as
Declare Key statements in the key file):

Declare Key keynum [(length [, counter])] [= b1, b2, b3, . ..]

keynum The key number, by which the key can be specified (for example, in a
StartEncryption command). It can take any value from 0 to 255, except in Enhanced
BasicCard programs, where 255 is not allowed.

length The length of the key. If absent, the key length defaults to 8 bytes. If an initial value
field (b1, b2, b3, .. .) is present, and no length is specified, the key length is set to the
number of bytes in the initial value field. (If the length is specified, the initial value
field is padded with zeroes to the required length.)

Note: In the Compact BasicCard, all keys must be 8 bytes long.

counter The error counter for the key (0 <= counter <= 15). If counter is zero, the key is
initially disabled. If counter is absent, the error counter for the key is initially
inactive. See 3.17.5 Key Error Counter for details.

Note: the counter parameter is allowed in all programs, but it is ignored in Terminal
programs and Compact BasicCard programs. This allows the same key file to be used
in all programs in an application.

39

3. The ZC-Basic Language

b1, b2,b3,... The initial value of the key. If no initial value is provided, the key is initialised to
zeroes. The key may be changed later, in one of three ways:

« with Key(keynum) = string, except in a Compact BasicCard program (see 3.16.4
Encryption Functions);

« with the Read Key File statement in a Terminal program (see 3.17.4 Run-Time
Key Configuration);

e with the BCKEY'S program in a Compact or Enhanced BasicCard (see 5.9.5 The
Key Loader BCKEYS.EXE).

Note: Triple DES and AES-128 encryption require 16-byte keys; AES-192 and AES-256 encryption
require 24-byte and 32-byte keys respectively.
3.17.3 Polynomial Declaration

The encryption algorithm described in 8.6 The SG-LFSR Algorithm requires two primitive
polynomials, of degree 31 and 32. (This is the encryption algorithm used by the Compact BasicCard.)
You don’t need to know what a primitive polynomial is, because the KEYGEN program generates
them for you, and outputs them to the key file as a Declare Polynomials statement:

Declare Polynomials = PolyA&, PolyS&
PolyA& A primitive polynomial of degree 31, the generator of the Linear Feedback Shift Register A.
PolyS& A primitive polynomial of degree 32, the generator of the Linear Feedback Shift Register S.

The polynomials may be initialised at compile time, or later — with the Read Key File statement in a
Terminal program, or with the BCKEYS program in a BasicCard.

3.17.4 Run-Time Key Configuration
The Terminal program can load keys and/or polynomials from a key file at run-time, with the statement

Read Key File filename

If this command fails, the File System variable FileError contains a non-zero error code indicating the
reason for the failure — see 4.12 The Definition File FILEIO.DEF for a list of error codes.

Except in Compact BasicCard programs, keys can also be accessed as strings via the Key(keynum)
function. See 3.16.4 Encryption Functions for details.

3.17.5 Key Error Counter

In the Enhanced and Professional BasicCards, each cryptographic key has an error counter. If the error
counter for a particular key is active, it limits the number of times that a Terminal program can attempt
to guess the key. For example, suppose the error counter for key keynum has an initial value of 10.
Whenever the BasicCard receives a command that is encrypted with key keynum:

< if the encryption is invalid, the error counter is decremented, and the BasicCard returns the status
code SW1-SW2 = swRetriesRemaining+X (&H63C0+X), where X is the new value of the error
counter. When the error counter reaches zero the key is disabled, until an Enable Key command is
executed in the BasicCard program (see below);

< if the encryption is valid, the error counter is reset to its initial value (in this case, 10);

e if the key is disabled (i.e. the error counter is already zero), the BasicCard responds with status
code SW1-SW2 = swKeyDisabled (&H6614).

So the Terminal program is given 10 chances, after which no more commands encrypted with key
keynum are accepted.

In an Enhanced or Professional BasicCard program, two commands are available for setting a key’s
error counter:

Enable Key keynum [(counter)]

40

3.17 Encryption

Enables the key. If counter is present, the error counter for the key is activated, and its initial value is
set to Max (counter, 15). If counter is absent, or equal to 255, the error counter for the key is
deactivated (i.e. the key will remain enabled regardless of how many times a command is badly
encrypted with the key).

Disable Key keynum
Disables the key, until a subsequent Enable Key command is executed.

Note: This error counter mechanism only applies to the encryption of commands. Even if a key is
disabled, it can always be used from within a BasicCard program. ZC-Basic functions that use
cryptographic keys are listed in 3.16.4 Encryption Functions.

3.17.6 DES Encryption Primitives

DES message encryption and decryption is based on the four block encryption primitives Ex , Dx, Ex,
and D%, as defined in 8.1 The DES Algorithm. In a Terminal program, an Enhanced BasicCard, and a
Professional BasicCard with DES support, these primitives are available to the ZC-Basic programmer
via the DES function:

result$ = DES(type, key, block$)
type The type of primitive: +1, -1, +3, or -3, as follows:

+1: Ex(block) Single DES encryption
-1: Dk(block) Single DES decryption
+3: E x(block) Triple DES encryption
-3: D (block) Triple DES decryption

key Either a key number from 0 to 255, or a string containing a cryptographic key. The key must
be at least 8 bytes long for types +1 and —1, and at least 16 bytes long for types +3 and -3.

block$ An 8-byte string containing the block to encrypt or decrypt. If longer than 8 bytes, only the
first 8 bytes are used; if shorter than 8 bytes, P-Code error pcBadStringCall (&HOD) is
generated.

result$ The 8-byte result of the DES encryption or decryption function.

3.17.7 Certificate Generation

The Terminal program, Enhanced BasicCards, and Professional BasicCards with DES support can
generate “digital certificates” using cryptographic keys. A digital certificate is an electronic verification
of a piece of data. Suppose you have a network of dealers, who can unload cash credits from the cards
that you issue to your customers, in return for goods and services that they provide. At the end of the
week, they come to you to exchange these electronic cash credits for real money. How can you be sure
that the dealers are honest?

Digital certificates are the answer. To unload credits from a customer’s card, the dealer sends a
message saying “l am dealer number A, and | want B credits”. The customer’s BasicCard will have its
own ID number C, and it can maintain a transaction counter D, which it increments after each
transaction. The BasicCard program puts these four numbers A, B, C, and D together into a string or a
user-defined variable, and generates a certificate using a secret key not known to the dealer or the
customer. This certificate is then returned to the dealer, who shows it to you to claim reimbursement
for the credits. You can write a Terminal program to check that A, B, C, and D really do generate the
correct certificate with the secret key. And because the key is known only to you and the BasicCard,
you know that the dealer hasn’t forged the certificate.

To generate a certificate:
S$ = Certificate(key, data)

where key is a key number from 0 to 255 or a string containing a cryptographic key, and data is the
data to be verified — either an expression of type String, or a fixed-length variable or array element.
This generates a Triple DES certificate if key number key is 16 bytes or longer, otherwise a Single
DES certificate. The result, S$, is always 8 bytes long. The certificate generation algorithm is described
in 8.3 Certificate Generation Using DES.

41

3. The ZC-Basic Language

3.18 Random Number Generation

The Rnd built-in function returns a 4-byte random number. The Terminal and the various BasicCards
have different mechanisms for random number generation.

3.18.1 The Terminal

The Terminal program initialises its random number generator with a seed based on the system clock.
This ensures that the Rnd function returns a different sequence every time a program runs. You can
override this behaviour with the Randomize command:

Randomize seed
where seed is any expression of type Long or String.
You might want to do this for the following reasons:

e to generate a predictable sequence of random numbers while developing a program, to make
debugging easier;
e touse a more unpredictable seed than the system clock, for better security.

Note: The default behaviour of the random number generator is good enough for the encryption
algorithms used in communication with the BasicCard — these algorithms don’t depend critically on the
unpredictability of the initial values RA and RB (see 7.7.10 The START ENCRYPTION Command
for details). However, they do depend critically on the secrecy of the keys used, and for this purpose we
provide a high-quality random number generation mechanism in the KEYGEN program (see 5.9.4 The
Key Generator KEYGEN.EXE).

3.18.2 The Compact and Enhanced BasicCards

Each Compact and Enhanced BasicCard has a unique serial number burnt into its memory. The first
time in its life that the BasicCard generates a random number, this serial number is used as the seed.
The seed is then updated and stored in EEPROM for the next random number generation. This ensures
that:

« each BasicCard generates a different sequence of random numbers;
e agiven BasicCard doesn’t generate the same sequence each time it is reset.

The Randomize command is not available in the BasicCard.

Note: The BasicCard simulators in the ZCMSIM and ZCMDCARD programs do generate the same
sequence of random numbers each time they run. This is because they have no access to a unique serial
number to seed the generation mechanism. But when the program is downloaded to a genuine
BasicCard, the random number sequence will become unpredictable.

3.18.3 The Professional BasicCard

All the Professional BasicCards have a hardware random number generator, so the Rnd function
returns a truly random number.

3.19 Error Handling

If the P-Code interpreter in the BasicCard detects a run-time error, such as arithmetic overflow or
insufficient memory, it calls the ErrorHandler procedure. If there is no procedure with this name in
the program, it exits with the status code SW1 = sw1lPCodeError (&H64). SW2 contains the P-Code
error code (see 7.6.2 BasicCard P-Code Interpreter for a list of these error codes). The
ErrorHandler procedure may perform clean-up operations, but it cannot cause execution to be
resumed at the statement that caused the error. The pre-defined variable PCodeError contains the
P-Code error code.

In the Enhanced and Professional BasicCards, the address of the instruction where the error occurred is
passed to the ErrorHandler procedure as an Integer parameter, so you can access it by declaring e.g.

Sub ErrorHandler (PC As Integer)

42

3.20 BasicCard-Specific Features

3.20 BasicCard-Specific Features

3.20.1 Customised ATR

When the BasicCard is reset, it provides information about itself by means of the ATR (Answer To
Reset). The ATR contains technical information about the communication parameters that the card
uses, followed by up to fifteen bytes (the ‘Historical Characters’) by which the card can identify itself.
The Historical Characters in the BasicCard are of the form “BasicCard ZCvwv”, where vw is the
firmware version number of the card. You can supply your own Historical Characters with the Declare
ATR statement:

Declare ATR = data

data Any sequence of Byte and String constants, with a total length <= 15.

You can specify the whole of the ATR (and not just the Historical Characters) with the statement
Declare Binary ATR = data

Here data must have a total length <= 31. Unless you know exactly what you are doing, you should
only use this statement with data supplied by ZeitControl.

3.20.2 Application ID

The BasicCard has a pre-defined command GET APPLICATION ID (see 7.7.9 The GET
APPLICATION ID Command). You can use this command to check that the BasicCard in the card
reader contains your application. To configure an Application ID:

Declare ApplicationID = data

data Any sequence of Byte and String constants, with a total length <= 127.

3.20.3 Enabling and Disabling Encryption Algorithms
{Enable | Disable} Encryption [AlgorithmID [, AlgorithmID, .. .1]]

AlgorithmID The ID of an encryption algorithm. If no algorithm is specified, all available
algorithms are enabled or disabled. The following algorithm IDs are available:

Compact BasicCard: &H11 SG-LFSR
&H12 SG-LFSR with CRC-16

Enhanced BasicCard: &H21 Single DES
&H22 Triple DES

Professional BasicCard: &H23 Single DES with CRC-32
&H24 Triple DES with CRC-32
&H31 AES-128
&H32 AES-192
&H33 AES-256

For maximum security, you should disable any encryption algorithms that you don’t plan to use.
Notes:

e This command is executed when the program is compiled, and it lasts for the lifetime of the card.
Algorithms can’t be enabled or disabled at run-time.

- Different Professional BasicCards support different combinations of the above five algorithms.

3.20.4 Asking the Terminal for More Time

The BasicCard has a BWT (Block Waiting Time) of 1.6 seconds (Compact) or 12.8 seconds (Enhanced
and Professional) — see 7.4 The T=1 Protocol for more information. If a command is going to take
longer than this to complete, it must request more time, otherwise the caller will time out (but see
3.21.9 Giving the Card More Time). It does this with a WTX (Waiting Time Extension) statement:

WTX BWT-units

43

3. The ZC-Basic

BWT-units

Language

Any expression of type Byte: the number of multiples of BWT requested. WTX
requests are not cumulative — each request cancels all previous requests. Note: Some
card readers treat 255 as a special value. If in doubt, don’t use this value — use 254
instead.

In the T=0 protocol, the BWT-units parameter is ignored, and a single NULL byte (&H60) is sent. This
resets the WWT (Work Waiting Time) time-out period — see 7.3 The T=0 Protocol for more

information.

3.20.5 Pre-Defined Variables

The BasicCard operating system has a number of internal variables that can be accessed from the ZC-
Basic language. Most of these have to do with communications — see Chapter 7: Communications for
details. The following are all Public variables (in RAM) of type Byte:

CLA

INS

P1

P2

Lc

Le
ResponselLength
SW1

SW2

Algorithm

KeyNumber

PCodeError

FileError

LibError

Class byte — first byte of two-byte CLA INS command identifier.
Instruction byte — second byte of two-byte CLA INS command identifier.
Parameter 1 of 4-byte CLA INS P1 P2 command header.

Parameter 2 of 4-byte CLA INS P1 P2 command header.

Length of IDATA field in command.

Expected length of ODATA field in response (supplied by caller).

Actual length of ODATA field in response (supplied by called command).
First status byte in response field SW1-SW2,

Second status byte in response field SW1-SW2.

ID of currently active encryption algorithm. Commands can check this byte to
ascertain whether an appropriate encryption mechanism is in force. If no encryption
is currently active, Algorithm is zero. See 3.20.3 Enabling and Disabling
Encryption Algorithms for a list of algorithm IDs.

The number of the cryptographic key being used by the currently active encryption
algorithm. If no encryption is currently active, KeyNumber is zero (but zero is also
a valid key number, so you should not use KeyNumber to check whether
encryption is active — use Algorithm for this purpose).

If a run-time error occurs, and the program contains a subroutine with the name
ErrorHandler, then this subroutine is called. The error code is available to the
ErrorHandler subroutine in the variable PCodeError.

The most recent error code generated by the file system (Enhanced and Professional
BasicCards only).

The most recent library procedure error (only the Professional BasicCard pre-
defines this variable — an Enhanced BasicCard program declares it in the library.def
file).

Two Integer variables are defined:

P1P2
SW1Sw2

3.21 Term

3.21.1 Screen

Concatenation of P1 and P2.
Concatenation of SW1 and SW2.

inal-Specific Features

Output

Screen output uses the Cls and Print statements in conjunction with the four pre-defined variables
FgCol, BgCol, CursorX, and CursorY (see 3.21.10 Pre-Defined Variables).

The Cls command clears the screen, and sets CursorX and CursorY to 1:

Cls

44

3.21 Terminal-Specific Features

The Print statement:

Print [field | separator] [field | seperator] . . .

field Any Byte, Integer, Long, Single, or String expression
separator ‘;” (semi-colon) Leaves the output column unchanged.
‘,” (comma) Advances the output column to the next output field (an output
field is 14 characters wide).
Spc(n) Prints n space characters.
Tab(n) Advances the output column to position n.

After the print statement, the cursor advances to the start of the next line, unless the last character is a
separator. (So you can stay on the same output line by adding a semi-colon at the end of the command.)

3.21.2 Keyboard Input

InKey$ Returns a string containing 0, 1, or 2 bytes: 0 bytes if there is no character waiting
in the keyboard buffer; 1 if a regular key was pressed; 2 if an extended-ASCII key
was pressed (in which case the first byte is zero).

Line Input X$ Reads a line from the keyboard into the string variable X$, until the carriage
return key is pressed.

Input variable-list Reads the variables in the list from the keyboard. If the list contains more than one
variable, the user must separate the values with commas or spaces. This statement
can also appear on the right-hand side of an assignment statement:

n = Input variable-list

This returns the number of variables in the list that were successfully input.

3.21.3 Communications

Three functions are provided for determining the status of the card reader and card. These functions
return a status code in SW1-SW2, just like command calls:

CardReader [(name$)]

Attempts to detect a card reader via the configured serial port. If a string parameter is passed, the
identification string of the card reader is returned. If the BasicCard is being simulated in the PC, the
words “Simulated Card Reader” are returned in the name$ parameter.

Status Codes in SW1-SW2:

swCommandOK Card reader detected
swNoCardReader Card reader not detected
swCardReaderError Invalid response from card reader

CardInReader
Returns swCommandOK (&H9000) if a card is in the card reader.
Status Codes in SW1-SW2:

swCommandOK Card is in card reader
swNoCardReader Card reader not detected
swCardReaderError Invalid response from card reader
swNoCardInReader No card in reader

ResetCard [(ATR$)]

Attempts to reset the card, returning swCommandOK (&H9000) if the card responded with a valid
Answer To Reset. If a string parameter is passed, the Historical Bytes of the Answer To Reset are
returned. See also 3.20.1 Customised ATR.

Status Codes in SW1-SW2:

swCommandOK Valid Answer To Reset received

45

3. The ZC-Basic Language

swNoCardReader Card reader not detected

swCardReaderError Invalid response from card reader
swNoCardInReader No card in reader

swT1Error T=1 protocol error (see7.4 The T=1 Protocol)
swCardError Invalid response from card

swCardTimedOut Card failed to send an ATR within the prescribed time

3.21.4 PC/SC Functions

Two functions are provided for obtaining information about the PC/SC-compatible card readers
configured in the system:

nReaders = PcscCount
Returns the number of configured PC/SC card readers, as an Integer.
Status codes in SW1-SW2:

swNoPcscDriver The PC/SC driver is not installed in the system.
swPcscError The PC/SC driver returned an unexpected error code.

ReaderName = PcscReader(ReaderNum)

Returns the name of PC/SC card reader ReaderNum, as a String. If ReaderNum is zero, the name of the
default PC/SC reader is returned. To access PC/SC reader number ReaderNum, set the pre-defined
variable ComPort to ReaderNum+100.

Status codes in SW1-SW2:

swNoCardReader ReaderNum is less than zero or greater than nReaders.
swNoPcscDriver The PC/SC driver is not installed in the system.
swPcscError The PC/SC driver returned an unexpected error code.

Note: To configure a default PC/SC reader, add the reader’s name to the Windows® system registry, in
the field “HKEY_CURRENT_USER\Software\ZeitControNBCPCSC\Default” (you can do this with
the Windows system tool Regedit.Exe). If no such field is found, reader number 1 is the default.

3.21.5 1/O Logging

The Open Log File statement initiates the logging of all 1/0 between the Terminal program and the
BasicCard program:

Open Log File filename

Previous contents of the log file are destroyed. If the file open fails, the pre-defined variable FileError
is set to a non-zero value — see 4.12 The Definition File FILEIO.DEF for error codes. The statement

Close Log File
ends /O logging and closes the log file.

3.21.6 Date and Time

The string function Time$ returns a 24-character string containing the current date and time in fixed
format:

“Ddd Mym DD HH: MM SS YYYY” (forexample: “Wed Jun 24 15:50:35 1998").

3.21.7 Saving Eeprom Data
The statement
Write Eeprom [(filename)]

writes the permanent Eeprom data in the Terminal program to a disk file. If filename is not given, the
data is written back to the original image file (or debug file). If the file couldn’t be opened for any
reason, the pre-defined variable FileError is set to a non-zero value — see 4.12 The Definition File
FILEIO.DEF for a list of error codes.

46

3.21 Terminal-Specific Features

Note: The Write Eeprom statement is only valid if the Terminal program is running in the ZCMSIM
P-Code interpreter or the ZCMDTERM Terminal Program debugger. Programs containing Write
Eeprom statements can’t be compiled into executable files.

3.21.8 Automatic Encryption
{ Enable | Disable } Encryption

The P-Code interpreter that runs the Terminal program monitors all commands to the BasicCard,
watching for START ENCRYPTION and END ENCRYPTION commands. If it sees a well-formed
START ENCRYPTION command that receives a valid response from the BasicCard, it automatically
turns on encryption of commands and decryption of responses, until it sees an END ENCRYPTION
command. If for any reason you want to disable this monitor, you can do it with a Disable Encryption
command. You can turn the monitor back on at any time with Enable Encryption.

3.21.9 Giving the Card More Time

Sometimes the BasicCard needs more than the Block Waiting Time to execute a command. In
principle, the card is responsible for requesting more time, which it does with a WTX statement — see
3.20.4 Asking the Terminal for More Time. However, if you have a ZeitControl Chipi® card reader,
you can also override the default Block Waiting Time from the Terminal program with a WTX
statement:

WTX seconds

seconds Any expression of type Byte: the number of seconds to give the card before timing
out. Unlike WTX requests in the BasicCard program, this time-out value remains in
effect until explicitly cancelled (by WTX 0). If seconds is equal to 255, the card is
given unlimited time to respond.

The Terminal program waits for a response from the card until both time-outs (those set by the
BasicCard program and the Terminal program) have expired.

Note: This feature is only available if ComPort <= 4, and you are accessing a ZeitControl Chipi® card
reader via the serial port. The PC/SC standard interface, and the CyberMouse® card reader, do not
support this feature. See 3.3.11 Block Waiting Time for an alternative method of increasing time-outs.

3.21.10 Pre-Defined Variables
The Terminal P-Code interpreter contains the following Public pre-defined variables, of type Byte:

ComPort The number of the COM port that the card reader is attached to. To specify PC/SC
card reader number n, set ComPort = n+100 (or ComPort = 100 for the default
PC/SC reader — see 3.21.4 PC/SC Functions for details).

Note: The value of ComPort at program start-up is taken from the environment
variable ZCPORT, if it exists; otherwise the Windows Registry variable ZCPORT
in the directory HKEY_CURRENT_USER\Software\ZeitControl\BasicCardPro,
if it exists; otherwise it takes the value 1.

Responselength The length of the ODATA field in the last response received from the card.

SwW1 First byte of SW1-SW?2 status field in the last response received from the card.
SW2 Second byte of SW1-SW?2 status field in the last response received from the card.
Algorithm ID of currently active encryption algorithm. Commands can check this byte to

ascertain whether the appropriate encryption mechanism is in force. If no encryption
is currently active, Algorithm is zero. See 3.20.3 Enabling and Disabling
Encryption Algorithms for a list of algorithm IDs.

KeyNumber The number of the cryptographic key being used by the currently active encryption
algorithm. If no encryption is currently active, KeyNumber is zero (but zero is also a
valid key number, so you should not use KeyNumber to check whether encryption is
active — use Algorithm for this purpose).

47

3. The ZC-Basic Language

PCodeError If a run-time error occurs, and the program contains a subroutine with the name
ErrorHandler, then this subroutine is called. The error code is available to the
ErrorHandler subroutine in the variable PCodeError.

FgCol Foreground colour for Print statements to the screen (0-15).

BgCol Background colour for Print statements to the screen (0-15).

CursorX X-coordinate of text cursor (1-80).

CursorY Y-coordinate of text cursor (1-25).

FileError The most recent error code generated by a file 1/0 operation.

nParams Number of command-line parameters (see 5.9.2 The P-Code Interpreter
ZCMSIM.EXE).

One Integer variable is defined:

SW1SW2 Concatenation of SW1 and SW2.

Two String arrays are defined:

Param$(1 To nParams) Command-line parameters passed to the ZCDOS program (see 5.9.2 The
P-Code Interpreter ZCMSIM.EXE).

Key(0 To 255) Cryptographic keys.

3.22 Miscellaneous Features

This section lists all the ZC-Basic statements that are not covered in the preceding sections or in
Chapter 4: Files and Directories.

3.22.1 Overflow Checking
{ Enable | Disable } OverflowCheck

Normally, if the result of an arithmetic operation is too big or too small to be represented in the target
type, a P-Code error is generated. You can enable or disable this overflow checking with Enable
OverflowCheck or Disable OverflowCheck. These statements are executed at run-time, and don’t
apply to the whole program. (So if you want to disable overflow checking for the whole program, then
Disable OverflowCheck should appear in your initialisation code.)

Note: This statement only affects whole-number arithmetic (Byte, Integer, and Long data types).
Floating-point overflow checking (Single data type) cannot be turned off.

3.22.2 DefType Statement

A DefType statement specifies the default type of variables, arrays, and functions that begin with a
certain letter or range of letters:

{ DefByte | DefInt | DefL.ng | DefSng | DefString } range [, range, . . .]

range Either a single letter, or a range of letters separated by a minus sign (e.g. I-N). The
case of the letter(s) is not significant.

The initial setting is DefInt A-Z, i.e. all variables, arrays, and functions have type Integer by default.

3.22.3 Array Subscript Base
An array subscript range takes the form
[lower-bound To] upper-bound

If the optional lower-bound is missing, it defaults to 0. You can change this default value with the
Option Base command, which applies to all subsequent array declarations:

Option Base subscript-base

48

3.23 Technical Notes

subscript-base Any constant expression. In the Compact and Enhanced BasicCards, it must satisfy
—-32 <= subscript-base <= +31.

Or you can specify that the lower bounds of array subscripts must always be explicitly declared, with

Option Base Explicit

3.22.4 Explicit Declaration of Variables and Arrays
By default, ZC-Basic allows implicit declaration of variables and arrays:

e If it meets a variable that it doesn’t recognise in an expression or an assignment statement, it will
treat it as a newly-declared variable. The type of the variable is determined from its name, as
described in 3.7 Data Declaration.

« If a ReDim statement contains an unrecognised array name, the compiler inserts an implicit Dim
statement to declare the array.

The Basic programming language has always behaved this way. However, this can be dangerous, as it
accepts mis-typed variable names as new variables. In the following example, this results in
TransactionState ending with the value 1 instead of 13:

TransactionState = 12

TransatcionState + 1

TransactionState
You can catch all such errors by using the Option Explicit statement:
Option Explicit

This tells the compiler not to accept variables or array names that haven’t been explicitly declared. It
applies only to following code; preceding code can contain implicit declarations.

3.23 Technical Notes

3.23.1 Parameter Size Limits

The maximum total size of all the parameters in a procedure call is approximately 128 bytes. More
precisely, the compiler checks that the sum of the following contributions is <= 128:

« the total size of all the fixed-length parameters (including String*n);

e 2 bytes for each parameter of array type;

« 3 bytes for each String parameter (or 2 bytes for the final String parameter to a Command);
« for a Function, the size of the return value (2 bytes if this is a String);

e 2 bytes for the return address (unless it’s a Command);

< the frame overhead (2 bytes for the Compact and Enhanced BasicCards, otherwise 4 bytes).

See also Note 4 in 3.12.3 Command for more on the final String parameter to a Command.

3.23.2 Array Descriptor Format

An array in ZC-Basic consists of a fixed-length array descriptor, and a data area (which is of variable
length if the array is Dynamic). In a Compact or Enhanced BasicCard program, if an array has n
dimensions, then its descriptor occupies 2*n + 4 bytes:

Address of data area (0 if not allocated) (2 bytes)
Size of each element (Lbyte) | D | n (7 bits)
LO(1) (6 bhits) RANGE(1) (10 bits)

LO(n) (6 bits) RANGE(n) (10 bits)

D This bit is 1 for Dynamic arrays, 0 for Fixed arrays.
LO(i) Lower bound for suscript(i): —32 <= LO(i) <= 31.
RANGE(i) Range for subscript(i): 0 <= RANGE(i) <= 1023.

49

3. The ZC-Basic Language

The upper bound of subscript(i) is equal to LO(i) + RANGE(i).

In Terminal programs and Professional BasicCard programs, LO(i) and HI(i) are 2-byte integers, so
the descriptor occupies 4*n + 4 bytes.

3.23.3 String Parameter Format
A variable of type String is a 2-byte pointer to a (len, data) pair:

address (2 bytes) —> len (1 byte) data (len bytes)

This uses len+3 bytes of storage (but if len is zero, then address is zero too, so only 2 bytes are used).

A variable of type String*n requires just n bytes of storage:

data (n bytes)

A procedure parameter of type String*n also takes up n bytes on the P-Code stack.

However, a procedure parameter of type String is rather more complicated. Two requirements must be
fulfilled:

e A procedure can change the value of a String variable passed as a parameter;
e A String*n variable can be passed as a String parameter.

So a String parameter takes up 3 bytes on the P-Code stack. If a fixed-length String*n variable was
passed, then the first of these bytes contains the length n (0-254) and the next two bytes contain the
address of the data. Otherwise, the first byte contains 255 (&HFF) and the next two bytes contain the
address of the pointer (not the address of the data). So if the address of the data has to be changed
because the string increases in length, the String variable can be updated to point to the new data. (By
the way, this is the reason for the 254-byte length restriction on all strings.)

3.23.4 Memory Allocation in the BasicCard

The ZC-Basic compiler calculates the sizes of all the memory regions in RAM and EEPROM. Any
memory left over is assigned to the two heaps, RAMHEAP and EEPHEAP. These regions are for run-
time memory allocation. (See 9.4 Run-Time Memory Allocation for the format of the allocated
memory blocks.)

The ZC-Basic P-Code interpreter uses run-time memory allocation for three kinds of data: variable-
length String data, Dynamic arrays, and files. Files and Eeprom data are allocated as Permanent
blocks in EEPHEAP. Other data is allocated in RAMHEAP if there is room, but if not, it is allocated
as Temporary blocks in EEPHEAP. All Temporary blocks are freed the next time the BasicCard is
reset or the Terminal program is started. EEPROM writes require up to 6 milliseconds to complete, so a
BasicCard program runs more slowly when it has to use EEPHEAP in this way.

3.23.5 Single-to-String Conversion

The operating system in the Enhanced BasicCard consists of 17.7K of code; the chip, however,
contains only 17K of ROM. The last 705 bytes contain the Single-to-String conversion routines. If an
Enhanced BasicCard program requires these routines, the ZCMBASIC compiler automatically loads
them into EEPROM (in the STRVAL region — see 9.1.2 The Enhanced BasicCard). This means, of
course, that the amount of EEPROM available for your code and data is reduced by 705 bytes.

If any of the following ZC-Basic statements occur in an Enhanced BasicCard program, this STRVAL
region will be loaded:

o Str$(val) with a val parameter of type Single;
e Vall(string) (String to Single conversion);
¢ Print to file, with a parameter of type Single.

Some versions of the Professional BasicCard do not support Single-to-String conversion — see the
Professional BasicCard Datasheet for details.

50

4. Files and Directories

4.1 Directory-Based File Systems

Everybody who owns a PC is familiar with directory-based file systems. Each disk drive has a special
directory, called the root directory, which contains data files and sub-directories. These sub-directories
themselves can contain data files and sub-directories, and so on. This determines a tree of directories,
in which any directory in the tree can contain data files and sub-directories. The directory containing a
given data file or sub-directory is called its parent directory. (directory is the traditional term, which is
used throughout this chapter; Windows® 98 calls its directories folders.)

4.1.1 File and Directory Names

Under Windows® 98, filenames can be up to 255 characters long, and may contain any printable
character (including the space character), except the following:

\ Backslash /' Slash : Colon * Asterisk

? Question mark Double quote < Leftangle-bracket > Right angle-bracket

| Vertical bar

Case is not significant when referring to an already existing file or directory. So if a file has the name
“FILE.NAM”, you can access it as “File.Nam” or “FiLe.nAm” or whatever. However, Windows® 98
retains the case of the characters specified when the file was originally named. So if you create a file as
“File.Nam” and then ask for a directory listing, Windows® 98 lists it as “File.Nam”.

4.1.2 Path Names

Each file and directory can be uniquely identified by a full path name. This consists of the disk drive
name, followed by every sub-directory on the path from the root directory to the parent directory,
followed by the name of the file or directory itself. The disk drive name is a letter A-Z followed by a
colon, e.g. “C: ” or “A: . (Lower-case letters may also be used to refer to disk drives, but a drive name
returned by a ZC-Basic function will always be upper-case.) The drive name is immediately followed
by a backslash character (this signifies the root directory); and subsequent directory names in the path
are separated by backslash characters ‘\’. For example, a full path name might be
“C:\ 1997 dients\Account Data”.

To save having to give the full path name every time, every disk drive in the system has a current
directory, and the system as a whole has a current drive. If the disk drive name is missing from the
front of a path name, the current drive is assumed. And if the first character after the disk drive name is
not a backslash, then the chain of directories is followed starting from the current directory for the
drive, instead of the root directory. Such a path name is called a relative path name. For instance,
suppose the current drive is “C.”, and the current directories for drives “A:” and “C.” are
““Clients.97” and “\ Prograns\CPP” respectively. Then the relative path names
“A: August\ TOTALS. DAT” and “Headers\SUM H’ expand to the full path names
“A:\Cdients. 97\ August\ TOTALS. DAT” and “C.\ Prograns\ CPP\ Hheader s\ SUM H’
respectively.

The directory names “. ” and “. . ” have special meanings: “. ” denotes the current position in the chain
of directories, and “. . ” denotes the parent directory. So “. \ ” in a path has no effect, and “. . \ ” goes
back to the previous directory in the chain. For instance, in the previous example, the path name
“..\'Basi c\ FI LEI O BAS” expands to “C:\Prograns\CPP\..\Basic\FILElI O BAS”,
which is the same as “C: \ Pr ogr ans\ Basi c\ FI LElI O. BAS”. The single-dot notation is useful
when a directory is required as a parameter to a file system operation; for example, the ZC-Basic
statement Name "..\FileList" As ".\" moves the file “Fi | eLi st” from the parent
directory to the current directory.

51

4. Files and Directories

4.2 The BasicCard File System

The Enhanced and Professional BasicCards contain a directory-based file system, with the same file-
naming rules as those described in the previous section for Windows® 98 (except that the maximum
length of a full path name is 254 characters). The BasicCard has one root directory, so path hames
don’t begin with a disk drive name. With the exception of the commands CurDrive, ChDrive, and
SetAttr, the ZC-Basic file and directory commands available to a BasicCard program are the same as
those available to a Terminal program.

4.2.1 File Access from a Terminal Program

If the BasicCard allows it, files and directories in the card can be accessed from a Terminal program,
just as if the card was a diskette. The card has the special drive name “@ ”. Suppose the BasicCard
contains a file “\ Tr anspor t \ Bus\ Cr edi t s”. Then the full path name of this file from the point of
view of the Terminal program is “@\ Tr anspor t\ Bus\ Cr edi t s”. And if the Terminal program
sets the current drive to “@ ” and the current directory to “\ Tr ansport ”, it can refer to the file as
simply “Bus\ Cr edi t s”. The full range of file and directory commands is available to the Terminal
program for accessing BasicCard files and directories, subject to appropriate access being granted.

Each file or directory in the BasicCard has its own access conditions, specifying the circumstances
under which the Terminal program is allowed read and write access. These access conditions can be set
and changed with Lock and Unlock statements. There are three types of access condition: Read,
Write, and Custom. The following general rules apply to file and directory access:

« Read and Write access to all files and directories is available to the BasicCard program at all
times.

« Read and Write access to all files and directories is available to the Terminal program as long as
the BasicCard is in state LOAD or PERS (see 7.7.1 States of the BasicCard).

« Otherwise, to access a file or directory from the Terminal program, Read access is required to all
directories in the path from the root to the parent. To delete a file or directory, or to change its
access conditions, Write access is required to the file or directory, and to its parent directory. (In
particular, when the card is in state TEST or RUN, the Terminal program can never change the
root directory’s access conditions, because the root directory has no parent.)

e If a Custom lock is placed on a file or directory, it is locked against Read and Write access every
time the card is reset. It can only be unlocked from within the BasicCard program, after which the
file’s regular Read and Write access conditions apply until the next reset. So you can write a
command that unlocks a particular file if the Terminal program sends the correct PIN number, for
instance.

The Read and Write access conditions on a file or directory can be:

» Allowed — access is allowed from the Terminal program;

» Forbidden - access is forbidden from the Terminal program; or

» Keyed - access is allowed only if encryption with the appropriate key is enabled.

Read and Write access conditions and key numbers can be set independently of each other. If access is
Keyed, up to two keys can be specified — if encryption with either of the two keys is enabled, access is
allowed. The encryption algorithm must be Triple DES for keys at least 16 bytes long, and Single
DES for shorter keys. So to access a Keyed file from a Terminal program, you must first call
StartEncryption with the appropriate algorithm and key number — see 3.17.1 Implementing
Encryption.

Note: The default access conditions on the root directory are Read=Allowed and Write=Forbidden.

4.2.2 Pre-Defined Files and Directories

In a BasicCard program, you can pre-define directories and data files using Dir and File statements.
The compiler constructs the appropriate structures in EEPROM for downloading to the card. See 4.11
File Definition Section for details.

52

4.3 File System Commands

4.2.3 Storage Requirements

In the BasicCard, data files and directories are stored in EEPROM. To make efficient use of the limited
space available, you should know how much memory is used. A data file or directory allocates space
for its header and its name; a data file owns data blocks as well:

e Adirectory header requires 13 bytes of EEPROM,; a data file header requires 19 bytes.

e The name of a file or directory takes up n+2 bytes of EEPROM, where n is the number of
characters in the name.

e Each data block in a data file uses n+4 bytes of EEPROM, where n is the block length specified
when the file was created. (The default block length is 32 bytes.) These blocks are allocated
automatically when data is written to a file. Note: Contiguous data blocks are merged if they are
also contiguous in EEPROM,; this saves the overhead of 4 bytes per block. So if you are creating a
file that is going to be written to just once, you can achieve optimum EEPROM usage by
specifying a block length of 1 byte.

As well as these EEPROM requirements, the file system in the Enhanced BasicCard uses
(6 * nFiles + 7) bytes of RAM, where nFiles is the number of open file slots configured (see 3.3.7
Number of Open File Slots).

4.3 File System Commands

This chapter describes all the file system commands available to the ZC-Basic programmer. There are
three cases that the ZC-Basic interpreter must distinguish:

1. A Terminal program accessing the file system in the PC (disk drives “A: ” through “Z:).
2. A Terminal program accessing the BasicCard file system (disk drive “@ ™).
3. A BasicCard program accessing its own BasicCard file system (no disk drive).

However, these cases all look the same to the ZC-Basic programmer. Apart from the disk drive names,
there are no differences, unless explicitly noted in the command descriptions that follow.

After each command, its required access conditions are listed. These access conditions apply only when
the Terminal program attempts to access a file or directory in a BasicCard that is in state TEST or
RUN.

All file system commands return a status byte in the pre-defined variable FileError. A zero value
(feFileOK) indicates success. A non-zero value is an error code, and indicates the first error that
occurred since this variable was last set to zero. (It is reset to zero every time a new command is
received from the Terminal program; you may also set it to zero yourself if you want to continue after
an error.) Error codes for each command are listed below.

As well as the error codes documented below under individual commands, there are some general error
codes that apply to all commands:

felnvalidDrive In cases 1 and 2 above (Terminal program), a disk drive name in a path was
not a letter or “@ ”.

feBadFilename A filename contains an invalid character, or is too long (see 4.1.1 File and
Directory Names).

feBadFilenum A file number is out of range. In ZC-Basic, an open file is referred to by a
file number. In a Terminal program, this number must be between 0 and 32
inclusive (with O indicating the screen or keyboard). In a BasicCard
program, zero is not allowed; the maximum number allowed defaults to 2,
but this can be overridden with a #Files directive (see 3.3.7 Number of
Open File Slots).

feFileNotFound A file or directory specified in a path name does not exist.

feFileNotOpen The file number passed to the command is not associated with an open file.
Note: This need not be the result of a programming error. If a Terminal
program opens a file in the BasicCard, and then calls a BasicCard command,

53

4. Files and Directories

feAccessDenied

feBadFileChain
feBadParameter
feOutOfMemory

feUnexpectedError

feCommsError

feNoFileSystem

the BasicCard command can close all files unilaterally — including remotely-
opened files — by using the Close command with no parameters. This is so
that the BasicCard program can always find a free open file slot when it
needs one.

The access conditions on a file or directory do not allow the execution of the
command.

The file system in the BasicCard is corrupted.
An invalid parameter value was passed to the command.
The BasicCard has insufficient free EEPROM to execute the command.

An operating system command in the PC returned an unexpected error code
when a file system function was called.

In case 2 above (Terminal program accessing the BasicCard file system), the
command failed because of a communications failure with the BasicCard.
The status bytes describing the communications failure can be found in the
pre-defined variables SW1 and SW2.

The card has no file system installed, either because

* it’s a Compact BasicCard; or

e no program has yet been downloaded to the card; or

» the file system was disabled with a #Files O directive (see 3.3.7
Number of Open File Slots).

Definitions of these error codes, as well as all the other constants that appear in this chapter, are
contained in the file FILEIO.DEF. This file is supplied in the distribution kit, and is listed in 4.12 The
Definition File FILEIO.DEF.

4.4 Directory Commands

4.4.1 Creating a Directory

The MkDir command creates a new directory (but see also 4.11 File Definition Sections):

MKDir path

path The path name of the new directory. A final backslash “\" is optional.

Access Conditions:

Write access to the parent directory is required. The Read and Write access conditions of the new
directory are the same as those of the parent directory.

Error Codes:

feFileNotFound
feFileAlreadyExists
feNameToolLong

The parent directory does not exist.
A file or directory with the given path name already exists.
The full path name of the directory would be longer than 254 characters.

4.4.2 Deleting a Directory

The RmDir command deletes an existing directory. The directory must be empty before it can be

deleted:
RmDir path

path The path name of the directory. A final backslash ‘\’ is optional.

Access Conditions:

Write access is required, both to the directory and to its parent directory.

54

4.4 Directory Commands

Error Codes:

feFileNotFound The directory does not exist.
feNotDirectory The file is a data file, not a directory. Use Kill to delete data files.
feDirNotEmpty The directory is not empty, and therefore can’t be deleted.

4.4.3 Setting the Current Directory

The ChDir command sets the current directory.

ChDir path

path The path name of the new current directory. A final backslash “\’ is optional.

Note (Terminal programs only): If the path contains a disk drive name, the current directory for that
disk drive is changed, but the current disk drive is not changed. Use ChDrive to change the current
disk drive.

Access Conditions:
Read access to the directory is required.
Error Codes:

feFileNotFound The directory does not exist.
feNotDirectory The file is a data file, not a directory.

4.4.4 Retrieving the Current Directory
The CurDir function returns the path of the current directory as a String:
S$ = CurDir [(drive)]

drive The disk drive for which the current directory is requested. The first character must
be a letter (“A-Z’ or ‘a-z’), or the character ‘@. If absent, the current directory of the
current disk drive is returned.

Note: The optional drive parameter is accepted only in Terminal programs.
Access Conditions:

No access conditions are required for this command.

Error Codes:

felnvalidDrive The disk drive specified in the drive parameter does not exist.
feNameToolLong The full path name of the current directory is longer than 254 characters
(Terminal program only).

445 Renaming a File or Directory

The Name command renames a file or directory, or moves it to a new directory, or both. It cannot be
used to move a file from one disk drive to another.

Name OldPath As NewPath
OldPath The old path name of the file or directory.

NewPath The new path name. If no backslash appears in NewPath, the file or directory is
renamed without being moved. If NewPath ends with a backslash character ‘\’, the
file or directory is moved without being renamed.

Note: Under MS-DOS®, directories can be renamed, but not moved.
Access Conditions:

Write access is required (i) to the file or directory being renamed, (ii) to its parent directory, and (iii) to
the destination directory if different from the current parent directory.

55

4. Files and Directories

Error Codes:

feFileNotFound The file specified in OldPath does not exist, or the directory specified in
NewPath does not exist.
feFileAlreadyExists The file specified in NewPath already exists.

feNameToolLong The operation would result in a file or directory in the BasicCard with a full
path name longer than 254 bytes.
feRenameError One of the following error conditions:

e OldPath is the root directory, which cannot be renamed.

* NewPath and OldPath are on different disk drives.

« Anattempt was made to move a directory under MS-DOS®.
feRecursiveRename The directory in NewPath is a sub-directory of OldPath, so the rename

operation would result in an endless loop in the directory tree.

4.4.6 Searching for Files

Use the Dir command to search for files and directories matching a given wild-card specification. This
has two forms:

nFiles = Dir (filespec) Returns the number of matching files and directories, as an Integer.
file$ = Dir (filespec, n) Returns the name of the nth matching file or directory, as a String.

filespec The path name of the file(s) to search for. The last component of the path may
contain the wild-card characters ‘?’ (matching any single character) and ‘“*’
(matching any sequence of zero or more characters). For example, “A*” finds all
filenames that start with the character ‘A’ or ‘a’, and “* =?” finds all filenames whose
penultimate character is ‘=",

n The number of the matching file, 1 <= n <= nFiles.
Notes:

1. If filespec refers to a file or files in the PC, the first Dir command for a given filespec saves all the
matching files in memory. This list is retained for future Dir commands of the second form that
have the same filespec parameter (unless a ZC-Basic command intervenes that can change the
directory contents). This is a major speed improvement in most cases. However, if another process
changes the directory contents, ZC-Basic won’t know about it, and will continue to use the original
list. You can override this at any time and re-load the list from the disk, by calling a Dir command
of the first form.

2. ZC-Basic uses the host operating system to match wild-card specifications in the PC. MS-DOS®
and Windows® 98 handle wild-card characters a little differently, due to the differences in what
constitutes a valid filename, but “*. *” matches all files and directories in both systems.

3. The Enhanced BasicCard uses a case-insensitive matching algorithm that treats the full stop
(period) character . * no differently from any other character (unlike MS-DOS® and Windows®
98). However, as a special case, the wild-card string “* . *” matches all files and directories.

Access Conditions:
Read access to the parent directory is required.

Error Codes:

feBadFilename filespec is not a valid path name (this error code is also returned if filespec
contains wild-card characters in any component except the last).
feBadFilenum n is less than 1 or greater than nFiles.

56

4.4 Directory Commands

4.4.7 Setting the Attributes of a File or Directory

The SetAttr command sets the attributes of a file or directory:

SetAttr filename, attributes

filename

attributes

The path name of the file or directory.

A bit map of the attributes to set. The attributes available depend on the host
operating system. See 4.4.8 Retrieving the Attributes of a File or Directory for
details.

Note: This command is available in Terminal programs only.

Access Conditions:

Access conditions are not relevant for this command, as a BasicCard file has no attributes that can be

changed.
Error Codes:

feRemoteFile

filename is a BasicCard file, so it has no attributes that can be changed.

4.4.8 Retrieving the Attributes of a File or Directory

The GetAttr command returns the attributes of a file or directory:
attributes = GetAttr (filename)

filename

attributes

The path name of the file or directory.

A bit map of the attributes of the file or directory. The attributes that can be returned
depend on the host operating system, as follows:

e The BasicCard file system supports two attributes:

faDirectory Indicates that the file is a directory, and not a data file.
faCardFile Indicates that the file or directory is in the BasicCard.

« MS-DOS® supports these two attributes, plus the following:

faReadOnly Indicates a read-only file.

faHiddenFile Indicates a hidden file.

faSystemFile Indicates a system file.

faArchived Indicates that file has been backed up since last changed.

« Windows® 95 supports all the above attributes, plus the following:

faNormal Indicates that no other attribute bits are set.
faTemporary Indicates that file is being used for temporary storage.

These constants are defined in the file FILEIO.DEF.

Access Conditions:

Read access is required to the parent directory (but not to the file itself).

4.4.9 Setting the Current Disk Drive

The ChDrive command sets the current disk drive.

ChDrive drive

drive

The disk drive for which the current directory is requested. The first character must
be a letter (‘A-Z’ or ‘a-z”), or the character ‘@.

Note: This command is available in Terminal programs only.

Access Conditions:

No access conditions are required for this command.

57

4. Files and Directories

Error Codes:

felnvalidDrive The disk drive specified in the drive parameter does not exist.

4.4.10 Retrieving the Current Disk Drive

The CurDrive function returns the current disk drive as a single-character String containing an upper-
case letter ‘A-Z’ or the character ‘@:

S$ = CurDrive
Note: This command is available in Terminal programs only.
Access Conditions:

No access conditions are required for this command.

4.5 Creating and Deleting Files

45.1 Creating a File

There is no special command to create a new file (but BasicCard files can be defined at compile time —
see 4.11 File Definition Sections). A file is created simply by opening a non-existent file for output,
using the Open command (see 4.6.1 Opening a File). A file can’t be created in this way if mode is
Input or access is Read.

4.5.2 Deleting a File

The Kill command deletes an existing file:
Kill filename

filename The name of the file.
Access Conditions:

Write access is required, both to the file and to its parent directory.

Error Codes:

feFileNotFound The file does not exist.
feNotDataFile The file is a directory, not a data file. Use RmDir to delete directories.
feFileOpen The file can’t be deleted, because it is currently open.

4.6 Opening and Closing Files

4.6.1 Opening a File

In traditional Basic, the programmer has to specify filenum, the number of the open file slot. But in the
BasicCard file system, with open file slots shared between the BasicCard program and the Terminal
program, the programmer can’t always know which file slots are in use. So ZC-Basic allows an
alternative form of the Open command, where the operating system automatically selects a free open
file slot. (This is equivalent to calling FreeFile to select an open file slot, followed by a traditional
Open command.)

Traditional form: Open filename [For mode] [Access access] [lock] As [#] filenum [Len=recordlen]
Alternative form: filenum = Open filename [For mode] [Access access] [lock] [Len=recordlen]
filename The path name of the file to be opened.

mode If mode is Input, Output, or Append, the file is opened for sequential 1/0, in which
all write operations take place at the end of the file. If mode is Binary or Random,
write operations can take place anywhere in the file, overwriting existing data:

58

access

lock

filenum

recordlen

4.6 Opening and Closing Files

Input Opens the file for sequential input.

Output Opens the file for sequential output. Existing data is destroyed.

Append Opens the file for sequential output and sets the file pointer to the end
of the file. Existing data in the file is preserved.

Binary Opens the file for random access by file position, using Get and Put.
Random Opens the file for random access by record number, using Get and Put.

If the mode parameter is absent, its value depends on the access parameter: Input for
Access Read, Output for Access Write, and Append for Access Read Write. If
both mode and access are absent, mode defaults to Input and access defaults to
Read.

Specifies which types of operations will be executed on the file. It takes the value
Read, Write, or Read Write.

< If mode is Input, then access, if present, must be Read.

e If mode is Output, then access, if present, must be Write.

« If mode is Append, then access, if present, must be Write or Read Write.

e If mode is Binary or Random, then access can take any value; it defaults to
Read Write.

For a file in the PC, this parameter specifies whether the file can be opened
simultaneously by other processes. For a file in the BasicCard, it specifies whether
the file can be opened simultaneously from the Terminal program and the BasicCard
program. It also determines whether a file can be opened simultaneously under
different open file slots in the same program. The lock parameter can take the
following values:

Shared Allows simultaneous read and write operations by other processes.
Lock Read Prevents simultaneous read operations by other processes.
Lock Write Prevents simultaneous write operations by other processes.

Lock Read Write Prevents simultaneous access by other processes (the default).

The number of an open file slot, by which read and write operatons will be executed.
In the Terminal program, filenum must be between 1 and 32 inclusive. In the
BasicCard program, filenum must be 1 or 2, unless the number of open file slots has
been configured with the #Files directive (see 3.3.7 Number of Open File Slots).

Record length or block length.

< If the file is being created, this parameter specifies the size of its data blocks (see
4.2.3 Storage Requirements for more information). If absent (or zero), the data
block size for the new file is 32 bytes. If present, it must be <= 8191.

e If access is Random, this parameter specifies the record length of the file. This
record length must be between 1 and 254 inclusive.

Access Conditions:

If the file already exists, the access conditions required depend on the access parameter: Read, Write,
or Read Write. If the file is being created, Write access to the parent directory is required, and the
Read and Write access conditions on the new file are the same as those of the parent directory.

Error Codes:
feFileNotFound

feNotDataFile
feFileOpen

The file does not exist, and could not be created, because:

e the parent directory does not exist; or

e mode is Input; or

e access is Read.

The file is a directory, not a data file.

(Traditional form only) Open file slot number filenum is already in use.

feTooManyOpenFiles (Alternative form only) There are no more free open file slots.
feTooManyCardFiles (Terminal program only) An attempt was made to open a BasicCard file

from a Terminal program, but there are no more free open file slots in the
BasicCard.

59

4. Files and Directories

feNameToolLong (BasicCard file system only) The file can’t be created, because its full path
name would be longer than 254 characters.

feRecordToolLong Either access is Random, and recordlen is greater than 254; or the file is
being created, and recordlen is greater than 8191.

feBadParameter Either access is Random, and recordlen is less than 1 (or absent); or the file
is being created, and recordlen is less than 0.

feSharingViolation The file is already open, and the required shared access is not available.

4.6.2 Closing Files
The Close command closes one or more files:
Close [[#] filenum [, [#] filenum, .. .]]

Note: If no parameters are supplied, all open files are closed. (But the P-Code interpreter automatically
closes all files on program exit.) If the BasicCard program closes all open files in this way, even files
that were opened from the Terminal program are closed. In this way, the BasicCard program can
always find a free open file slot when it needs one.

4.7 Writing To Files

4.7.1 Writing to Sequential Files

If a file was opened for writing, with a mode parameter equal to Output or Append, it can be written
to with a Print or Write command. All write operations take place at the end of the file.

The Print command outputs data to a sequential file in human-readable format. It has the same format
as the Print command for displaying data on the screen (see 3.21.1 Screen Output), except for the
initial #filenum parameter:

Print #filenum, [field | separator] [field | seperator] . . .

filenum The filenum parameter to the Open command by which the file was opened.
field Any Byte, Integer, Long, Single, or String expression
separator ‘;” (semi-colon) Leaves the output column unchanged.
‘,” (comma) Advances the output column to the next output field (an output
field is 14 characters wide).
Spc(n) Prints n space characters.
Tab(n) Advances the output column to position n.

A new-line character is added at the end, unless the last character is a separator. (So you can stay on the
same output line by adding a semi-colon at the end of the command.)

Note: Use of this statement in an Enhanced BasicCard program with a parameter of type Single will
reduce the amount of user-programmable EEPROM available — see 3.23.5 Single-to-String
Conversion for details.

The Write command writes data to a sequential file, in a binary format that is specific to ZC-Basic. If a
sequence of values is written to a file with Write statements, then the same values can subsequently be
read from the file using ZC-Basic Input statements (see 4.8.1 Reading from Sequential Files).

Write [#] filenum, expression-list
filenum The filenum parameter to the Open command by which the file was opened.

expression-list A list of expressions separated by commas. Expressions can be of numerical, string,
or user-defined type.

Access Conditions:

The file must have been opened with the access parameter equal to Write or Read Write.

60

4.8 Reading From Files

Error Codes:

felnvalidMode The file was not opened with mode equal to Output or Append.
felnvalidAccess The file was not opened with access equal to Write or Read Write.

4.7.2 Writing to Binary and Random Files

The Put command is used to write to files that were opened with mode equal to Binary or Random.
The write operation takes place at the current file position, overwriting any existing data at that
position. After the Put command, the current file position advances to the next character (for Binary
files) or the next record (for Random files):

Put [#] filenum, [pos], data

filenum The filenum parameter to the Open command by which the file was opened.

pos A record number for Random files, and a character position for Binary files. If pos
is not present (“Put [#] filenum, , data”), the variable is written to the current file
position.

data A variable or array element, or a String expression.

Access Conditions:
The file must have been opened with the access parameter equal to Write or Read Write.

Error Codes:

felnvalidMode The file was not opened with mode equal to Binary or Random.
felnvalidAccess The file was not opened with access equal to Write or Read Write.
feSeekError pos is an invalid file position.

4.8 Reading From Files

4.8.1 Reading from Sequential Files

If a file was opened for reading, with a mode parameter equal to Input or Append, it can be read with
a Line Input statement, an Input function, or an Input statement.

Line Input #filenum, X$ Reads a string from the file, up to the next new-line character or end-
of-file, or until 254 characters have been read (the new-line character, if
read, is discarded).

X$ = Input (len, [#] filenum) The Input function reads a given number of characters from the file
into a string.

Input #filenum, variable-list The Input statement reads a list of variables from a file, expecting
them in the format produced by a corresponding Write statement (see
4.7.1 Writing to Sequential Files). This statement can also appear on
the right-hand side of an assignment statement:

n = Input #filenum, variable-list

This returns the number of variables in the list that were successfully

input.
filenum The filenum parameter to the Open command by which the file was opened.
X$ A variable or array element of type String.
len The number of characters to read.
variable-list A list of variables or array elements, separated by commas.

Access Conditions:

The file must have been opened with the access parameter equal to Read or Read Write.

61

4. Files and Directories

Error Codes:

felnvalidMode The file was not opened with mode equal to Input or Append.
felnvalidAccess The file was not opened with access equal to Read or Read Write.
feReadError The end of file was reached before enough bytes were read.

4.8.2 Reading from Binary and Random Files

The Get command is used to read from files that were opened with mode equal to Binary or Random.
The read operation takes place at the current file position. After the Get command, the current file
position advances to the next character (for Binary files) or the next record (for Random files):

Get [#] filenum, [pos], variable [, len]
filenum The filenum parameter to the Open command by which the file was opened.

pos A record number for Random files, and a character position for Binary files. If pos
is not present (e.g. “Get filenum, , variable”), the read operation takes place at the
current file position.

variable A variable or array element. If this is of type String, it must be followed by the len
parameter; otherwise the len parameter must be absent.

len The number of characters to read, in the case that variable is of type String.
Access Conditions:
The file must have been opened with the access parameter equal to Read or Read Write.

Error Codes:

felnvalidMode The file was not opened with mode equal to Binary or Random.
felnvalidAccess The file was not opened with access equal to Read or Read Write.
feSeekError File position pos does not exist.

feReadError The end of file was reached before enough bytes were read.

4.9 File Locking and Unlocking
The commands in this section are valid only for files in the Enhanced BasicCard.

4.9.1 Setting Read and Write Access Conditions
The Read and Write access conditions of a file or directory are changed with the following commands:

Read Lock filename [Key = k1 [, k2]]
Read Unlock filename

Write Lock filename [Key = k1 [, k2]]
Write Unlock filename

Read Write Lock filename [Key = k1 [, k2]]
Read Write Unlock filename

filename The path name of the file or directory.
k1, k2 The key numbers required to access the file or directory.

e The Lock command with no parameters sets the Read and/or Write access conditions of the
specified file or directory to Forbidden.

e The Lock command with k1 or k2 specified sets the Read and/or Write access conditions of the
specified file or directory to Keyed — the file can’t be read or written from the Terminal program
unless DES encrpytion is currently active.

e The Unlock command sets the Read and/or Write access conditions of the specified file or
directory to Allowed.

Access Conditions:

Write access is required to the file or directory, and to its parent directory.

62

4.9 File Locking and Unlocking

Error Codes:

feNotRemoteFile filename is not a BasicCard file or directory.

4.9.2 Setting and Unlocking a Custom Lock

If a file or directory has a Custom lock, it can’t be read or written from a Terminal program unless the
BasicCard program explicitly unlocks it. This allows access to a file or directory to be subject to any
conditions, such as the presentation of a valid customer PIN number by the Terminal.

To set a Custom lock:

Lock filename

To unlock a Custom lock (BasicCard program only):

Unlock filename

Notes:

1. Once a Custom lock is set, it can never be permanently removed. A Custom lock is for ever.

2. If a Custom lock is unlocked, it can only be accessed from the Terminal program until the card is
reset. After the card is reset, the BasicCard program must unlock the file or directory again before
the Terminal program can access it.

Access Conditions:

For the “Lock filename” command, Write access is required to the file or directory, and to its parent
directory. The “Unlock filename” command is not allowed in a Terminal program, so access conditions
are not relevant.

Error Codes:
feNotRemoteFile filename is not a BasicCard file or directory.

feTooManyCustomLocks The maximum allowed number of Custom locks are already in place.
(The implementation of the Custom lock mechanism in the Enhanced
BasicCard limits the number of locked files to 125.)

4.9.3 Retrieving the Access Conditions on a File or Directory

The access conditions on a file or directory can be obtained with the Get Lock command:
Get Lock filename, LockInfo

filename The path name of the file or directory.

LockiInfo A variable of user-defined type or a fixed-length string, at least seven bytes long. A
suitable user-defined type LocklInfo is defined in FILEIO.DEF:

Type Locklnfo
ReadLock As Byte
WitelLock As Byte
CustomLock As Byte
ReadKeyl@ ReadKey2@
WiteKeyl@ WiteKey2@
End Type

ReadLock and WriteLock can be liAllowed, liForbidden, liKeyed1, or liKeyed2.
If liKeyedl or liKeyed2, then ReadKeyl@ etc. contain the appropriate key
numbers.

CustomLock can be liAllowed, liUnlocked, or liLocked.
Access Conditions:
Read access is required to the parent directory.
Error Codes:

feNotRemoteFile filename is not a BasicCard file or directory.

63

4. Files and Directories

Note: Enhanced BasicCard versions ZC3.3, ZC3.4, ZC3.5, and ZC3.6 contains a bug in the file access
code that can result in access being denied when it should be granted. This bug only occurs when a file
has a lock of type liKeyedl. To get round this bug, the compiler automatically converts all such locks
to type liKeyed2, with a dummy key number 255 as the second key.

4.10 Miscellaneous File Operations

filenum = FreeFile Returns a free filenum for use in a traditional Open statement. Returns -1 if
no more file numbers are available, with error code feTooManyOpenFiles.

Seek [#] filenum, pos Sets the file pointer to position pos (of type Long) for the next read or write
operation on file filenum. pos is a record number for files opened with
mode=Random; otherwise it is a byte count. Records and bytes are
numbered from 1.

Note: If the file contains less than pos—1 bytes (or records), Seek fails with
error code feSeekError, unless the file was opened for output in random
access mode (mode=Binary or mode=Random, with Write access
specified). In this case, the file is filled with zeroes to the required length.

Seek ([#] filenum) Returns the read/write position for file filenum, as a Long value.
Len (#filenum) Returns the length of file filenum in bytes, as a Long value.
EOF ([#] filenum) Returns True if the end of file has been reached.

4.11 File Definition Sections

Using File Definition Sections, files and directories can be defined in the source code of the BasicCard
program, to be created by the compiler. Files and directories so defined are downloaded to the
BasicCard together with the BasicCard program itself. A File Definiton Section begins with a Dir
command and ends with the matching End Dir command. It may occur anywhere in an Enhanced
BasicCard program; it may contain only File Definition statements, not regular ZC-Basic statements. A
program may contain any number of File Definition Sections.

4.11.1 Directory Definition

Dir path
Lock Definitions
File Definitions
Sub-directory Definitions

End Dir

path The path name of the directory. It may be a new directory or an existing
directory.

Lock Definitions Lock and Unlock statements for the path directory. These have the same
format as the statements described in 4.9 File Locking and Unlocking, but
without the filename parameter.

File Definitions Definitions of files contained in the path directory (see 4.11.2 File

Definition).

Sub-directory Definitions Nested Directory Definitions, defining sub-directories of the path
directory. Each nested Directory Definition must end with its own End Dir
statement.

File Definitions and nested Directory Definitions may occur in any order.

64

4.12 The Definition File FILEIO.DEF

4.11.2 File Definition

A File Definition may occur only inside a Directory Definition. It ends with the next File or Dir
statement, or with the End Dir statement of the enclosing Directory Definition.

File filename [Len = blocklen]
Lock Definitions
Data Definitions

filename The path name of the file.

blocklen The size of the new file’s data blocks (see 4.2.3 Storage Requirements for more
information). If absent, blocklen defaults to 32.

Lock Definitions Lock and Unlock statements for the file. These have the same format as the
statements described in 4.9 File Locking and Unlocking, but without the filename
parameter.

Data Definitions The initial data contained in the file. A Data Definition statement looks like this:
expr [As type] [(repeat-count)] [, expr [As type] [(repeat-count)], . . .]
expr Any constant expression of numerical or string type.

type A data type. If absent, it defaults to the smallest data type that can
contain expr. If type is a fixed-length string longer than expr, it is
padded with NULL characters (ASCII zeroes) to the required
length.

(repeat-count) The number of copies of expr to store in the file.

Note: To store a new-line character in the data, use the constant 10.

4.12 The Definition File FILEIO.DEF

Rem FI LEI O. DEF
Rem
Rem Declarations for ZC-Basic File I/O

#1 f Not Def Fil ei oDef Il ncluded ' Prevent multiple inclusion
Const Fil ei oDef I ncluded = True

#1 f Def Conpact Basi cCard
#Error File 1/Ois not suported in the Conpact BasicCard!
#EndI f

Rem FileError codes

Const feFil edK

Const felnvalidDrive
Const feBadFil enane
Const feBadFi |l enum
Const feFil eNot Found
Const feFil eNot Open
Const feQpenError
Const feSeekError
Const feReadError
Const feWiteError
Const fed oseError
Const felnval i dvbde
Const felnvali dAccess
Const feRenaneErr or
Const feAccessDeni ed
Const feSharingViolation

oo~NoOOOP~,WNEO

65

4. Files and Directories

Const feFil eAl readyExi sts = 16
Const feNotDataFil e = 17
Const feNotDirectory = 18
Const feDirNot Enpty = 19
Const feBadFi| eChain = 20
Const feFil eOpen =21
Const feNaneToolLong = 22
Const feRecordToolLong = 23
Const feTooManyQpenFil es = 24
Const feTooManyCar dFil es = 25
Const feComsError = 26
Const feRenoteFile = 27
Const feNot RenoteFil e = 28
Const feRecursi veRenane = 29
Const felnval i dFronKeyboard = 30
Const feBadPar anet er = 31
Const feQut Of Menory = 32
Const feNoFil eSystem = 33
Const feUnexpect edError = 34
Const feNotl npl emrent ed = 35
Const feTooManyCustoniocks = 36
Const feBadKeyFil e = 37

Rem File Attribute bits

&H0010
&H0040

Const faDirectory
Const faCardFil e

#1 f Def Ter m nal Program

Const faReadOnly = &H0001
Const faHi ddenFil e = &H0002
Const faSystenFile = &H0004
Const faArchived = &H0020
Const faNor mal = &H0080
Const faTenporary = &H0100

#EndI f
Rem Locklnfo defined type, for GET LOCK st at enment

Type Locklnfo

ReadlLock As Byte " liAllowed, |iKeyedl, |iKeyed2, or |iForbidden
WitelLock As Byte " IiAllowed, |iKeyedl, |iKeyed2, or |iForbidden
CustonmLock As Byte " IiAll owed, IiUnlocked, or IiLocked

ReadKeyl@ ReadKey2@ ' Key nunber(s) for ReadLock
WiteKeyl@ WiteKey2@' Key numnber(s) for WitelLock
End Type

Rem Locklnfo constants

Const 1i Al owed
Const |i Keyedl
Const |i Keyed2
Const |i For bi dden
Const |i Unl ocked
Const |iLocked

NF,WNEFLO

#Endlf ' Fil ei oDefl ncl uded

66

5. Support Software

This document describes Version 4.50 of the ZeitControl MultiDebugger software support package. All
the software described in this chapter is available free of charge from our web site at
www.BasicCard.com.

5.1 Hardware Requirements

No special hardware is required to develop programs in ZC-Basic — the support software can simulate
the BasicCard inside your PC, so you can compile and test software on any Windows® 98/NT/2000
system.

Once the software is written and tested, you will need a PC/SC-compatible card reader, and one or
more BasicCards. ZeitControl offers a selection of card readers — see our web site for details. A
development kit containing CyberMouse reader, BasicCards, and printed documentation is available
from ZeitControl — contact us at Sales@ZeitControl.de.

5.2 Installation

Please obtain the latest version of our development software before installing it. The latest version is
available free of charge from our web site at www.BasicCard.com. Installation instructions can be
found there.

To install the BasicCard software from the CD, run the program Basi cPr o\ Set up. exe. The
software is installed in the directory C: \ Basi cCar dPr o unless you specify a different destination.

5.3 File Types

To use the development software effectively, it helps to have a clear idea of the roles played by the
different types of files used by the system. We can arrange the files in a three-level hierarchy: Project
Files, Program Files, and Source Files. There is a corresponding software hierarchy: development
environment ZCPDE; debuggers ZCMDTERM/ZCMDCARD; and compiler ZCMBASIC:

Level 1: Project Files

* ZCP Project Files
ZCPDE.EXE ZeitControl Professional Development Environment

Level 2: Program Files

*ZCT Terminal Program Files
ZCMDTERM.EXE ZeitControl Terminal Program Debugger

*ZCC BasicCard Program Files
ZCMDCARD.EXE ZeitControl BasicCard Program Debugger

Level 3: Source Files

*BAS ZC-Basic Source Files
* DEF ZC-Basic Definition Files
BAS DEF| 2zcMBASIC.EEXE ZeitControl ZC-Basic Compiler

67

www.BasicCard.com
www.BasicCard.com

5. Support Software

This hierarchy is not strictly enforced — you can run the debuggers outside the development
environment if you just want to test a simple program; or you can compile a program from the Win32
console command line if you don’t need to debug it.

*.ZCP Project Files

A Project File simply lists all the Program Files that belong to a single project. What constitutes a
project is up to you; the simplest projects contain one Terminal Program File and one BasicCard
Program File, but bigger projects may contain two or three Terminal Program Files and a dozen or
so BasicCard Program Files.

*ZCT Terminal Program Files
A Terminal Program File contains:

e compiler options for a Terminal Program, including Source File, Include Paths, and Pre-
Defined Constants;

e run-time options, such as initial COM Port and Terminal Program command-line parameters;

e the positions of the various windows.

*.ZCC BasicCard Program Files
A BasicCard Program File can be thought of as a Virtual BasicCard. It contains:

« compiler options for a BasicCard Program, including Source File, Card Type, Include Paths,
and Pre-Defined Constants;

« the EEPROM contents of the Virtual BasicCard,;

e the COM Port of the Virtual Card Reader that the program occupies;

e the positions of the various windows.

You can have more than one BasicCard Program File for a given source program, each with its
own Virtual EEPROM. And you can run more than one ZCMDCARD BasicCard Debugger at a
time, as long as no two debuggers occupy the same Virtual Card Reader COM Port.

* BAS and *.DEF ZC-Basic Source Files

In our example programs, we make the distinction between .BAS files, which contain code, and
.DEF files, which contain only definitions and declarations. This distinction is purely conventional,
the compiler doesn’t treat the two file types differently.

ZC-Basic Source Files are fully described in 3The ZC-Basic Language.

In addition, the ZCMBASIC Compiler produces the following two file types as output (among others —
see 5.9.1 The ZC-Basic Compiler ZCMBASIC.EXE for details):

* IMG Image Files

An Image File contains a compiled Terminal Program or BasicCard Program, with no symbolic
debug information. Its contents are described in 10.1 ZeitControl Image File Format. Two
command-line programs accept Image Files as input (and Debug Files too, if the .DBG file
extension is explicitly given):

e the ZCMSIM P-Code Interpreter, which requires a Terminal Program Image File, and
optionally one or more BasicCard Program Image Files;
» the BCLOAD Download Program, which downloads a BasicCard Image File to a BasicCard.

See 5.9.2 The P-Code Interpreter ZCMSIM.EXE and 5.9.3 The Card Loader BCLOAD.EXE
for details.

*.DBG Debug Files

A Debug File contains all the information in an Image File, plus symbolic debug information for
the debuggers ZCMDTERM and ZCMDCARD. Its contents are described in 10.2 ZeitControl
Debug File Format.

68

5.4 Physical and Virtual Card Readers

5.4 Physical and Virtual Card Readers

Whenever you access a BasicCard or a Card Reader from a ZC-Basic Terminal Program, ZeitControl’s
P-Code Interpreter uses the current value of the ComPort variable to determines where to look for the
Card Reader. The meaning of the ComPort variable depends on the program that contains the P-Code
Interpreter: this can be an executable file, the ZCMSIM P-Code Interpreter, or the ZCMDTERM
Terminal Program Debugger.

5.4.1 ComPortin an Executable File

A ZC-Basic program compiled into an executable file accepts the following values for the ComPort
variable:

1 <= ComPort <= 4: Physical Card Reader on serial port COM1-COM4
100 <= ComPort <=199: PC/SC Card Reader — see 3.21.4 PC/SC Functions
201 <= ComPort <=204: Virtual Card Reader running in the ZCMDCARD debugger

5.4.2 ComPort in the ZCMSIM P-Code Interpreter

The ZCMSIM P-Code Interpreter accepts the same values for the ComPort variable as an executable
file, as listed in the previous section. In addition, ComPort may be set to any of the —P parameters
specified on the command line, in which case the corresponding simulated BasicCard is accessed — see
5.9.2 The P-Code Interpreter ZCMSIM.EXE.

5.4.3 ComPort in the ZCMDTERM Terminal Program Debugger

The ZCMDTERM Terminal Program Debugger accepts the following values for the ComPort
variable:

1 <= ComPort <= 4: Physical or Virtual Card Reader
100 <= ComPort <=199: PC/SC Card Reader — see 3.21.4 PC/SC Functions
201 <= ComPort <=204: Virtual Card Reader running in the ZCMDCARD debugger

If 1 <= ComPort <= 4, then ZCMDTERM has to decide whether to access a Physical or a Virtual
Card Reader. It does this on the basis of the settings in the Options|Terminal Programs...|Card
Readers dialog box. In this dialog box, each of COM1 through COM4 can be set to Real, Auto, or
Virtual:

Real Physical Card Reader is accessed
Auto Virtual Card Reader if available, otherwise Physical Card Reader
Virtual Virtual Card Reader running in the ZCMDCARD debugger

To enable communication between the Terminal Program and a BasicCard program running in the
ZCMDCARD BasicCard Program debugger, the ZCMDCARD debugger must know which COM
Port to attach to. You can specify this in one of two ways:

e in ZCMDCARD, via the Card|Insert in Virtual Reader... dialog box;
¢ in ZCMDCARD or ZCPDE, via the Options|BasicCard Program...|COM Ports dialog box.

The first of these is temporary; the second is permanent for the given BasicCard Program File.

5.5 Windows-Based Software

The Windows-based software consists of the following programs:

e ZCPDE, the ZeitControl Professional Development Environment. This program manages projects,
creating and maintaining ZeitControl Project files, with .ZCP extension. It also contains a built-in
text editor.

e ZCMDTERM, a source-level symbolic debugger for Terminal programs. It can communicate
with one or more ZCMDCARD debuggers, and one or more physical card readers. It uses
ZeitControl Terminal Program files, with .ZCT extension, to store the information that it needs to
compile and run Terminal Programs.

69

5. Support Software

70

ZCMDCARD, a source-level symbolic debugger for BasicCard programs. It waits for commands
from the Terminal debugger ZCMDTERM, executes the commands under the control of the user,
and sends its responses back to the Terminal debugger. It can also download BasicCard programs
to a real BasicCard. It uses ZeitControl BasicCard Program files, with .ZCC extension, to store the
information that it needs to compile and run BasicCard Programs.

5.6 The ZCPDE Professional Development Environment

5.6 The ZCPDE Professional Development Environment

The ZCPDE ZeitControl Professional Development Environment program manages
projects, creating and maintaining ZeitControl Project files, with .ZCP extension. It also
contains a built-in text editor.

5.6.1 ZCPDE File Menu

The File menu is for editing text files, and contains no project management functions. It contains the
following items:

New Create a new text file

Open... Open an existing text file

Reopen » Open a recently opened text file

Save Save the current text file

Save As... Save the current text file under a new name
Save All Save all modified files

Close Close the current text file

Print... Print the current text file

Printer Setup... Set printer options
Exit Exit the ZCPDE program

5.6.2 ZCPDE Edit Menu

The Edit menu is for editing text files, and contains no project management functions. It contains the
following items:

Undo Undo the most recent edit operation

Redo Redo an operation that was cancelled with Undo

Cut Delete text and place it in the clipboard

Copy Copy text to the clipboard

Paste Copy text from the clipboard

Delete Delete text without placing it in the clipboard

Select All Select the whole text file

Find... Search for text

Find Next Find the next occurrence of the most recent search text
Replace... Search and replace

5.6.3 ZCPDE Project Menu

This menu contains the project management functions:

New Create a new project

Open... Open an existing project

Reopen » Open a recently opened project

Save As... Save the current project under a different name
Options Set the Project Options:

Start Terminal »
Start BasicCard »
Start

Compile Terminal »
Compile BasicCard »
Compile Again
Compile All

Terminal Programs The project’s Terminal Progam Files
BasicCard Programs The project’s BasicCard Progam Files
Start Configuration ~ The programs run by the Start item

Start a Terminal Program in the ZCMDTERM debugger
Start a BasicCard Program in the ZCMDCARD debugger
Start all programs in the current project’s Start Configuration

Compile a Terminal Program from the current project
Compile a BasicCard Program from the current project
Re-compile the most recently compiled program
Compile all the programs in the current project

71

5. Support Software

5.6.4 ZCPDE Options Menu

This menu sets the global options for the ZCPDE program. It contains a single item, which brings up a
multi-page dialog box:

Environment Editor Set tab width and font

Compiler Set Include Path, in Windows Registry variable
“Software\ZeitControl\BasicCardPro\ZCINC”

CardReader Set default ComPort, in Windows Registry variable
“Software\ZeitControl\BasicCardPro\ZCPORT”

5.6.5 ZCPDE Help Menu

This menu contains the following items:

BasicCard Manual Open this manual on-line
Open Example » Open one of the BasicCard example projects
About... Display software version number and product information

72

5.7 The ZCMDTERM Terminal Program Debugger

5.7 The ZCMDTERM Terminal Program Debugger

j The ZCMDTERM ZeitControl Terminal Program Debugger is a source-level symbolic
E debugger for Terminal programs. It can communicate with one or more ZCMDCARD

debuggers, and one or more physical card readers. It uses ZeitControl Terminal Program
files, with .ZCT extension, to store the information that it needs to compile and run

Terminal Programs.

57.1 ZCMDTERM File Menu

The File menu contains the following items:

New Create a new Terminal Program File

Open... Open an existing Terminal Program File

Save Save the current Terminal Program File

Save As... Save the current Terminal Program File under a new name

Edit... Edit a text file in the ZCPDE Professional Development Environment
Edit Source » Edit a source file from the current Terminal Program

Compile... Short cut to the Options|Terminal Program...|Compiler dialog box
Exit Exit the ZCMDTERM program

5.7.2 ZCMDTERM View Menu
The View menu contains the following items:

Source File » Display a selected source file in the debugger window
Procedure » Display a selected ZC-Basic procedure in the debugger window

P-Code Display P-Code instructions and registers in the debugger window
Watches Open the Watches window for monitoring program data
1/0 Open the 1/O window for monitoring 1/0 between Terminal and BasicCard

5.7.3 ZCMDTERM Run Menu

The Run menu contains the following items:

Run Start execution from the current PC
Step Over Execute one instruction, stepping over procedure calls
Step Into Execute one instruction, stepping into procedure calls

Step Return Execute until the end of the current procedure
Step to Card Run until an instruction in a BasicCard program is reached
Step to Cursor Run to the current cursor position

Restart Restart the Terminal Program
Pause Interrupt execution
Evaluate... Evaluate an expression

Most of these items are also available as short-cut buttons in the debugger window, unless the
Options|Hide Buttons menu item was selected.

574 ZCMDTERM Options Menu

Terminal Program... Set the Terminal Program options:
Compiler Source file, include paths, etc.
Run-time COM port, log file, command-line parameters

Card Readers See 5.4.3 ComPort in the ZCMDTERM
Terminal Program Debugger

COM Port... Short cut to Terminal Program...|Run-time dialog box
Show/Hide Buttons Show or hide the Run menu short-cut buttons

73

5. Support Software

575 ZCMDTERM Help Menu
This menu contains the following items:

BasicCard Manual Open this manual on-line
About... Display software version number and product information

74

5.8 The ZCMDCARD BasicCard Program Debugger

5.8 The ZCMDCARD BasicCard Program Debugger

debugger for BasicCard programs. It waits for commands from the Terminal debugger
ZCMDTERM, executes the commands under the control of the user, and sends its
responses back to the Terminal debugger. It can also download BasicCard programs to a
real BasicCard. It uses ZeitControl BasicCard Program files, with .ZCC extension, to store
the information that it needs to compile and run BasicCard Programs.

The ZCMDCARD ZeitControl BasicCard Program Debugger is a source-level symbolic
]

5.8.1 ZCMDCARD File Menu

The File menu contains the following items:

New Create a new BasicCard Program File

Open... Open an existing BasicCard Program File

Save Save the current BasicCard Program File

Save As... Save the current BasicCard Program File under a new name

Edit... Edit a text file in the ZCPDE Professional Development Environment
Edit Source » Edit a source file from the current BasicCard Program

Compile... Short cut to the Options|BasicCard Program...|Compiler dialog box
Exit Exit the ZCMDCARD program

5.8.2 ZCMDCARD View Menu
The View menu contains the following items:

Source File » Display a selected source file in the debugger window
Procedure » Display a selected ZC-Basic procedure in the debugger window

P-Code Display P-Code instructions and registers in the debugger window
Watches Open the Watches window for monitoring program data

1/0 Open the 1/O window for monitoring 1/0 between Terminal and BasicCard
File System View files and directories in the BasicCard

5.8.3 ZCMDCARD Run Menu

The Run menu contains the following items:

Run Start execution from the current PC

Step Over Execute one instruction, stepping over procedure calls
Step Into Execute one instruction, stepping into procedure calls
Step Return Execute until the end of the current procedure

Step to Terminal Run until an instruction in the Terminal program is reached
Step to Cursor Run to the current cursor position

Pause Interrupt execution

Evaluate... Evaluate an expression
Most of these items are also available as short-cut buttons in the debugger window, unless the
Options|Hide Buttons menu item was selected.

5.8.4 ZCMDCARD Card Menu

Insert in Virtual Reader » Attach ZCMDCARD to a Virtual Card Reader COM Port
Remove from Virtual Reader Release the Virtual Card Reader COM Port
Download to Real Card... Download the BasicCard program to a real BasicCard

75

5. Support Software

5.8.5 ZCMDCARD Options Menu

BasicCard Program... Set the BasicCard Program options:
Compiler Source file, card type, include paths, etc.
COM Ports Virtual and Physical Card Reader COM Ports
Show/Hide Buttons Show or hide the Run menu short-cut buttons

5.8.6 ZCMDCARD Help Menu
This menu contains the following items:

BasicCard Manual Open this manual on-line
About... Display software version number and product information

76

5.9 Command-Line Software

5.9 Command-Line Software

The following programs are run from a Win32 command-line console (or “DOS box”):
¢ ZCMBASIC, a compiler for the ZC-Basic programming language.

e ZCMSIM, a P-Code interpreter that runs compiled ZC-Basic programs. ZCMSIM runs a
Terminal program, and can run BasicCard programs simultaneously in simulated BasicCards, or
communicate via a card reader with genuine BasicCards.

« BCLOAD, for downloading P-Code to the BasicCard.
« KEYGEN, a program that generates random keys and primitive polynomials for use in encryption.
« BCKEYS, for downloading keys to the Compact and Enhanced BasicCards.

Each of these programs takes a filename as its main parameter. Other command-line parameters begin
with ‘=’ (minus sign) followed by one or more option letters, sometimes followed by data. No spaces
are allowed between the minus sign and the option letters, or between the option letters and the data.
Option letters may be upper or lower case.

ZCMBASIC, ZCMSIM, and BCLOAD support parameter input files: if any command-line parameter
has the form ‘@filename’, subsequent parameters are read from the given file, one line at a time.
Empty lines, and lines whose first non-space character is a single quote, are ignored. To specify a
parameter that begins with the ‘@’ character, simply repeat the ‘@’ character; for example, “@@X” is
passed to the program as “@X”, and is not treated as a parameter file. This feature is also active for
executable files created by the ZCMBASIC compiler.

Notes:

e Three of these programs — ZCMSIM, BCLOAD, and BCKEYS - communicate with a card
reader, via a serial port or the PC/SC driver. The default value of the COM port is taken from the
environment variable ZCPORT; or the Windows Registry variable
“HKEY_CURRENT_USER\Software\ZeitControl\BasicCardPro\ZCINC” if this environment
variable does not exist; or 1 if neither of these variables exists. (To specify PC/SC reader number
n, set the COM port to 100+n.)

« If a filename parameter contains spaces, it must be enclosed in quotation marks on the command
line. (For example: ZCMBASIC -O "Hello World" compiles the file “Hell o
Wor | d. BAS” and creates the file “Hel | 0 Wor | d. | M3’.)

77

5. Support Software

5.9.1 The ZC-Basic Compiler ZCMBASIC.EXE

The compiler ZCMBASIC.EXE takes ZC-Basic source code as input, and produces P-Code as output.
It compiles the entire program in one pass; there is no linking stage. To run the compiler:

ZCMBASIC [param [param...]] input-file [param[param...]]

input-file

param

78

The ZC-Basic source file. If no file extension is supplied, input-file.bas is assumed.

One of the following:

—Ctype

—Dsymbol[=val]

—E[exe-file]

—lIpath

—Ol[image-file]

Compiles code for the given virtual machine type:

—CT or-CO Terminal (the default).

—CC1lor-C1.1 Compact BasicCard version ZC1.1

—CEn or -C3.n Series 3 Enhanced BasicCard version ZC3.n

—CFfilename Professional BasicCard with Configuration File filename.
If no file extension is supplied, filename.zcf is assumed.

See Sections 1.6-1.8 for information about the different BasicCard types.

Defines symbol as if the source program contained the statement
Const symbol=val. The val parameter must be an integer or a string;
arithmetic expressions are not allowed. If val is absent, it defaults to 1.

Creates an executable file that will run in a DOS box under Windows® 98.
If no file extension is supplied, exe-file.exe is created. If exe-file is absent,
input-file.exe is created.

Adds path to the list of directories to search for #Include files (see 3.3.1
Source File Inclusion). A closing backslash in path is optional. Multiple
paths may be supplied, separated by semicolons.

Generates an image file. If no file extension is supplied, image-file.img is
created. If image-file is absent, input-file.img is created.

The image file is described in 10.1 ZeitControl Image File Format.

—ODJdebug-file] Generates a debug information file. If no file extension is supplied, debug-

—OL[list-file]

—OM[map-file]

—OE[error-file]

—Sstack-size

—Sstate

file.dbg is created. If debug-file is absent, input-file.dbg is created.
The debug file is described in 10.2 ZeitControl Debug File Format.

Generates a list file. If no file extension is supplied, list-file.Ist is created.
If list-file is absent, input-file.Ist is created.

The list file is described in 10.3 List File Format.

Generates a map file. If no file extension is supplied, map-file.map is
created. If map-file is absent, input-file.map is created.

The map file is described in 10.4 Map File Format.

Writes all error messages to a file. If error-file already exists, it is deleted
before compilation begins. If no file extension is supplied, error-file.err is
created. If error-file is absent, input-file.err is created.

Sets the size of the P-Code stack. Normally the compiler can work out for
itself how big the stack has to be. But if the program contains recursive
procedure calls or recursive GoSub calls, the compiler must guess the
stack size, because it can’t know how deep the recursion will go. You can
override this guess with —Sstack-size (or with the #Stack pre-processor
directive — see 3.3.8 Stack Size).

Switches the card into the specified state after the P-Code is downloaded.
See also 3.3.6 Card State. Only the first letter of state is significant:

First letter of state: ‘L’ ‘P’ ‘T ‘R’
New card state: | LOAD | PERS TEST RUN

5.9 Command-Line Software

5.9.2 The P-Code Interpreter ZCMSIM.EXE

The program ZCMSIM.EXE loads and runs a compiled ZC-Basic Terminal program from a
ZeitControl Image File (or Debug File). It can also simultaneously run one or more BasicCard
programs in simulated BasicCards, or it can communicate with real BasicCards via physical card
readers. To run the ZCMSIM program:

ZCMSIM [param [param...]] image-file [P1$[P2$...]]

Parameters before the image-file name are processed by the ZCMSIM program, as described below.
Parameters after the image-file name (P1$, P2$,...) are passed to the Terminal program via the pre-
defined String array Param$(1 To nParams) — see 3.21.10 Pre-Defined Variables.

image-file The image file output by the compiler. If no file extension is supplied, image-file.img is
assumed. (So if this is a Debug File, the .dbg extension must be present.)

param One of the following:

—Ccard-file The image file of a BasicCard program. If this parameter is present,
ZCMSIM simulates a BasicCard in the PC.

—L[log-file] Generates a log file, containing the commands sent to the card and their
responses. If no file extension is supplied, log-file.log is created. If log-
file is absent, image-file.log is created.

—Pcom-port The number of the COM port that the card reader is attached to. (This
can also be set from within the Terminal program itself, via the
ComPort pre-defined variable.) This parameter may appear more than
once — see Note below.

-W Write the EEPROM data back to the image file(s) when the Terminal
program exits. The Terminal program EEPROM data is written back to
image-file. If the —C parameter is present on the command line, the
EEPROM data in the simulated BasicCard program is written back to
card-file when the Terminal program exits.

-WT[new-file] Write the Terminal program EEPROM data back to new-file when the
Terminal program exits. If no file extension is supplied, new-file.img is
created. If new-file is absent, the EEPROM data is written back to
image-file.

-WC|[new-file] Write the EEPROM data in the simulated BasicCard program back to
new-file when the Terminal program exits. If no file extension is
supplied, new-file.img is created. If new-file is absent, the EEPROM data
is written back to card-file.

P13, P23,... These parameters are separated by spaces or tabs. To pass a space or tab in a parameter,
enclose it in quotation marks; to pass a quotation mark in a parameter, precede it with a
backslash. (Backslashes not followed by quotation marks are passed as is.)

Note: If multiple —P parameters are present:
e —Cand-WC apply to the card on the most recently specified COM port;
e the ComPort variable is set from the last —P parameter.

For instance, to communicate with a simulated BasicCard program on COM1 and a real BasicCard on
COM2:

ZCMSIM -P1 —Ccard-file —P2 image-file

79

5. Support Software

5.9.3 The Card Loader BCLOAD.EXE
The program BCLOAD.EXE downloads P-Code and data to the BasicCard.

The ZC-Basic compiler produces a ZeitControl Image File as output, containing P-Code and data in
binary form. To run the BCLOAD program:

BCLOAD [param [param...]] image-file [param [param...]]

image-file The image file output by the compiler. If no file extension is supplied, image-file.img is
assumed. (A debug file is also allowed here; in this case. the .dbg extension must be

supplied.)
param One of the following:
-D Displays the commands on the screen as they are executed.
—L[log-file] Generates a log file, containing the commands sent to the card and their

responses. If no file extension is supplied, log-file.log is created. If log-file
is absent, image-file.log is created.

—EJerror-file] ~ Writes all error messages to a file. If error-file already exists, it is deleted
before the download begins. (So if error-file exists after the program exits,
it means that an error occurred.) If no file extension is supplied,
error-file.err is created. If error-file is absent, image-file.err is created.

—Pcom-port The number of the COM port that the card reader is attached to.

—Sstate Switches the card into the specified state after the download. Only the first
letter of state is significant:

First letter of state: ‘L’ ‘P’ ‘T ‘R’
New card state: | LOAD | PERS TEST RUN

Note: The ZC-Basic source code for this program is supplied on the distributon disk, in the
Basi cCar dPr o\ Sour ce\ BCLoad directory. BCLOAD.EXE was compiled with the
COMPILE.BAT command file in the same directory.

80

5.9 Command-Line Software

5.9.4 The Key Generator KEYGEN.EXE

The program KEYGEN.EXE generates cryptographic keys and primitive polynomials for the
encryption and decryption of commands and responses. It creates a ZC-basic source file containing
Declare Key and/or Declare Polynomial statements. This file can be #Included in the source code of
the Terminal and BasicCard programs, or it can be downloaded separately to a Compact or Enhanced
BasicCard using the BCKEYS Key Loader program. The program prompts the user to press keys on
the keyboard at random; the cryptographic keys and polynomials are generated from this user input,
after hashing with the MD5 algorithm (see R.L. Rivest, “The MD5 Message Digest Algorithm”, RSA
Data Security, Inc., April 1992). To run the KEYGEN program:

KEYGEN [param [param...]] key-file [param [param...]]

key-file ~ The name of the key file to create or update. If no file extension is supplied, key-file.bas is
assumed.

param One of the following:

—Kkey[(len[, count])] key is a key number between 0 and 255; len is a key length between 1
and 255; and count is the initial value of the error counter for the key,
between 0 and 15 (see 3.17.2 Key Declaration). If len is absent, it
defaults to 8; if count is absent, the error counter for the key is
disabled. You can create multiple keys by specifying the -K
parameter more than once.

-P Generates two random primitive polynomials for use by the SG-
LFSR encryption algorithms.

-Q Generates random numbers quickly, without requiring keyboard
input from the user.

Note: This feature is provided for convenience of use during the
development of an application. Keys and polynomials generated with
the —Q parameter should not be used in a released application, as this
might compromise the security of the encryption algorithms.

-U key-file is updated, rather than being created from scratch — existing
keys and polynomials in key-file are preserved, unless overridden by
-Kor -P.

Note: The generation of cryptographic keys is a delicate business. The security of the encryption
algorithms used by the BasicCard relies on the secrecy of the keys and polynomials generated by the
KEYGEN program, which in turn relies on the quality of the random number generator. To foster
confidence in the security of our product, we provide the C++ source code of the KEYGEN program
in the directory Basi cCar dPr o\ Sour ce\ Keygen.

81

5. Support Software

5.9.5 The Key Loader BCKEYS.EXE

The program BCKEYS.EXE downloads cryptographic keys and/or polynomials to a Compact or
Enhanced BasicCard. The following conditions apply to the downloading of keys and polynomials:

e The BasicCard must be in state LOAD (or switchable to state LOAD);
e The BasicCard must already have been loaded with P-Code and data by the BCLOAD program;

e All keys that you want to download must have been declared in the ZC-Basic source code, with
Declare Key statements.

The program takes a key file as input. This is a ZC-Basic source file that contains only Declare Key
and/or Declare Polynomials statements. The KEYGEN program can generate key files for you — see
5.9.4 The Key Generator KEYGEN.EXE.

To run the BCKEYS program:
BCKEYS [param [param...]] key-file [param [param...]]

key-file The key file, as described above. If no file extension is supplied, key-file.bas is assumed.

param One of the following:

—K[key]

—L[log-file]

-D
—Pcom-port

—Sstate

82

key is a key number between 0 and 255. You can download multiple keys
by specifying this parameter more than once. If key is absent, all the keys
in key-file are downloaded.

Downloads the polynomials to the BasicCard.

If neither —K nor —P appears on the command line, then all the keys and
polynomials in key-file are downloaded.

Generates a log file, containing the commands sent to the card and their
responses. If no file extension is supplied, log-file.log is created. If log-file
is absent, key-file.log is created.

Displays the commands on the screen as they are executed.
The number of the COM port that the card reader is attached to.

Switches the card into the specified state after the download. Only the first
letter of state is significant:

First letter of state: ‘L’ ‘T ‘R’
New card state: | LOAD | TEST RUN

Note: State PERS is not available in Compact or Enhanced BasicCards, so
it is not allowed here.

6. Plug-In Libraries

In Terminal programs and Enhanced and Professional BasicCard programs, the functionality of the ZC-
Basic language can be extended using ZeitControl Plug-In Libraries. For each Plug-In Library, we
provide a definition file library.def. For the Enhanced BasicCard, a ZeitControl Library File library.lib
is also provided. To use a library:

#Include library.def
This loads the library, and declares its procedures and data.

The following ZeitControl Plug-In Libraries are currently available:

Enhanced Professional
Name Description Terminal BasicCard BasicCard
RSA RSA Public-Key Cryptography
AES Advanced Encryption Standard \/

EC-167 | 167-bit Elliptic Curve Cryptography

v

EC-161 | 161-bit Elliptic Curve Cryptography

NN

v

SHA-1 Secure Hash Algorithm, revision 1

v

IDEA International Data Encryption Algorithm

MATH Mathematical functions

ANANANANANANANAN

v v

MISC Miscellaneous procedures

These libraries are supplied with the distribution kit, in the Basi cCar dPr o\ Li b directory. The
program LIBVER, in the same directory, displays the name and version number of a ZeitControl Plug-
In Library file.

In the descriptions of the individual libraries, error codes may be defined. These error codes are
signalled via the LibError variable. The ZCMBASIC compiler automatically declares this variable if
any libraries are included that can return an error code. LibError contains the most recent error code
signalled by a library procedure. A library procedure never sets LibError back to zero; if you want to
continue after detecting a library error, you should set LibError to zero yourself.

A library error code is always a 2-byte value of the form &H4XXX, with the high nibble equal to 4.
Therefore, unless you are using the T=0 protocol (and at the cost of strict ISO compatibility), you can
return LibError in the SW1SW2 status word if a library error is signalled in a BasicCard program. For
example:

Sub CheckLi bError ()
If LibError O Then Exit Sub
SWSW = Li bError
Li bError = 0 ' Reset LibError for the next comand
Exit
End Sub

6.1 RSA: The Rivest-Shamir-Adleman Library

The RSA library implements Rivest-Shamir-Adleman public-key cryptography. It is based on the
document PKCS #1 v2.0: RSA Cryptography Standard from RSA Data Security, Inc. The following
operations are supported:

« on-card private/public key pair generation, with public key length up to 1024 bits;
e encryption and decryption;
e digital signature generation and verification.

83

6. Plug-In Libraries

6.1.1 Overview

In the RSA Plug-In Library, a private key consists of three numbers (p, g, €), where p and g are prime
numbers and e is a number relatively prime to p-1 and g-1. The corresponding public key consists of
the two numbers (n, €), where n is the product of p and q.

The private exponent d is the inverse of e modulo (p-1)(g-1). Mathematically, this means that for any
number m, m* is equal to m modulo n. If Alice wants to send a message m to Bob that only Bob can
decrypt, Alice computes ¢ = m® modulo n using Bob’s public key (ng, eg). Bob can then recover m
modulo n (and therefore m, if m is less than n), as follows:

e using p and g, compute the private exponent d;
« compute m = c® modulo n.

Similarly, if Alice wants to sign a message m, she computes the private exponent d using her own
private key (pa, a. €a), and then computes the signature s = m® modulo n. Anyone who has Alice’s
public key (na, ea) can verify that s° = m modulo n; and therefore that whoever created the signature s
had knowledge of Alice’s private key (and was therefore presumably Alice herself).

The security of the RSA system rests on the difficulty of recovering p and q if only their product n is
known: the factorisation problem. If | know n and e, but I don’t know p and q, then | can’t calculate the
private exponent d. The difficulty of the factorisation problem depends on the size of n. Current state-
of-the-art factoring methods can factor a 512-bit public key in a matter of months; 768-bit public keys
are expected to resist factorisation for a few more years; and 1024-bit keys are expected to be secure
for the foreseeable future.

The RSA Plug-In Library represents large integers as ZC-Basic strings; the first byte in the string (with
subscript 1) is the most significant byte.

To load the RSA library:

#Include RSA.DEF

The file RSA.DEF is supplied with the distribution kit, in the Basi cCar dPr o\ Li b directory.
The following procedures are provided:

Function RsaPseudoPrime (x$, nRounds)

Sub RsaGenerateKey (nBits, eBits, p$, q$, e$)
Function RsaPublicKey (p$, g$) As String

Sub RsaEncrypt (Mess$, n$, e$)

Sub RsaDecrypt (Mess$, p$, q$, e$)

Sub RsaPKCS1Sign (Hash$, p$, g$, e$, Sig$)
Function RsaPKCS1Verify (Hash$, n$, e$, Sig$)
Sub RsaPKCS1Encrypt (Mess$, n$, e$)
Function RsaPKCS1Decrypt (Mess$, p$, g$, e$)
Sub RsaOAEPEnNcrypt (Mess$, EP$, n$, e$)
Function RsaOAEPDecrypt (Mess$, EP$, p$, q$, e3)

These procedures are described in the following sections.

6.1.2 Key Generation
To generate a private key:
Call RsaGenerateKey (nBits, eBits, p$, q$, e$)

nBits Length of public key n. Set nBits = 1024 for maximum security. In a BasicCard
program, nBits must be a multiple of 16, with 496 <= nBits <= 1024. In a Terminal
program, nBits can be any number between 16 and 4064.

eBits Length of public exponent e. In a BasicCard program, eBits must be a multiple of 8,
with 8 <= eBits <= 32. In a Terminal program, eBits can be any number between 8
and 2032. If nBits is 1024, we recommend eBits = 32.

p$, g%, e$ The private key (p, g, €).

84

6.1 RSA: The Rivest-Shamir-Adleman Library

RsaGenerateKey uses the Rabin-Miller primality test, as described in IEEE P1363: Standard
Specifications for Public Key Cryptography. The number of Rabin-Miller rounds depends on nBits;
it is chosen so that the probability of a given factor being composite is less than 1 in 2'%.

The following error codes are returned in the LibError variable:

RsaKeyTooShort In a BasicCard program: nBits < 496.
In a Terminal program: nBits < 16.

RsaKeyToolLong In a BasicCard program: nBits > 1024.
In a Terminal program: nBits > 4064.

RsaBadProcParams In a BasicCard program: nBits is not a multiple of 16, or eBits is not a
multiple of 8, or eBits < 8, or eBits > 32.
In a Terminal program: eBits < 8, or eBits > 2032.

To calculate the public key modulus n from p and q:
n$ = RsaPublicKey (p$, g$)
The following error code is returned in the LibError variable:

RsaKeyToolLong In a BasicCard program: p$ or g$ longer than 512 bits.
In a Terminal program: n$ longer than 2032 bits.

If you want to generate your own random numbers p$ and g$, you can test them for primality with:

IsPrime = RsaPseudoPrime (x$, nRounds)

x$ Number to test for primality.
nRounds Number of rounds of Rabin-Miller primality test to run.
IsPrime True if x$ survives nRounds rounds of the Rabin-Miller primality test.

6.1.3 Cryptographic Primitives
Four cryptographic primitives are defined in PKCS #1 v2.0: RSA Cryptography Standard:

RSAEP ((n,), m) RSA Encryption Primitive: ¢ = m® modulo n
RSADP ((n, d), c) RSA Decryption Primitive: m = ¢ modulo n
RSASP1 ((n, d), ¢) RSA Signature Primitive 1: s = m® modulo n
RSAVP1 ((n, e), s) RSA Verification Primitive 1: m = s® modulo n

RSAEP and RSAVP1 are functionally identical, as are RSADP and RSASP1. The RSA Plug-In
Library provides two procedures.

Cryptographic primitives RSAEP and RSAVP1

Call RsaEncrypt (Mess$, n$, e$)

This procedure computes Mess$ ®® modulo n$, returning the result in Mess$.

In a BasicCard program, the following error codes are returned in the LibError variable:

RsaKeyTooShort n$ is shorter than 248 bits
RsaKeyToolLong n$ is longer than 1024 bits
RsaBadProcParams Mess$ is longer than 1024 bits
Cryptographic primitives RSADP and RSASP1

Call RsaDecrypt (Mess$, p$, q$, e3)

This procedure first computes d$ = inverse of e$ modulo (p$-1)(g$-1). Then it computes Mess$ os
modulo p$ g$, returning the result in Mess$.

In a BasicCard program, the following error codes are returned in the LibError variable:

RsaKeyTooShort p$ or g$ is shorter than 248 bits
RsaKeyToolLong p$ or g$ is longer than 512 bits
RsaBadProcParams Mess$ is longer than 1024 bits

85

6. Plug-In Libraries

6.1.4 Signature Scheme With Appendix

As described in PKCS #1 v2.0: RSA Cryptography Standard, a signature scheme with appendix
consists of a signature generation operation and a signature verification operation. One signature
scheme with appendix is defined: RSASSA-PKCS1-vl 5.

The RSA Plug-In Library uses SHA-1 as the hash function for the signature scheme. 6.5 SHA-1: The
Secure Hash Algorithm Library describes how to calculate 20-byte hash values using SHA-1.

To generate a signature using the RSASSA-PKCS1-v1_5-SIGN signature generation operation:
Call RsaPKCS1Sign (Hash$, p$, g$, e$, Sig$)

Hash$ The 20-byte SHA-1 hash of the data to be signed.
p$, g%, e$ The private key (p, q,).
Sig$ The signature calculated by RsaPKCS1Sign. It has the same size as n$ (where n =

pq is the public-key modulus).
The following error codes are returned in the LibError variable:

RsaKeyTooShort n$ is shorter than 376 bits
RsaBadProcParams Hash$ is not 20 bytes long

To verify a signature using the RSASSA-PKCS1-v1 5-VERIFY signature verification operation;
SignatureValid = RsaPKCS1Verify (Hash$, n$, e$, Sig$)

Hash$ The 20-byte SHA-1 hash of the data that was signed.
n$, e$ The private key (n, e).
Sig$ The signature to be verified.

SignatureValid True if the signature is valid.
The following error codes are returned in the LibError variable:

RsaKeyTooShort n$ is shorter than 376 bits
RsaBadProcParams Hash$ is not 20 bytes long

6.1.5 Encryption Schemes

As described in PKCS #1 v2.0: RSA Cryptography Standard, an encryption scheme consists of an
encryption operation and a decryption operation. Two encryption schemes are defined: RSAES-
PKCS1-v1_5 and RSAES-OAEP. The second of these is cryptographically more robust, but is bigger
and slower; it is currently only available in Terminal programs.

The RSA Plug-In Library uses SHA-1 as the hash function for the encryption schemes. 6.5 SHA-1:
The Secure Hash Algorithm Library describes how to calculate 20-byte hash values using SHA-1.
The RSAES- PKCS1-v1_5 Encryption Scheme

To encrypt a message using the RSAES-PKCS1-v1_5-ENCRYPT encryption operation:

Call RsaPKCS1Encrypt (Mess$, n$, e$)

Mess$ The message to be encrypted. It must be at least 11 bytes shorter than n$. The
encrypted message is returned in Mess$.
n$, e$ The public key (n, e).

The following error code is returned in the LibError variable:

RsaBadProcParams Mess$ is not at least 11 bytes shorter than n$.

To decrypt a message using the RSAES-PKCS1-v1 5-DECRYPT decryption operation:
MessageValid = RsaPKCS1Decrypt (Mess$, p$, q$, e$)

Mess$ The message to be decrypted. It must be the same length as n$ (where n = pq is the
public-key modulus). The decrypted message is returned in Mess$.
p$, g%, e$ The private key (p, g, €).

MessageValid True if Mess$ was successfully decrypted.

86

6.2 AES: The Advanced Encryption Standard Library

The following error code is returned in the LibError variable:

RsaBadProcParams Mess$ is not the same size as n$.

The RSAES-OAEP Encryption Scheme

The RSAES-OAEP scheme accepts encoding parameters as input. The same encoding parameters
must be specified for encryption and decryption. The encoding parameters can be any arbitrary string,
and need not be secret; if in doubt, use the empty string “”.

To encrypt a message using the RSAES-OAEP-ENCRYPT operation (Terminal programs only):
Call RsaOAEPENcrypt (Mess$, EP$, n$, e$)

Mess$ The message to be encrypted. It must be at least 42 bytes shorter than n$. The
encrypted message is returned in Mess$.

EP$ The encoding parameters. Any string is accepted.

n$, e$ The public key (n, e).

The following error code is returned in the LibError variable:

RsaBadProcParams Mess$ is not at least 42 bytes shorter than n$.

To decrypt a message using the RSAES-OAEP-DECRYPT operation (Terminal programs only):
MessageValid = RsaOAEPDecrypt (Mess$, EP$, p$, q$, e$)

Mess$ The message to be decrypted. It must be the same length as n$ (where n = pq is the
public-key modulus). The decrypted message is returned in Mess$.

EP$ The encoding parameters. They must match the EP$ parameter to the
RsaOAEPEnNcrypt procedure.

p$, g3, e$ The private key (p, g, €).

MessageValid True if Mess$ was successfully decrypted.
The following error code is returned in the LibError variable:

RsaBadProcParams Mess$ is not the same size as n$.

6.2 AES: The Advanced Encryption Standard Library

This library implements the Advanced Encryption Standard defined in Federal Information Processing
Standard FIPS 197. This standard is available on the Internet, at http://crsc.nist.gov/encryption/aes/.
AES uses the Rijndael algorithm as its cryptographic primitive. The Standard specifies three permitted
key lengths: 128 bits, 192 bits, and 256 bits. All three key lengths are available to Terminal programs.
At the time of writing, Professional BasicCard ZC5.5 supports all three key lengths; other versions of
the BasicCard are restricted to 128-bit keys.

To load this library:

#Include AES.DEF

The file AES.DEF is supplied with the distribution kit, in the Basi cCar dPr o\ Li b directory.
The AES library consists of a single procedure:

Function AES (Type%, Key$, Block$) As String

This function encrypts or decrypts the 16-byte Block$ with the given Key$, acording to the Type%
parameter:
Type%
128 Encryption with 128-bit key. Len (Key$) must be >= 16.
192 Encryption with 192-bit key. Len (Key$) must be >= 24.
256 Encryption with 256-bit key. Len (Key$) must be >= 32.

-128 Decryption with 128-bit key. Len (Key$) must be >= 16.
-192 Decryption with 192-bit key. Len (Key$) must be >= 24,
-256 Decryption with 256-bit key. Len (Key$) must be >= 32,

87

http://crsc.nist.gov/encryption/aes/

6. Plug-In Libraries

The return value of the function is the encrypted or decrypted Block$. If Block$ is shorter than 16
bytes, it is padded with zeroes before encryption/decryption; if it is longer than 16 bytes, it is truncated
before encryption/decryption. In any case, the contents of the original Block$ are unchanged.

The following error codes are returned in the LibError variable:

AesBadType Type% is not +128, £192, or +256.
AesUnsupportedType Type% is £192 or £256, but the key length is not supported.
AesKeyTooShort Key$ is shorter than 16/24/32 bytes.

6.3 EC-167: The 167-Bit Elliptic Curve Library

The EC-167 library implements Elliptic Curve Cryptography over the field GF(2'®"), with 167-bit
keys. This library is available for Terminal programs and the Series 5 Professional BasicCard; the
Enhanced BasicCard uses the EC-161 library. See 6.3.1 Field Exponents for a discussion of the
differences between the two libraries.

The following operations are supported:

e private/public key pair generation;
« session key generation;

« digital signature generation;

« digital signature verification.

This implementation follows the standard IEEE P1363: Standard Specifications for Public Key
Cryptography. Section 6.3.10 Conformance Specification specifies the methods used in library EC—
167, using the terminology of IEEE P1363.

A simple Elliptic Curve application can be found in the directory Basi cCar dPr o\ Exanpl es\ EC.

6.3.1 Field Exponents

Two Elliptic Curve libraries are available for the BasicCard: EC-167 for the Series 5 Professional
BasicCard, and EC-161 for the Enhanced BasicCard. EC-167 implements Elliptic Curve
Cryptography over the field GF(2'®"), with 167-bit keys; EC-161 implements Elliptic Curve
Cryptography over the field GF(2'°®), with 161-bit keys.

The important difference between these two libraries is not the key length (167 vs. 161), but the field
exponent (167 vs. 168). This section explains the significance of the field exponent.

In a Smart Card implementation of Elliptic Curve Cryptography, arithmetic over the underlying field
must be made as fast as possible. Certain field exponents allow ingenious short cuts, speeding up the
arithmetic significantly. One such exponent is 168, as used by EC-161. Our implementation achieves a
speed-up factor of five or six; without this speed-up, Elliptic Curve Cryptography in the Enhanced
BasicCard would be too slow for practical use.

However, the latest consensus among experts is that the field exponent should be a prime number, such
as 167; certain composite exponents have been shown to be cryptographically weak, and the feeling is
that all composite exponents (for example, 168) should therefore be avoided.

The processor in the Series 5 Professional BasicCard is twelve times as fast as the Enhanced
BasicCard. So the EC-167 library in the Professional BasicCard is twice as fast as the EC-161 library
in the Enhanced BasicCard, although it is doing five or six times as much work. This lets us offer two
Elliptic Curve Cryptography solutions:

« EC-167 for applications that require high security over an extended period of time;
« EC-161 for applications that are short-lived, or have only low-value information to protect.
6.3.2 Elliptic Curve Cryptography

Elliptic Curve Cryptography is a branch of Public Key Cryptography that is especially suitable for
Smart Card implementation, for (at least) two reasons:

88

6.3 EC-167: The 167-Bit Elliptic Curve Library

< the generation of private/public key pairs is simple enough to be implemented in a Smart Card;
e itrequires much smaller key sizes than other well-known methods for the same level of security.

The library EC-167 uses points with 167-bit prime order; this is currently considered equivalent in
security to 1024-bit RSA.

To load the Elliptic Curve library:
#Include EC-167.DEF
The file EC-167.DEF is supplied with the distribution kit, in the Basi cCar dPr o\ Li b directory.

6.3.3 Setting the Elliptic Curve Parameters

An Elliptic Curve is defined by its EC Domain Parameters; five suitable Elliptic Curves are supplied in
the directory Basi cCar dPr o\ Li b\ Cur ves. Choose one of these for your application. Twenty
Curve Definition Files EC167-1.16 through EC167-5.128 contain curve definitions in ZC-Basic, for
inclusion in a source program. File EC-167.BIN contains the binary data for all five curves, for run-
time loading in a Terminal program.

To specify an Elliptic Curve in a Professional BasicCard program:
#Include Curves\EC167-X.N

where X is a number from 1 to 5, and N is a power of 2 between 16 and 128. In a BasicCard program,
the curve must be chosen at compile time; it can’t be re-loaded at run-time. This Curve Definition File
loads N pre-computed Elliptic Curve points into EEPROM to speed up Elliptic Curve operations. The
more pre-computed points, the faster the card, but the less free EEPROM space. If EEPROM space is
at a premium, use 16 pre-computed points; if speed is the most important factor, use 128 pre-computed
points.

In the Terminal program, an Elliptic Curve must be explicitly loaded using EC167SetCurve. There are
three ways of doing this:

e If you know in advance which curve to use, you can include its definition file. For example:

#l ncl ude EC167-3. 16
Cal | EC167Set Curve (ECl67Parans)

But note that only one such definition file is allowed in a program.

e If the card has a suitable command, you can load the curve from the card. For example:

Private Curve As ECl167Donai nPar ans
Call GetCurve (Curve) : Call CheckSWsSwe()
Call EC167Set Curve (Curve)

See Basi cCar dPr o\ Exanpl es\ ECfor an example of this.

e You can read the curve from the binary file EC-167.BIN. For example:

Private Curve As ECl167Donai nPar ans

Qpen "EC-167. BIN' For Random As #1 Len=64
Get #1, 3, Curve ' Read Elliptic Curve #3
C ose #1

Call CheckFil eError()

Call EC167Set Curve (Curve)

If the EC domain parameters are invalid, procedure EC167SetCurve returns error code
EC167BadCurveParams in variable LibError.

In the Terminal program, you must call EC761SetCurve before you call any other procedures from the
EC-167 library. If not, error code EC167CurveNotlnitialised will be returned in variable LibError.

6.3.4 Key Generation
To generate a public/private key pair:
Call EC167GenerateKeyPair()

89

6. Plug-In Libraries

This procedure generates a random 21-byte private key and its associated 21-byte public key, storing
them in Eeprom strings EC167PrivateKey and EC167PublicKey. In a Professional BasicCard with
128 pre-computed points, this subroutine takes about 0.6 seconds.

6.3.5 Setting an Explicit Private Key
To set an explicit value for a private key:
Call EC167SetPrivateKey (Key$)

This procedure copies Key$ (reduced modulo r) to the 21-byte Eeprom string EC167PrivateKey, and
computes the associated 21-byte Eeprom string EC167PublicKey. (r is explained in 6.3.9 Binary
Representation Formats: EC Domain Parameters.) In a Professional BasicCard with 128 pre-
computed points, this subroutine takes about 0.6 seconds.

If Key$ is zero modulo r, error code EC167BadProcParams is returned in variable LibError.

6.3.6 Generating a Digital Signature

A private key is used to generate digital signatures. To sign a message consisting of a String
expression:

Call EC167HashAndSign (Signature$, Message$)
This procedure returns a 42-byte string in Signature$.

To sign a longer message, first compute the hash function for the message (see 6.5.1 Hashing
Functions), and then

Call EC167Sign (Signature$, Hash$)

If no private key has been set, these procedures return error code EC167KeyNotlnitialised in variable
LibError.

In a Professional BasicCard with 128 pre-computed points, this subroutine takes about 0.65 seconds.

6.3.7 Verifying a Digital Signature

Note: Verification of Digital Signatures is only possible in a Terminal program, or in Professional
BasicCard ZC5.5. At the time of writing, it is not supported in other Professional BasicCards.

To verify a digital signature, you need the signer’s public key. To verify the signature of a message
consisting of a String expression:

Status = EC167HashAndVerify (Signature$, Message$, PublicKey$)

Signature$ The 42-byte signature to be verified
Message$ The message that was signed
PublicKey$ The signer’s 21-byte public key

This function returns True of False according to whether the signature is valid or not.

To verify a longer message, first compute the hash function for the message (see 6.5.1 Hashing
Functions), and then verify its signature with the function:

Status = EC167Verify (Signature$, Hash$, PublicKey$)

If Signature$ is not 42 bytes, or PublicKey$ is not 21 bytes, error code EC167BadProcParams is
returned in variable LibError.

6.3.8 Session Key Generation

If two parties know each other’s public keys, they can use them to agree on a secret 21-byte value. This
value is called the shared secret for the two parties; to compute it, you need to know the private key of
one party (in EC167PrivateKey) and the public key of the other party. To compute the shared secret:

SharedSecret$ = EC167SharedSecret (PublicKey$)

PublicKey$ The other party’s 21-byte public key
SharedSecret$ The 21-byte shared secret

90

6.3 EC-167: The 167-Bit Elliptic Curve Library

If PublicKey$ is not 21 bytes long, or it is not a point on the curve, error EC167BadProcParams is
returned in variable LibError.

This shared secret can then be used to generate 20-byte session keys for encrypting messages between
the two parties; unlike the shared secret, a session key can be different on different occasions.

To generate a session key, the parties must agree on a Key Derivation Parameter, which can be any
sequence of bytes, and need not be kept secret. For maximum security, it should be different each time
a session key is generated. For example, it might be a standard header followed by the date and time.
To generate the session key:

SessionKey$ = EC167SessionKey (KDP$, SharedSecret$)

KDP$ Key Derivation Parameter, a string of any length
SharedSecret$ The shared secret value, returned by EC167SharedSecret
SessionKey$ The 20-byte session key

Note: In the Professional BasicCard, generating a shared secret takes about 2.7 seconds. But once a
shared secret has been generated for a given public key, session key generation takes less than 0.1
seconds, provided Len(KDP$) <= 42. (Typically, a smart card application will only need to generate
session keys for a single public key, for which the shared secret is computed just once in the card’s
lifetime.)

6.3.9 Binary Representation Formats

This section specifies the binary representations of the data objects that are used in the library: integers,
field elements, elliptic curves, points on the curve, and signatures.

Integers

Integers in this implementation have a length of either 1 byte or 21 bytes. The first (or leftmost) byte is
the most significant — in a 21-byte integer, it contains bits 167-160. The last (or rightmost) byte
contains bits 7-0.

Field Elements

The library EC-167 implements operations on Elliptic Curves over the field GF(2™), with m = 167. An
element of GF(2™) is represented by 167 bits stored in 21 bytes. A Polynomial Basis field
representation is used; the Field Polynomial is
p(t) - t167 + t6 +1

The first (leftmost) byte contains the coefficients of t*°° through t*°°.
EC Domain Parameters
An Elliptic Curve E over GF(2™) is defined by an equation of the form

yZ+xy=x®+ax’+b

where a and b are elements of GF(2™) with b # 0. The curve E consists of all points (x, y) with x, y O
GF(2™ that satisfy this equation, together with a Point at Infinity, denoted O. The order #E of the
curve is the number of points in E. For cryptographic purposes, this order must have a large prime
divisor, i.e. #E = kr for some (large) prime r. As well as a, b, r, and k, a point G [0 E must be specified,
of order r (that is, r is the smallest positive integer such that rG = O.) Field elements a and b O GF(2™),
integers r and k, and point G [E constitute the EC domain parameters.

The library EC-167 accepts any set of EC domain parameters (a, b, r, k, G) that satisfies the following
conditions:

e ais zero in all bit positions except for bits 7-0 ;
« risexactly 167 bits long, i.e. 2% < r <2'";
e kisequal to 2.

The user-defined type EC167DomainParams, defined in file Basi cCar dPr o\ Li b\ EC- 167. DEF,
contains curve parameters a (1 byte), b (21 bytes), r (21 bytes), and G (21 bytes), for a total of 64 bytes.

91

6. Plug-In Libraries

Points on the Curve
Points on the curve play two roles in library EC-167:

e EC domain parameter G is a point on the curve;
e every public key is a point on the curve. (For a private key s, the corresponding public key is sG.)

If P is on the curve and xp # 0, then y ® + Xpy = Xp° + axp’ + b has two solutions, y, and y;. Moreover,
the two expressions Yo/ Xp and y; / xp differ only in bit 0; so if we know xp and bit 0 of yp/Xp , we can
recover point P in full. This bit is called the compressed y-coordinate of the point P, denoted ¥r. A
point P on the curve is represented by 21 bytes, with § in bit 167, and xp in bits 166-0.

Signatures
A signature consists of two 21-byte integers (c, d). See IEEE P1363 for the definitions of ¢ and d.

6.3.10 Conformance Specification

This implementation follows the standard IEEE P1363: Standard Specifications for Public Key
Cryptography. In the terminology of this standard, the following schemes, primitives, and additional
techniques are implemented:

Professional

Scheme Description Terminal BasicCard
ECKAS-DH1 |Elliptic Curve Key Agreement Scheme, Diffie-Hellman
version, where each party contributes one key pair. This ‘/ ‘/
scheme uses primitive ECSVDP-DH, with additional
technique KDF1.
ECSSA Elliptic Curve Signature Scheme with Appendix. This
scheme uses primitives ECSP-NR (in the Terminal and ‘/ ‘/
the BasicCard) and ECSV-NR (in the Terminal only),
and additional techniqgue EMSAL.
Professional
Primitive Description Terminal BasicCard
ECSVDP-DH |Elliptic Curve Secret Value Derivation Primitive, Diffie- \/ \/
Hellman version.
ECSP-NR Elliptic Curve Signature Primitive, Nyberg-Rueppel \/ \/
version.
ECVP-NR Elliptic Curve Verification Primitive, Nyberg-Rueppel \/ 7C5.5
version. '
Additional Professional
Technique Description Terminal BasicCard
KDF1 Key Derivation Function. The hash function is SHA-1: \/ ‘/
Secure Hash Algorithm, revision 1.
EMSAL Encoding Method for Signatures with Appendix. The hash
function is SHA-1: Secure Hash Algorithm, revision 1. \/ \/

6.4 EC-161: The 161-Bit Elliptic Curve Library

The EC-161 library implements Elliptic Curve Cryptography over the field GF(2'%®), with 161-bit
keys. This library is available for Terminal progams and Enhanced BasicCard programs. The EC-167
library is avaiable for Series 5 Professional BasicCards; see 6.3 EC-167: The 167-Bit Elliptic Curve
Library for more information.

92

6.4 EC-161: The 161-Bit Elliptic Curve Library

The following operations are supported:

e private/public key pair generation;

e session key generation;

« digital signature generation;

« digital signature verification (Terminal program only).

This implementation follows the proposed standard IEEE P1363: Standard Specifications for Public
Key Cryptography. Section 6.4.8 Conformance Specification specifies the methods used in library
EC-161, using the terminology of IEEE P1363.

A simple Elliptic Curve application can be found in the directory Basi cCar dPr o\ Exanpl es\ EC.
To load the Elliptic Curve library:

#Include EC-161.DEF

The file EC-161.DEF is supplied with the distribution kit, in the Basi cCar dPr o\ Li b directory.

6.4.1 Setting the Elliptic Curve Parameters

An Elliptic Curve is defined by its EC Domain Parameters; three suitable Elliptic Curves are supplied
in the directory Basi cCar dPr o\ Li b\ Cur ves. Choose one of these for your application. Curve
Definition Files EC161-1.CRV through EC161-3.CRV contain curve definitions in ZC-Basic, for
inclusion in a source program. File EC-161.BIN contains the binary data for all three curves, for run-
time loading in a Terminal program.

To specify an Elliptic Curve in an Enhanced BasicCard program:
#Include EC161-X.CRV

where X is a number from 1 to 3. In a BasicCard program, the curve must be chosen at compile time; it
can’t be re-loaded at run-time. In Enhanced BasicCards without the EC-FSA algorithm, this Curve
Definition File loads 32 pre-computed Elliptic Curve points into EEPROM to speed up Elliptic Curve
operations. We also provide Curve Definition Files EC161-X.16 and EC161-X.64, with 16 and 64 pre-
computed points respectively. The more pre-computed points, the faster the card, but the less free
EEPROM space. If EEPROM space is at a premium, use 16 pre-computed points; if speed is the most
important factor, use 64 pre-computed points. (The EC-FSA algorithm doesn’t use these pre-computed
points, so there is no difference between these Curve Definition Files for EC-FSA cards.)

In the Terminal program, an Elliptic Curve must be explicitly loaded using EC161SetCurve. There are
three ways of doing this:
e If you know in advance which curve to use, you can include its definition file. For example:
#1 ncl ude EC161- 3. CRV
Call EC161Set Curve (ECl161Parans)
But note that only one such definition file is allowed in a program.

e If the card has a suitable command, you can load the curve from the card. For example:

Private Curve As ECl61Domai nPar ans
Call GetCurve (Curve) : Call CheckSWLsSwe()
Call ECl161Set Curve (Curve)

See Basi cCar dPr o\ Exanpl es\ ECfor an example of this.

e You can read the curve from the binary file EC-161.BIN. For example:

Private Curve As ECl61Domai nPar ans

Qpen "EC-161. BIN' For Random As #1 Len=64
Get #1, 3, Curve ' Read Elliptic Curve #3
Cl ose #1

Call CheckFil eError()

Call EC161Set Curve (Curve)

If the EC domain parameters are invalid, procedure EC161SetCurve returns error code
EC161BadCurveParams in variable LibError.

93

6. Plug-In Libraries

In the Terminal program, you must call EC161SetCurve before you call any other procedures from the
EC-161 library. If not, error code EC161CurveNotlInitialised will be returned in variable LibError.

6.4.2 Key Generation
To generate a public/private key pair:
Call EC161GenerateKeyPair (Seed$)

This procedure uses library SHA-1 to generate a cryptographically strong pseudo-random number
from Seed$, for use as a private key. The 21-byte private key and its associated 22-byte public key are
stored in Eeprom strings EC161PrivateKey and EC161PublicKey.

See 6.5.2 Pseudo-Random Number Generation for more about pseudo-random numbers in SHA-1.

6.4.3 Setting an Explicit Private Key
To set an explicit value for a private key:
Call EC161SetPrivateKey (Key$)

This procedure copies Key$ (reduced modulo r) to the 21-byte Eeprom string EC161PrivateKey, and
computes the associated 22-byte Eeprom string EC161PublicKey. (r is explained in 6.4.7 Binary
Representation Formats: EC Domain Parameters.)

If Key$ is zero modulo r, error code EC161BadProcParams is returned in variable LibError.

Note: In the BasicCard, this procedure takes about 4 seconds to execute at a clock speed of 3.57 MHz.
However, if you don’t need to compute EC161PublicKey, you can simply copy Key$ to
EC161PrivateKey, and the Elliptic Curve routines will work correctly.

6.4.4 Generating a Digital Signature

A private key is used to generate digital signatures. To sign a message consisting of a String
expression:

Call EC161HashAndSign (Signature$, Message$)
This procedure returns a 42-byte string in Signature$.

To sign a longer message, first compute the hash function for the message (see 6.5.1 Hashing
Functions), and then call

Call EC161Sign (Signature$, Hash$)

If no private key has been set, these procedures return error code EC161KeyNotlnitialised in variable
LibError.

In the regular Enhanced BasicCard, digital signature generation takes about 2.5 seconds at a clock
speed of 3.57 MHz. In Enhanced BasicCards ZC3.5 and ZC3.6 with EC-FSA, it takes about 1.2
seconds.

6.4.5 Verifying a Digital Signature

Note: Verification of Digital Signatures is only possible in a Terminal program. It is not supported in
the Enhanced BasicCard.

To verify a digital signature, you need the signer’s public key. To verify the signature of a message
consisting of a String expression:

Status = EC161HashAndVerify (Signature$, Message$, PublicKey$)

Signature$ The 42-byte signature to be verified
Message$ The message that was signed
PublicKey$ The signer’s 22-byte public key

This function returns True of False according to whether the signature is valid or not.

To verify a longer message, first compute the hash function for the message (see 6.5.1 Hashing
Functions), and then verify its signature with the function:

94

6.4 EC-161: The 161-Bit Elliptic Curve Library

Status = EC161Verify (Signature$, Hash$, PublicKey$)

If Signature$ is not 42 bytes, or PublicKey$ is not 22 bytes, error code EC161BadProcParams is
returned in variable LibError.

6.4.6 Session Key Generation

If two parties know each other’s public keys, they can use them to agree on a secret 21-byte value. This
value is called the shared secret for the two parties; to compute it, you need to know the private key of
one party (either one will do) and the public key of the other party. To compute the shared secret:

SharedSecret$ = EC161SharedSecret (PublicKey$)

PublicKey$ The other party’s 22-byte public key
SharedSecret$ The 21-byte shared secret

If PublicKey$ is not 22 bytes long, or it is not a point on the curve, error EC161BadProcParams is
returned in variable LibError.

This shared secret can then be used to generate 20-byte session keys for encrypting messages between
the two parties; unlike the shared secret, a session key can be different on different occasions.

To generate a session key, the parties must agree on a Key Derivation Parameter, which can be any
sequence of bytes, and need not be kept secret. For maximum security, it should be different each time
a session key is generated. For example, it might be a standard header followed by the date and time.
To generate the session key:

SessionKey$ = EC161SessionKey (KDP$, SharedSecret$)
KDP$ Key Derivation Parameter, a string of any length

SharedSecret$ The shared secret value, returned by EC161SharedSecret
SessionKey$ The 20-byte session key

Note: In the BasicCard, generating a shared secret takes about 7 seconds at a clock speed of 3.57 MHz.
But once a shared secret has been generated for a given public key, session key generation takes less
than half a second at the same clock speed, provided Len(KDP$) <= 42. (Typically, a smart card
application will only need to generate session keys for a single public key, for which the shared secret
is computed just once in the card’s lifetime.)

6.4.7 Binary Representation Formats

This section specifies the binary representations of the data objects that are used in the library: integers,
field elements, elliptic curves, points on the curve, and signatures.

Integers

Integers in this implementation have a length of either 1 byte or 21 bytes. The first (or leftmost) byte is
the most significant — in a 21-byte integer, it contains bits 167-160. The last (or rightmost) byte
contains bits 7-0.

Field Elements

The library EC-161 implements operations on Elliptic Curves over the field GF(2™), with m = 168. An
element of GF(2™) is represented by 168 bits stored in 21 bytes. The field representation is non-
standard (i.e. it does not use a Polynomial Basis or a Normal Basis); for this reason we provide source
code, in C and ZC-Basic, for converting between ZeitControl’s EC-161 representation and a standard
Polynomial Basis representation. This Polynomial Basis representation uses irreducible field
polynomial

p(t) - t168 +t15 +t3 +t2 +1

The source code is in directory Basi cCar dPr o\ Sour ce\ Fl dConv.

95

6. Plug-In Libraries

EC Domain Parameters
An Elliptic Curve E over GF(2™) is defined by an equation of the form
yZ+xy=x®+ax’+b

where a and b are elements of GF(2™) with b # 0. The curve E consists of all points (x, y) with x, y [
GF(2™ that satisfy this equation, together with a Point at Infinity, denoted O. The order #E of the
curve is the number of points in E. For cryptographic purposes, this order must have a large prime
divisor, i.e. #£ = kr for some (large) prime r. As well as a, b, r, and k, a point G [0 E must be specified,
of order r (that is, r is the smallest positive integer such that rG = O.) Field elements a and b O GF(2™),
integers r and k, and point G [0 E constitute the EC domain parameters. (k is redundant, as it can be
calculated from a, b, and r; it is included for convenience.)

The library EC-161 accepts any set of EC domain parameters (a, b, r, k, G) that satisfies the following
conditions:

e aiszero in all bit positions except for bits 78-72 ;
« risexactly 161 bits long, i.e. 2'®° < r <2 ;
« kisasingle byte, equal to 2 modulo 4.

The user-defined type EC161DomainParams, defined in file Basi cCar dPr o\ Li b\ EC- 161. DEF,
contains curve parameters a (1 byte), b (21 bytes), r (21 bytes), k (1 byte), and G (22 bytes), for a total
of 66 bytes.

Points on the Curve
Points on the curve play two roles in library EC-161:

e EC domain parameter G is a point on the curve;
e every public key is a point on the curve. (For a private key s, the corresponding public key is sG.)

If P is on the curve and xp # 0, then y 24 Xpy = Xp° + axp® + b has two solutions, Yo and y;. Moreover,
the two expressions Y, / xp and y; / xp differ only in bit 7 (in the representation used here); so if we know
xp and bit 7 of yp / xp , we can recover point P in full. This bit is called the compressed y-coordinate of
the point P, denoted §>. A point P on the curve is represented by 22 bytes, with xp in the leftmost 21
bytes (i.e. bits 175-8), and the compressed y-coordinate in bit 0.

Signatures
A signature consists of two 21-byte integers (c, d). See IEEE P1363 for the definitions of ¢ and d.

6.4.8 Conformance Specification

This implementation follows the proposed standard IEEE P1363 / D9 (Draft Version 9): Standard
Specifications for Public Key Cryptography. In the terminology of this standard, the following
schemes, primitives, and additional techniques are implemented:
Enhanced
Scheme Description Terminal BasicCard

ECKAS-DH1 Elliptic Curve Key Agreement Scheme, Diffie-
Hellman version, where each party contributes one ‘/ ‘/
key pair. This scheme uses primitive ECSVDP-DH,
with additional technique KDF1.

ECSSA Elliptic Curve Signature Scheme with Appendix.
This scheme uses primitives ECSP-NR (in the ‘/ ‘/
Terminal and the BasicCard) and ECSV-NR (in the
Terminal only), and additional technique EMSAL.

96

6.5 SHA-1: The Secure Hash Algorithm Library

Enhanced
Primitive Description Terminal BasicCard
ECSVDP-DH Elliptic Curve Secret Value Derivation Primitive, ‘/ ‘/
Diffie-Hellman version.
ECSP-NR Elliptic Curve Signature Primitive, Nyberg-Rueppel ‘/ ‘/
version.
ECVP-NR Elliptic Curve Verification Primitive, Nyberg- ‘/
Rueppel version.
Additional Enhanced
Technique Description Terminal BasicCard
KDF1 Key Derivation Function. The hash function is ‘/ ‘/
SHA-1: Secure Hash Algorithm, revision 1.
EMSA1 Encoding Method for Signatures with Appendix.
The hash function is SHA-1: Secure Hash \/ \/
Algorithm, revision 1.

6.5 SHA-1: The Secure Hash Algorithm Library

This library implements the Secure Hash Algorithm as defined in the Federal Information Processing
Standards document FIPS 180-1. The algorithm takes an arbitrary message as input, and outputs a 20-
byte hash of that message. It is supposed to be computationally infeasible to invert this algorithm. More
specifically:

e given a 20-byte hash, it is computationally infeasible to construct a message with that hash;
e itis computationally infeasible to construct two different messages with identical hashes.
FIPS 180-1 is available on the Internet, at www.itl.nist.gov/div897/pubs/fip180-1.htm.

The SHA-1 library was implemented as an adjunct to the RSA and EC-167 libraries. In the first place,
it is specified in the proposed IEEE standard P1363 as one of the approved hashing algorithms for use
in Elliptic Curve digital signature generation; and in the second place, it provides a source of
cryptographically strong pseudo-random numbers, for the generation of keys and signatures.

However, it can also be used as a stand-alone library. To load this library:
#Include SHA-1.DEF
The file SHA-1.DEF is supplied with the distribution kit, in the Basi cCar dPr o\ Li b directory.

6.5.1 Hashing Functions
If a message is contained in a String, you can compute its hash with a single function call:
Function ShaHash (S$) As String

To hash longer messages, you must use the following procedures:

Professional BasicCard: Other Environments:

Sub ShaStart (HashBuff$) Sub ShaStart()

Sub ShaAppend (HashBuff$, S$) Sub ShaAppend (S$)
Function ShaEnd (HashBuff$) As String Function ShaEnd() As String

Call ShaStart() to initialise the hashing process, then ShaAppend (S$) for successive blocks of data,
and finally ShaEnd() to get the 20-byte hash value. In the Professional BasicCard, the HashBuff$
argument is used to store the internal state of the hash algorithm; other environments have static buffers
for this purpose.

97

www.itl.nist.gov/div897/pubs/fip180-1.htm

6. Plug-In Libraries

6.5.2 Pseudo-Random Number Generation

Only the Professional BasicCard has its own hardware random number generator; other environments
must generate pseudo-random numbers in software. The Secure Hash Algorithm is one source of
cryptographically strong pseudo-random numbers. To do this properly, it must be fed with some initial
source of random data, for instance user key-strokes (see example program ECTERM in directory
Basi cCar dPr o\ Exanpl es\ EC).

Sub ShaRandomSeed (Seed$)
This function mixes the given seed into the ‘randomness pool’.
Function ShaRandomHash() As String

This function returns a 20-byte random string. Each byte in the string is a random number between 0
and 255 inclusive.

Each time that you call ShaRandomSeed (Seed$) , the seed is mixed into the ‘randomness pool’. The
effect is cumulative, so the more data you mix in, the better. The ZC-Basic interpreter mixes in some
data of its own each time this procedure is called:

e The Terminal program mixes in the date and time, and the elapsed CPU time for the process.

e The Enhanced BasicCard mixes in its unique serial number. So any two cards will generate
different sequences, even if they are fed with the same seeds.

The Enhanced BasicCard has no other internal source of randomness, so you must send it random data
from the Terminal program if cryptographically strong random numbers are required, for instance when
generating key pairs for use by the EC-161 Elliptic Curve Cryptography library.

6.6 IDEA: International Data Encryption Algorithm

The IDEA library implements the International Data Encryption Algorithm, a block cipher with a 128-
bit key size. This algorithm is cryptographically as strong as Triple DES, but is more than three times
as fast. To load this library:

#Include IDEA.DEF
The file IDEA.DEF is supplied with the distribution kit, in the Basi cCar dPr o\ Li b directory.

Note: The International Data Encryption Algorithm may be used free of charge for non-commercial
purposes. For commercial use, permission must be obtained from the patent holders:

Ascom Systec Ltd. Internet: http://www.ascom.com/infosec
Gewerbepark e-mail: IDEA@ascom.ch

CH-5506 Maegenwil

Switzerland

6.6.1 IDEA Functions
The library privides two functions:

Function IdeaEncrypt (Key$, Data$) As String
Function IdeaDecrypt (Key$, Data$) As String

Key$ The 16-byte cryptographic key.
Data$ The 8-byte data block to be encrypted or decrypted.

Both functions return an 8-byte string.
If Len(Key$) < 16 or Len(Data$) < 8, variable LibError is set to IdeaBadProcParams (&H4301).

The IDEA algorithm can be used in various modes of operation: Electronic Codebook (ECB) mode,
Cipher Feedback (CFB) mode, etc. These modes have been implemented in ZC-Basic in the file
IDEATEST.BAS, in the directory Basi cCar dPr o\ Exanpl es\ | DEA.

98

http://www.ascom.com/infosec

6.7 MATH: Mathematical Functions

6.7 MATH: Mathematical Functions

The MATH library provides standard mathematical functions such as Exp and Sin. It may only be
used in Terminal programs. To load this library:

#Include MATH.DEF

The file MATH.DEF is supplied with the distribution kit, in the Basi cCar dPr o\ Li b directory.

6.7.1 Error Codes

The MATH library procedures can signal the following error codes in LibError:

MathDomain
MathSingularity
MathOverflow
MathUnderflow
MathLossOfPrecision

6.7.2 Integer Rounding

Function Floor (X!) As Single
Function Ceil (X!) As Single

6.7.3 Exponentiation

Function Pow (X!, Y!I) As Single
Function Exp (X!) As Single
Function LogE (X!) As Single
Function Log10 (X!) As Single

6.7.4 Trigonometric Functions

Function Hypot (X!, Y!I) As Single
Function Sin (X!) As Single
Function Cos (X!) As Single
Function Tan (X!) As Single
Function ASin (X!) As Single
Function ACos (X!) As Single
Function ATan (X!) As Single
Function ATan2 (Y!, X!) As Single

6.7.5 Hyperbolic Functions

Function SinH (X!) As Single
Function CosH (X!) As Single
Function TanH (X!) As Single

6.7.6 Mathematical Constants

A parameter was outside the valid range, e.g. Log (-1.0)

The function has a singularity at the given point, e.g. Tan (MathPi / 2)
The maximum Single value of 3.402823E+38 was exceeded

The minimum Single value of 1.401298E-45 was truncated to zero
Total loss of precision renders the result meaningless, e.g. Sin (1E30)

These constants are defined in MATH.DEF.

The largest integer <= X!, as a Single value
The smallest integer >= X1, as a Single value

X! to the power Y!

e to the power X! (e is the base of natural logarithms)
The natural logarithm of X! (i.e. the logarithm to base €)
The logarithm of X! to base 10

Sgrt (X! * X!+ YI*Yl) (with no intermediate overflow)
Sine function

Cosine function

Tangent function Tan (X!) = Sin (X!) / Cos (X!)

Inverse Sine function (-172 <= ASin (X!) <= 172)

Inverse Cosine function (0 <= ACos (X!) <=m)

Inverse Tangent function (-2 < ATan (X!) < 12)
Inverse Tangent at (X!, Y!) (-tt< ATan2 (Y!, X!) <=1

Hyperbolic Sine: (Exp (X!) — Exp (-X!)) /2
Hyperbolic Cosine: (Exp (X!) + Exp (-X1)) /2
Hyperbolic Tangent: SinH (X!) / CosH (X!)

The following constants are defined in MATH.DEF:

Const MathE = 2.718281828
Const MathPi = 3.141592654

The base e of natural logarithms
]

99

6. Plug-In Libraries

6.8 MISC: Miscellaneous Procedures

The MISC library provides miscellaneous utility procedures. To load this library:
#Include MISC.DEF

The file MISC.DEF is supplied with the distribution kit, in the Basi cCar dPr o\ Li b directory. It
contains the following procedures, all of which are defined in more detail below:

For Terminal programs:

Timing Functions Sub GetDateTime (DT As DateTime)
Function Timelnterval (StartTime As DateTime, EndTime As
DateTime) As Long
Function UnixTime() As Long

Suspending the Program Sub Sleep (Milliseconds As Long)
Executing a Command Line Sub Execute (CommandString$)
CRC Calculations Function CRC16 (S$) As Integer

Sub UpdateCRC16 (CRC, S$)
Function CRC32 (S$) As Long
Sub UpdateCRC32 (CRC As Long, S$)

Random String Sub RandomString (S$, Len)
Making a Noise Sub Beep (Frequency, Duration As Long)
For Enhanced BasicCards ZC3.3, ZC3.4, ZC3.5, ZC3.6:
Fast EEPROM Writes Sub FastEepromWrites ()
For Professional BasicCards:
Random String Sub RandomString (S$, Len)
Communications Function LePresent()

Sub SuspendSW1SW2Processing()

6.8.1 Timing Functions
Three timing procedures are provided, for use in Terminal programs only.
Two of these procedures take parameters of type DateTime, defined in MISC.DEF:

Type DateTime
Year, Month, Day
Hour, Minute, Second
Millisecond

End Type

Sub GetDateTime (DT As DateTime)
Returns the current system date and time in DT.

Note: DT is filled in from the system clock. Under MS-DOS and Windows, the system clock has a
resolution of about 55 milliseconds, which is rounded to a multiple of 10. So values returned by
GetDateTime will jump in increments of 50 or 60 milliseconds.

Function Timelnterval (StartTime As DateTime, EndTime As DateTime) As Long

Returns the time interval between StartTime and EndTime, in milliseconds. This interval will be a
multiple of the system clock resolution; see note to GetDateTime.

For examples of the use of these procedures, see programs ECINIT.BAS and ECTEST.BAS in
directory Basi cCar dPr o\ Exanpl es\ EC.

The third timing procedure returns the number of seconds elapsed since 1% January 1970:

Function UnixTime() As Long

100

6.8 MISC: Miscellaneous Procedures

6.8.2 Suspending the Program

In a Terminal program, the following subroutine suspends execution for the specified number of
milliseconds:

Sub Sleep (Milliseconds As Long)

This frees the CPU for other processes to use.

6.8.3 Executing a Command Line

An operating system command can be executed from a Terminal program using the Execute
subroutine:

Sub Execute (CommandString$)
The following error codes are returned in the LibError variable:

MiscCommandToolLong
MiscFileNotFound
MiscNotExecutable
MiscOutOfMemory
MiscUnexpectedError

These constants are defined in MISC.DEF.

Note that it is not possible to retrieve an error code generated by the command itself.

Under MS-DQOS, the command string was longer than 128 bytes
The command string specified a non-existent executable file
The command string specified a non-executable file

Insufficient memory to execute the command

The operating system returned an unexpected error code

6.8.4 CRC Calculations

Function CRC16 (S$) As Integer

Sub UpdateCRC16 (CRC, S$)
Function CRC32 (S$) As Long

Sub UpdateCRC32 (CRC As Long, S$)

Returns the 16-bit CRC of the string S$
Allows cumulative calculation of 16-bit CRC’s
Returns the 32-bit CRC of the string S$
Allows cumulative calculation of 32-bit CRC’s

To calculate the CRC of a single String value, call CRC16 or CRC32. To calculate CRC’s for larger
amounts of data, first initialise CRC to zero, then call UpdateCRC16 or UpdateCRC32 with
successive values of S$.

Here are ‘C’ functions to calculate the 16-bit and 32-bit CRC’s:

unsi gned short CRC (unsigned char *p, unsigned int |en)

{

unsi gned short c
while (len--)

unsi gned char

rc =0 ;

Next Byte = *p++ ;

< 8 ; i++, NextByte >>= 1)

{
if ((crc ™ NextByte) & 1)

’

1;

int i ;
for (i =0 ; i
{
crc >>= 1
crc "= 0xCAO0O ;
}
el se crc >>=
}
}
return crc ;

}

101

6. Plug-In Libraries

unsi gned | ong CRC32 (unsigned char *p, unsigned int |en)

{
unsigned long crc = 0 ;
while (len--)
{
unsi gned char NextByte = *p++ ;
int i ;
for (i =0 ; i <8 i++ NextByte >>= 1)

if ((crc ™ NextByte) & 1)
{
crc >>= 1 ;
crc ~= 0xA3000000 ;

}

else crc >=1 ;
return crc ;

}
6.8.5 Making a Noise

The Terminal program can generate an audible beep with the Beep subroutine:
Sub Beep (Frequency, Duration As Long)
The duration is in milliseconds.

Note: The Frequency and Duration parameters are only effective under Windows NT and Windows
2000; they are ignored under Windows 98 (although they must be present).

6.8.6 Fast EEPROM Writes

The EEPROM in the Enhanced BasicCard has an erase/write cycle time of 6 milliseconds — it takes this
long to guarantee that each bit has been completeley discharged and/or recharged. The BasicCard has
no internal clock, so it must count instruction cycles to estimate the elapsed time. However, it has no
way of knowing the clock frequency, so it must assume the worst case — it must assume that the clock
is running at its maximum allowed speed. This maximum speed is specified in standard ISO/IEC 7816-
3as5 MHz.

If the card reader is generating a slower clock frequency, then EEPROM writes will take longer than
they need to. For instance, most readers (including ZeitControl’s Chipi and CyberMouse card reader)
generate a clock frequency of 3.57 MHz; so instead of 6 milliseconds, an EEPROM write takes 8.4
milliseconds. If speed is important to you, and if you know that the clock frequency is only 3.57 MHz
(or less), you can call the following procedure:

Sub FastEepromWrites()

The BasicCard operating system will then speed up its EEPROM writes, so that they take 6
milliseconds at the assumed slower clock speed. This procedure is available for Enhanced BasicCards
ZC3.3,ZC3.4,ZC3.5, and ZC3.6.

Warning: If in fact the card reader is running at faster than 3.57 MHz, calling this procedure may result
in subsequent loss of EEPROM data through charge leakage.
6.8.7 Random String

In the Terminal program and in all current Professional BasicCards, a String variable can be filled with
random data:

Sub RandomString (S$, Len)

On return, S$ contains Len bytes of random data.

102

6.8 MISC: Miscellaneous Procedures

6.8.8 SW1-SW2 Processing

Normally, if SW1-SW2 <> &H9000, and SW1 <> &H61, then ODATA is not sent — see 7.5
Commands and Responses. You can override this behaviour in some Professional BasicCards with
the following procedure call:

Sub SuspendSW1SW2Processing()

The card will then send the ODATA field in the response, regardless of the value of SW1-SW2. This
procedure only affects the current command. See 3.3.3 Options for an alternative method.

At the time of writing, this procedure is available in Professional BasicCards ZC4.5A (from Revision
D), ZC4.5D (from Revision D), and ZC5.5 (all revisions).

103

Part |1

Technical Reference

/. Communications

Note: Throughout this chapter, bold numbers are hexadecimal.

7.1 Overview

As outlined in 1.1 Processor Cards, communication between a Terminal and a Processor Card
proceeds, via a Card Reader, as a series of Commands (initiated by the Terminal) and Responses (sent
by the Processor Card). The series starts with the Card Reader sending a Reset Card signal to the
Processor Card:

Terminal Card Reader Processor Card

Reset Card ——»

< Answer To Reset (ATR)
Command >
< Response
Command >
< Response
etc.

Two documents describe this process in detail:
1. ISO/IEC 7816-3: Electronic signals and transmission protocols

This document describes the communication between the Card Reader and the Processor Card, from
the bit level through the byte level to the block level. We will be concerned with three aspects:

» the structure of the ATR;
» the T=0 character transmission protocol;
» the T=1 block transmission protocol.

2. ISO/IEC 7816-4: Interindustry commands for interchange
This document describes Commands and Responses. We will be concerned with three aspects:

» the contents of Commands and Responses;
» the method by which the T=0 protocol transmits Commands and Responses;
» the method by which the T=1 protocol transmits Commands and Responses.

We provide a summary of these documents in the following sections. Most readers can skip these
sections; they are provided mainly for users who need to program the BasicCard to be compatible with
existing systems.

In these documents, a Command or Response is referred to as an APDU (application protocol data
unit). The structure of Command and Response APDU’s is described in 7.5 Commands and
Responses.

7.2 Answer To Reset

With the Answer To Reset (ATR), the Processor Card identifies itself and indicates which protocols it
supports. Most of the data in the ATR is not relevant to a BasicCard programmer. The following
information is important:

106

7.3 The T=0 Protocol

e whether the card supports the T=0 and/or the T=1 protocols;
e the maximum communication speed that the card allows;
e the Historical Characters.

The Compact and Enhanced BasicCards support only the T=1 protocol, at 9600 baud. They send the
following ATR (the byte names are from ISO/IEC):

TS TO TB1 | TC1 | TD1 | TD2 TA3 TB3 T1-TK
3B EF 00 FF 81 31 500r20 | 450r 75 | ‘BasicCard ZCvw’

Briefly, what this means is:

TS=3B Direct convention (high = 1, low = 0; least significant bit arrives first)
TO=EF E - TB1, TC1, TD1 follow; F - 15 historical characters

TB1 =00 No EEPROM programming voltage required

TCl=FF Waiting time between two characters = 11 ETU

TD1=81 TD2 follows (T=1 indication)

TD2 =31 TA3, TB3 follow (T=1 indication)

TA3=500r20 IFSC (Information Field Size) = &H50 in Compact card, &H20 in Enhanced card
TB3=450r75 CWT (character waiting time) = (11 + 32) ETU (= 3.33 ms between characters)
InZC1.1, ZC3.3, and ZC3.5 cards (TB3 = 45):
BWT (block waiting time) = (11 + 16*960) ETU (= 1.6 seconds between blocks)
In later cards (TB3 = 75):
BWT (block waiting time) = (11 + 128*960) ETU (= 12.8 seconds between blocks)
T1-TK The historical characters (vvv is the BasicCard firmware version number)

An ETU (elementary time unit) is one bit, or 372 clock cycles. The timing figures assume a clock
frequency of 3.57 MHz. Historical characters T1-TK can be configured in ZC-Basic with the Declare
ATR statement; the whole of the ATR can be specified with Declare Binary ATR — see 3.20.1
Customised ATR.

The Professional BasicCards are more flexible in their capabilities; they support the T=0 protocol as
well as the T=1 protocol, and they can run at up to 38400 baud. Here is a typical ATR (from the
Professional BasicCard “ZC4.5D REV C”):

TS TO TAl1 | TB1 | TC1 | TD1 | TC2 | T1-TK
3B FC 13 00 FF 40 80 | ‘ZC45DREV C’

TS=3B Direct convention (high = 1, low = 0; most significant bit arrives first)
TO=FC F - TAl, TB1, TC1, TD1 follow; C - 12 historical characters
TA1=13 FI =1; DI =3 - maximum allowed communication speed = 38400 baud
TB1 =00 No EEPROM programming voltage required

TCl=FF Waiting time between two characters = 11 ETU

TD1=40 TC2 follows (T=0 indication)

TC2=80 WWT (work waiting time) = 12.8 seconds

7.3 The T=0 Protocol

The T=0 protocol is a character-level transmission protocol for integrated circuit cards with contacts,
defined in the document ISO/IEC 7816-3: Electronic signals and transmission protocols. Some
Professional BasicCards support the T=0 protocol, as well as the T=1 protocol described in the next
section. T=1 is faster, easier to use, and less error-prone; you should only use the T=0 protocol if you
are implementing a pre-existing T=0 command set, or you need to use card readers that don’t support
the T=1 protocol.

The T=0 protocol is defined as a sequence of messages exchanged between the IFD (interface device)
and the ICC (integrated circuit card). In the present context, the IFD is the Terminal program, and the
ICC is the BasicCard. The exchange begins when the ICC is powered up and responds with an ATR
(Answer To Reset). Thereafter the IFD sends a TPDU (transmission protocol data unit) containing a

107

7. Communications

Command, and the ICC replies with a TPDU containing the Response. A TPDU is a lower-level
object than an APDU; we will see later how APDU’s are constructed from TPDU’s.

7.3.1 TPDU Transmission

When the IFD sends a Command TPDU and the ICC replies with a response TPDU, only one of the
two TPDU’s may contain data. If the Command TPDU contains data, it is an incoming data transfer; if
the Response TPDU contains data, it is an outgoing data transfer. The T=0 protocol does not provide
any mechanism for specifying which of the two TPDU’s may contain data; and in fact the protocol
grinds to a halt if the IFD and ICC don’t agree on the direction of data transfer.

In both cases, the IFD first sends a 5-byte command header:

CLA | INS P1 P2 P3

CLA Class byte — first byte of two-byte CLA INS command identifier. This byte may not
be FF.

INS Instruction byte — second byte of two-byte CLA INS command identifier. INS must
be even, and the top nibble may not be 6 or 9.

P1 Parameter 1 of 4-byte CLA INS P1 P2 command header.

P2 Parameter 2 of 4-byte CLA INS P1 P2 command header.

P3 Number of data bytes.

From the command header, the ICC must be able to determine whether the IFD expects an incoming
or outgoing data transfer.

Incoming Data Transfer

Command TPDU: | CLA | INS | PL | P2 | P3 | D, .. | Dps

Response TPDU: | SW1 | SW2

The ICC acknowledges the 5-byte command header by echoing the INS byte (more variations are
described in the ISO/IEC document, but the BasicCard does not use them):

€ | INS

The IFD then sends P3 bytes of data:

Dl Dp3

The ICC responds with a two-byte status code:

€ | SwW1 | sw2

where the top nibble of SW1 is 6 or 9 (but SW1=60 is not allowed). Status codes are described in 7.6
Status Bytes SW1 and SW2.

Outgoing Data Transfer

Command TPDU: | CLA | INS P1 P2 P3

Response TPDU: D, Dps; | SW1 | SW2

108

7.3 The T=0 Protocol

The ICC acknowledges the 5-byte command header by echoing the INS byte, and then sends P3 data
bytes, followed by a two-byte status code:

€| INs | D, .. | Dps | SWL | SW2

In both cases, the ICC may reject the command by responding immediately with SW1-SW?2 instead of
echoing INS.

If the WWT work waiting time is exceeded, the IFD will time out. The ICC can restart the timer, and
so delay the time out, by sending a NULL (60) byte. In a BasicCard program, this is done with the
WTX statement:

WTXn

The ZC-Basic syntax requires the parameter n, although it is ignored if the card is using T=0 protocol.

7.3.2 APDU Transmission by T=0

This section describes the methods defined by ISO/IEC for implementing APDU exchanges under
T=0. If you are not familiar with the structure of Command and Response APDU’s, you should read
7.5 Commands and Responses before continuing.

There are four cases to consider. We adhere to the notation in ISO/IEC 7816-4: Interindustry
commands for interchange, Annex A (normative): Transportation of APDU messages by T=0:

Case 1: Lc=0, and Le not present: no incoming data, and no outgoing data
Case 2: Lc=0, and Le present: outgoing data only

Case 3: Lc non-zero, and Le not present: incoming data only

Case 4: Lc non-zero, and Le present: incoming and outgoing data

7.3.3 Case 1: No Incoming Data or Outgoing Data
The Command TPDU consists of the Command APDU with P3=0 appended:

Command APDU: | CLA | INS P1 P2

Command TPDU: | CLA | INS P1 P2 P3=0

Response TPDU: | SW1 | SW2

Response APDU: | SW1 | SW2

7.3.4 Case 2: Outgoing Data Only
Case 2S.1 — Le accepted

If the ICC accepts the value of Le supplied by the IFD, the Command and Response TPDU are
identical to the Command and Response APDU:

Command APDU: | CLA INS P1 P2 Le

Command TPDU: | CLA INS P1 P2 P3=Le

Response TPDU: D, Dps; | SW1 | SW2

Response APDU: D, Die | SW1 | SW2

109

7. Communications

Case 2S.2 — Le definitely not accepted

If the ICC does not accept Le, and does not want to suggest an alternative, it replies with
SW1-SW2=6700:

Command APDU: | CLA INS P1 P2 Le

Command TPDU: | CLA INS P1 P2 P3=Le

Response TPDU: 67 00

Response APDU: 67 00

Case 2S.3 — Le not accepted, La indicated

If the ICC does not accept Le, and has an alternatve La to suggest, it responds with SW1-SW2 = 6C
La, and the IFD can re-issue the command to receive the outgoing data:

Command APDU: | CLA INS P1 P2 Le

Command TPDU: | CLA INS P1 P2 P3=Le

Response TPDU: | 6C La

Command TPDU: | CLA | INS P1 P2 P3=La

Response TPDU: D, Dia | SW1 | SW2

Response APDU: D, Dia 61 La

Case 2S.4 — Command not accepted

Command APDU: | CLA | INS P1 P2 Le

Command TPDU: | CLA | INS P1 P2 P3=Le

Response TPDU: | SW1 | SW2

Response APDU: | SW1 | SW2

with SW1=6X except 6C, or SW1-SW2=9XXX except 9000.

110

7.3 The T=0 Protocol

7.3.5 Case 3: Incoming Data Only
The Command and Response TPDU are identical to the Command and Response APDU:

Command APDU: | CLA | INS P1 P2 Lc D, D¢

Command TPDU: | CLA | INS P1 P2 P3=Lc D, Dps

Response TPDU: | SW1 | SW2

Response APDU: | SW1 | SW2

7.3.6 Case 4: Incoming and Outgoing Data

The Command TPDU is identical to the Command APDU, but with Le removed:

Command APDU: | CLA | INS P1 p2 Lc D, D.. Le

Command TPDU: | CLA | INS P1 p2 P3=Lc D, Dps

Depending on the response, the IFD may issue a GET RESPONSE Command to request the outgoing
data. This command has INS=CO0, P1=0, P2=0, but the ISO/IEC document leaves the CLA byte
unspecified. ZeitControl’s Terminal software (the IFC) uses CLA=0; the BasicCard operating system
accepts any value for CLA that is not a user-defined command.

Case 4S.1 — Command not accepted

Response TPDU: | SW1 | SW2

Response APDU: | SW1 | SW2

with SW1=6X except 61, or SW1-SW2=9XXX except 9000.

Case 4S.2 — Command accepted

Response TPDU: 90 00

The IFD issues a GET RESPONSE Command:

Command TPDU: | CLA=00 | INS=CO | P1=00 | P2=00 | P3=Le

Transmission then proceeds as in Case 2.
Case 4S.3 — Command accepted with information added

The ICC accepts the command, and indicates that Lx bytes of outgoing data are available:

Response TPDU: 61 Lx

The IFD issues a GET RESPONSE Command, with P3=min(Le,Lx):

Command TPDU: | CLA=00 | INS=C0 | P1=00 | P2=00 P3

Transmission then proceeds as in Case 2.

111

7. Communications

7.4 The T=1 Protocol

The T=1 protocol is a block-level transmission protocol for integrated circuit cards with contacts,
defined in the document ISO/IEC 7816-3: Electronic signals and transmission protocols. The
BasicCard contains a full implementation of this T=1 standard, including NAD awareness, chaining,
retries, WTX requests, and IFS requests. This section describes those parts of the T=1 protocol that a
programmer of the BasicCard might want to know: (i) the error-free transmission of I-blocks; (ii) the
WTX request. The mechanisms for chaining, error handling, and IFS adjustment are hidden from the
programmer, and are not described here. For a detailed definition of the T=1 protocol, see document
ISO/IEC 7816-3.

7.4.1 APDU Transmission by T=1

The T=1 protocol is defined as a sequence of messages exchanged between the IFD (interface device)
and the ICC (integrated circuit card). In the present context, the IFD is the Terminal program, and the
ICC is the BasicCard. The exchange begins when the ICC is powered up and responds with an ATR
(Answer To Reset). Thereafter the IFD sends an APDU containing a Command, and the ICC replies
with an APDU containing the Response. In between receiving a command and sending its response, the
ICC may transmit a WTX request (waiting time extension), to ask for more time:

IFD ICC

ATR
Command APDU
€ Response APDU
Command APDU
3 WTX request
WTX response
€ Response APDU

Each APDU is transmitted in one or more I-blocks. An I-block is the fundamental unit of transmission
in the T=1 protocol; successive I-blocks are chained together to produce the Command and Response
APDU?’s. In the following example, APDU is the concatenation of INF; , INF,, and INF3:

IFD ICC

Chained I-block containing INF

€ Request for next I-block
Chained I-block containing INF,

€ Request for next I-block
Unchained I-block containing INF;

The maximum allowed length of an I-block depends on the direction of transmission, and on protocol
parameters that can vary dynamically; it is typically 32-128 bytes.

7.4.2 Structure of an I-block
An I-block contains the following fields. All fields are one byte, except the INF:

Iblock: | NAD | PCB | LEN | | INF | | LRC |

NAD Node Address byte. The low nibble contains the Node Address (0-7) of the sender,
and the high nibble contains the Node Address (0-7) of the intended recipient. The
BasicCard responds to all Node Address values, unless otherwise instructed with the
pre-defined ASSIGN NAD command. The NAD of the response I-block is equal to
the NAD of the command I-block with the high and low nibbles reversed.

PCB Protocol control byte. Alternates between 00 and 40 (unless chaining is in progress).
The BasicCard programmer can ignore this byte.

112

7.5 Commands and Responses

LEN The length of the INF field in bytes.

INF Information field — the information content of the I-block. The T=1 protocol says
nothing about the internal format of the INF field.

LRC Longitudinal redundancy check. A simple Xor of all the preceding bytes.

7.4.3 WTX Request

The BWT (block waiting time) defined in the ATR tells the IFD how long to wait for a response
before timing out. The BasicCard ATR defines a BWT of 1.6 seconds (BasicCard versions ZC1.1,
ZC3.3, and ZC3.5), or 12.8 seconds (all other BasicCards). If a command is going to take longer than
this, it must request more time using a WTX (waiting time extension) request. In ZC-Basic, this takes
the form

WTX BWT-units

BWT-units A Byte expression, giving the requested time in multiples of the BWT. WTX
requests are not cumulative; the time allowed is counted from the time of the request,
and cancels any previous WTX requests.

A WTX request contains the following fields:

WTX request: | NAD | PCB=C3 | LEN=01 | | INF | |LRC |

The INF field has length 1, and contains the value BWT-units. The response to this request contains an
identical INF field:

WTX response: | NAD | PCB=E3 | LEN=01 | | INF | | LRC |

7.5 Commands and Responses

This section describes the contents of commands and responses, as defined in the document ISO/IEC
7816-4: Interindustry commands for interchange. The APDU of a command has the following structure
(shaded blocks are optional):

CLA | INS P1 P2 Lc IDATA Le

CLA Class byte — first byte of two-byte CLA INS command identifier. If the T=0 protocol
is used, this byte may not be FF.

INS Instruction byte — second byte of two-byte CLA INS command identifier. For 1ISO

compatibility, this byte should be even. If the T=0 protocol is used, the top nibble
may not be 6 or 9.

P1 Parameter 1 of 4-byte CLA INS P1 P2 command header.

P2 Parameter 2 of 4-byte CLA INS P1 P2 command header.

Lc Length of IDATA field in command.

IDATA Data expected by command. In the case of a ZC-Basic command, this field contains
the parameters passed by the caller.

Le Expected length of ODATA field in response (supplied by caller).

In the BasicCard, CLA and INS can refer to pre-defined commands (all of which have CLA=CQ) or
ZC-Basic commands (CLA and INS are specified by the programmer for each command). P1 and P2
are retained in the BasicCard for 1ISO compatibility; you can use them if you like, or ignore them. If
you want to use them, the parameters passed to you by the caller are available as Public Byte variables
P1 and P2; and you can specify their values in commands that you call using the PreSpec field
described in 3.14.3 Calling a Command:

Call command-name ([P1=expr,] [P2=expr,] arg-list)

113

7. Communications

The APDU of a response has the following structure (the shaded block is optional):

ODATA

Swi1

SW2

ODATA

Data returned by command. In the case of a ZC-Basic command, this field contains

the parameters that were passed by the caller, as modified by the called command.

SwWi1
SwW2

First status byte.
Second status byte.

SW1 and SW2 are pre-defined Public variables of type Byte. Before a command is executed, they
have the values &H90 and &HO00, which is a standard status code meaning “Command successfully
completed”. If you want to return an error code to the caller, just set SW1 and SW?2 to the appropriate
values before you exit the command.

Notes:

e if SW1-SW2 <> &H9000, and SW1 <> &H61, then ODATA is discarded: any return values are
lost. In some Professional BasicCards, you can override this behaviour — see 3.3.3 Options and
6.8.8 SW1-SW2 Processing.

e inacard using the T=0 protocol, the high nibble of SW1 must be 6 or 9.

7.6 Status Bytes SW1 and SW?2

7.6.1 BasicCard Operating System

The following status codes are returned by the BasicCard operating system:

swCommandOK
swlleWarning

swRetriesRemaining

swlPCodeError

swEepromWriteError
swBadEepromHeap
swBadFileChain
swKeyNotFound

swPolyNotFound

swKeyTooShort

swKeyDisabled

swUnknownAlgorithm

114

9000
61XX
63CX

64XX

6581
6582
6583
6611

6612

6613

6614

6615

Command successfully completed.
Command successfully completed, but Le was not equal to XX.

A command was wrongly encrypted, and the error counter for the
active key has been decremented to X. If X reaches zero, the key is
disabled.

P-Code error XX occurred in the BasicCard. (The P-Code error
codes are described in the next section.)

A write to EEPROM failed. (This is a hardware error.)
The EEPROM heap is in an inconsistent state.
The BasicCard File System is in an inconsistent state.

The key specified ina START ENCRYPTION command was
not configured with a Declare Key statement in the BasicCard
program.

The SG-LFSR algorithm was specified ina START
ENCRYPTION command, but primitive polynomials were not
configured with a Declare Polynomials statement in the
BasicCard program.

The cryptographic key specified ina START ENCRYPTION
command was too short for the algorithm. All algorithms require
at least 8-byte keys; the Triple DES algorithm requires 16-byte
keys.

The active key has been disabled, either explicitly with a Disable
Key statement, or automatically when its error counter reached
zero.

Parameter P1 ina START ENCRYPTION command does not
specify a valid algorithm.

swAlreadyEncrypting

swNotEncrypting

swBadCommandCRC

swDesCheckError

swCoprocessorError

swAesCheckError

swLcLeError

swCommandToolLong

swResponseToolLong

swlnvalidState
swCardUnconfigured
swNewsStateError
SWP1P2Error
swOutsideEeprom

swDataNotFound

swllaWarning
swINSNotFound

swCLANotFound

swinternalError

66C0

66C1

66C2

66C3

66C4
66C5

6700

6781

6782
6985

6986

6987

6A00

6A02

6A88

6CXX
6D00

6E00
6F00

7.6 Status Bytes SW1 and SW?2

A START ENCRYPTION command was received while
encryption was already active.

An END ENCRYPTION command was received while
encryption was not active.

The active encryption algorithm is SG_LFSR with CRC, and the
CRC ina command was invalid.

The active encryption algorithm is Single DES or Triple DES,
and the authentication bytes in a command were invalid.

The Crypto-Coprocessor has reported an internal error.

The active encryption algorithm is AES, and the authentication
bytes in a command were invalid.

Either Lc has an unexpected value; or Le is absent when it should
be present, or present when it should be absent.

A command will not fit in the command buffer. In the Compact
BasicCard, this is the same size as the P-Code stack; in the
Enhanced BasicCard, it is 256 bytes. (In state LOAD, other limits
may apply, but the software support package handles this case.)

The response from the card is too long to be sent.

A built-in command was called, but the state of the BasicCard is
invalid for the command.

The card has not been configured by ZeitControl.

The state of the BasicCard has been changed with a SET STATE
command. After a SET STATE command, the BasicCard must be
reset before it will accept any furhter commands.

P1 or P2 is invalid for the command.

An invalid address was passed in P1P2 to one of the built-in
EEPROM access commands.

The built-in command GET APPLICATION ID returns this error
code if no Application ID was configured in the BasicCard.

Command successfully completed, but La was not equal to XX.

The INS byte of the command was not recognised (although the
CLA byte was valid).

The CLA byte of the command was not recognised.

An unexpected error condition was detected.

7.6.2 BasicCard P-Code Interpreter

If the P-Code interpreter in the BasicCard detects an error, it returns swlPCodeError (64) in SW1,
and the specific P-Code error in SW2. The P-Code error is one of the following:

pcStackOverflow
pcDivideByZero

pcNotImplemented

pcBadRamHeap
pcBadEepromHeap
pcReturnWithoutGoSub

01
02
03

04
05
06

The P-Code stack has grown beyond its comfigured size.
A division by zero (or a Mod with zero divisor) occurred.

An unimplemented P-Code instruction was executed (e.g. a
floating-point instruction in the Compact BasicCard).

Corruption of RAM has left the heap in an inconsistent state.
Corruption of EEPROM has left the heap in an inconsistent state.

A Return statement was executed with no corresponding GoSub.

115

7. Communications

pcBadSubscript
pcBadBounds

pcinvalidReal

pcOverflow

pcNegativeSqrt

pcDimensionError

pcBadStringCall
pcOutOfMemory

pcArrayNotDynamic
pcArrayTooBig
pcDeletedArray
pcPCodeDisabled

pcBadSystemCall
pcBadKey
pcBadLibraryCall
pcStackUnderflow

07
08

09
0A

0B
0C

0D
OE

OF
10
11
12

13
14
15
16

One of the subscripts in an array access was out of bounds.

One of the array subscript bounds in a ReDim statement was out
of range.

A floating-point operand was not a valid IEEE-format number.

The result of an arithmetic operation was too large or small for the
destination.

An attempt was made to take the square root of a negative number.

An array parameter did not have the expected number of
dimensions.

An invalid parameter was passed to a string function.

There was not enough free memory left to complete the
instruction.

The array parameter in a ReDim statement was not Dynamic.
The array size requested in a ReDim statement was too large.
An attempt was made to access an element of a deleted array.

A previous P-Code error has disabled the BasicCard. The card
must be reset before it can execute P-Code again.

A SYSTEM instruction had an invalid sub-function code.
An invalid key number was passed to a cryptographic function.
An invalid Plug-In Library function was called.

The P-Code stack has shrunk to a negative size.

7.6.3 Terminal P-Code Interpreter

The P-Code interpreter in the Terminal program can return the following status codes in SW1-SW2:

swNoCardReader
swCardReaderError
swNoCardInReader
swCardPulled

SWT1Error

swCardError

swCardNotReset

swKeyNotLoaded

swPolyNotLoaded

swBadResponseCRC

swCardTimedOut
swTermOutOfMemory

116

6790 No card reader detected on the given COM port.

6791 Aninvalid reply was received to a card reader command.

6792 No card is inserted in the card reader.

6793 The card has been removed from the card reader.

6794 Anunrecoverable T=1 protocol error occurred while
communicating with the card.

6795 Aninvalid response was received to a BasicCard command.

6796 The card has not been reset. A BasicCard must be reset before
the Terminal program can send it any commands.

6797 The key specified ina START ENCRYPTION command is
unknown to the Terminal program.

6798 The SG-LFSR algorithm was specified in a START
ENCRYPTION command, but primitive polynomials have
not been configured in the Terminal program.

6799 The active encryption algorithm is SG_LFSR with CRC, and
the CRC in a response was invalid.

679A The card did not respond within the time allowed.

679B The Terminal program has insufficient free memory to process

the response.

swBadDesResponse

swinvalidComPort
swNoPcscDriver
swPcscReaderBusy
swPcscError
swComPortBusy
swBadATR
SwTOError
SWPTSError
swDataOverrun

swBadAesResponse

swReservedINS
swReservedCLA

679C

679D
679F
67A0
67A1
67A2
67A3
67A4
67A7
67A8
67A9

6D80
6E80

7.7 Pre-Defined Commands

The active encryption algorithm is Single DES or Triple DES,
and the authentication bytes in a response were invalid.

The COM port is not in the range 1-4.

No PC/SC driver is installed on the PC.

The PC/SC reader is busy.

An unexpected PC/SC error occurred.

Another process is using the COM port.

The BasicCard returned an invalid ATR.

A T=0 protocol error occurred.

An error occurred during Protocol Type Selection.

The Terminal has lost characters sent by the card reader.

The active encryption algorithm is AES, and the authentication
bytes in a response were invalid.

An attempt was made to send a forbidden INS in T=0 protocol.

An attempt was made to send CLA=FF in T=0 protocol.

7.7 Pre-Defined Commands

7.7.1 States of the BasicCard

The Compact and Enhanced BasicCards have four states:

NEW: The card is in state NEW before ZeitControl configures it.
LOAD: The card is in state LOAD when the application developer gets it.

TEST: State TEST lets the application developer test software in the card.

RUN: The card is in state RUN when it is issued to the end user.

The Professional BasicCard has five states:

NEW: The card is in state NEW before ZeitControl configures it.
LOAD: The card is in state LOAD when the application developer gets it.
PERS: State PERS is for initialising user data.

TEST: State TEST lets the application developer test software in the card.

RUN: The card is in state RUN when it is issued to the end user.

The card can be switched between LOAD, PERS, and TEST any number of times, but the RUN state
is permanent. Once the card is switched to state RUN, it can’t be re-programmed.

117

7. Communications

7.7.2 Pre-Defined Commands — a Summary

The BasicCard operating system contains twelve or thirteen pre-defined commands. All commands
have class byte CLA = CO0. The INS byte takes the values 00, 02, 04, . . ., 16, 18, as follows:

GET STATE 00 Get the state and version of the card
EEPROM SIZE 02 Get the address and length of EEPROM
CLEAR EEPROM 04 Set specified bytes to FF
WRITE EEPROM 06 Load datainto EEPROM
READ EEPROM 08 Read data from EEPROM
EEPROM CRC 0A Calculate CRC over a specified EEPROM address range
SET STATE O0C Set the state of the card
GET APPLICATION ID OE Get the Application ID string
START ENCRYPTION 10 Start automatic encryption of command/response data
END ENCRYPTION 12 End automatic encryption
ECHO 14 Echo the command data
ASSIGN NAD 16 Assigna Node Address to the card
FILE IO 18 Execute a file system operation

Most of these commands are enabled only when the BasicCard is in an appropriate state. The following
table summarises which internal commands are valid in which states:

NEW LOAD PERS TEST RUN

GET STATE v v v v v
EEPROM SIZE v v
CLEAR EEPROM v v
WRITE EEPROM v v

READ EEPROM v v * * *
EEPROM CRC v v

SET STATE v v v v

GET APPLICATION ID v v

START ENCRYPTION v v

END ENCRYPTION v v

ECHO v v v v v

ASSIGN NAD v v v v v

FILE IO ** v v v

% The READ EEPROM command is allowed in states PERS, TEST, and RUN if
encryption with key number 0 is enabled (see 7.7.6 The READ EEPROM Command).

*% The FILE 10 command is allowed in state LOAD in the Enhanced BasicCard, but not in
the Professional BasicCard.

In state NEW, no checks are performed on addresses of EEPROM reads and writes. (This is to allow
ZeitControl to install upgrades to the BasicCard operating system, before delivery to the application
developer.)

In state LOAD, the EEPROM access commands are restricted to user EEPROM.

118

7.7 Pre-Defined Commands

These commands will typically be called at the following points in the development cycle:

=

Write and test a ZC-Basic application on the PC

EEPROM SIZE - check that the card has the expected EEPROM size
CLEAR EEPROM - set EEPROM to a known state

WRITE EEPROM - download the application to the card

EEPROM CRC - check that the EEPROM was correctly written

FILE 10 - create files and directories

SET STATE to TEST and reset the card

Run the application in the card

SET STATE to LOAD and reset the card

10. READ EEPROM to check any EEPROM changes made by the application

© o Nk wDD

(Most of this is handled automatically by the ZeitControl MultiDebugger development software.)
When the application is written and tested, cards can be switched into the RUN state for delivery to end
users.

119

7. Communications

7.7.3 The GET STATE Command

GET STATE - Get the state and version of the card

Command syntax: | CLA | INS P1 P2 Le
Co 00 00 00 00

Response: | ODATA SW1 | SW2
state (1 byte), version (n bytes) 61 n+1l

This command returns the state and version of the BasicCard.
The state byte (Compact and Enhanced BasicCards):

state: 00 01 02 03
State of card: | NEW | LOAD | TEST RUN

The state byte (Professional BasicCards):

state: 00 01 02 03 04
State of card: | NEW LOAD | PERS TEST RUN

The length of the version field depends on the card type, as follows:

Compact BasicCard: n =0 (i.e. no version field is returned)

Enhanced BasicCard: n = 2: major version number (03) followed by minor version number
Professional BasicCard: n >= 3: the version info is an ASCII string

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc is present, or Le is absent

SWP1P2Error P1<>00or P2 <>00

To call GET STATE from a Terminal program:

#1 ncl ude COVIVANDS. DEF
Call GetState (State@ Version$)

120

7.7 Pre-Defined Commands

The EEPROM SIZE Command

EEPROM SIZE - Get the address and length of EEPROM

Command syntax: | CLA | INS P1 P2 Le
Co 02 00 00 04

Response: | ODATA SW1 | SwW2
start (2 bytes), length (2 bytes) 90 00

Returns the start address and length of loadable EEPROM.
Command-Specific Error Codes in SW1-SW2:

swlLcLeError Lc is present, or Le is absent
swinvalidState Card is not in NEW or LOAD state
swP1P2Error P1<>00o0rP2<>00

To call EEPROM SIZE from a Terminal program:

#1 ncl ude COVMANDS. DEF
Call EepronSize (Start% Length%

121

7. Communications

7.7.4 The CLEAR EEPROM Command

CLEAR EEPROM - Set specified bytes to FF

Command syntax: | CLA | INS P1 P2 Lc | IDATA

Co 04 hi lo 02 | length (2 bytes)

Response: | SW1 | SW2
90 00

Sets length bytes of EEPROM to FF, starting from address hi:lo.
Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc <> 02, or length of IDATA <> 02
swinvalidState Card is not in NEW or LOAD state
swOutsideEeprom Address range not wholly contained in EEPROM

To call CLEAR EEPROM from a Terminal program:

#l ncl ude COMMANDS. DEF
Call C ear Eeprom (P1P2=addr ess, Length%

122

7.7 Pre-Defined Commands

7.75 The WRITE EEPROM Command

WRITE EEPROM - Load data into EEPROM

Command syntax: | CLA | INS P1 P2 Lc IDATA
Co 06 hi lo len | data

Response: | SW1 | SW2
90 00

Writes data (len bytes) to EEPROM starting at address hi:lo.
Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc <> length of IDATA
swinvalidState Card is not in NEW or LOAD state
swOQutsideEeprom Address range not wholly contained in EEPROM

To call WRITE EEPROM from a Terminal program:

Decl are Command &HCO &HO6 Wit eEepron(Data$, Disable Le)
Call WiteEeprom (P1lP2=address, Data$)

Note: For security reasons, the WRITE_EEPROM command is encrypted, and is not available for
general use. Calling this command from a user program is likely to damage the card irreparably. For
this reason, it is not included in COMMANDS.DEF. However, it is possible to call this command with
data supplied by the compiler in the Image File — see the BCLOAD.EXE source code in
Basi cCar dPr o\ Sour ce\ BCLoad for an example of how to do this. In such cases, you must
declare the WriteEeprom command yourself, as shown above.

123

7. Communications

7.7.6 The READ EEPROM Command

READ EEPROM - Read data from EEPROM

Command syntax: | CLA | INS P1 P2 Le
Co 08 hi lo len

Response: | ODATA SW1 | SW2
len bytes 90 00

Reads len bytes from EEPROM starting from address hi:lo. If you have configured key number 00 in
the card, then the READ EEPROM command can be called whatever the state of the card, by enabling
encryption with key 00. You should consider this option whenever the card contains data that is not
available elsewhere — if the card becomes unusable for any reason, for example because of hardware
errors writing to EEPROM, you can recover the data this way.

Command-Specific Error Codes in SW1-SW2:

swLclLeError Lc is present, or Le is absent
swinvalidState Card is not in NEW or LOAD state, and key 00 is not active
swOutsideEeprom Address range not wholly contained in EEPROM

To call READ EEPROM from a Terminal program:

#1 ncl ude COVMANDS. DEF
Call ReadEeprom (PlP2=address, Data$, Le=len)

124

7.7 Pre-Defined Commands

7.7.7 The EEPROM CRC Command

EEPROM CRC - Calculate a CRC over a specified EEPROM address range

Command syntax: | CLA | INS P1 P2 Lc IDATA Le
Co 0A hi lo 02 | length (2 bytes) 02
Response: | ODATA SW1 | SwW2
CRC (2 bytes) 90 00

Returns the CRC of length bytes from address hi:lo. All bytes must be in EEPROM. This command
can be used to verify the contents of EEPROM after downloading an application to the card.

In the Enhanced BasicCard, this command also serves the function of enabling the BasicCard file
system. To access the file system while the card is still in state LOAD, an EEPROM CRC command
must be sent, to let the card know that the relevant data structures have been downloaded; the
BCLOAD program does this automatically after downloading a ZC-Basic program to the BasicCard.

Warning: Do not call this command in the Enhanced BasicCard before a valid ZC-Basic program has
been loaded. The card will attempt to enable a non-existent file system, which can permanently disable
the card. (In the Compact and Professional BasicCards, you can call this command at any time.)

Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc <> 02 or length of IDATA <> 02 or Le not present
swinvalidState Card is not in NEW or LOAD state
swOutsideEeprom Address range not wholly contained in EEPROM

To call EEPROM CRC from a Terminal program:

#1 ncl ude COMVANDS. DEF
Cal | EepronCRC (Pl1P2=address, Length%

The CRC is returned in the Lengt h%variable.

Note: If Le >= 3, the Professional BasicCard returns a 32-bit CRC. To call the 32-bit EEPROM CRC
command from a Terminal program:

#1 ncl ude COMMVANDS. DEF

CRCHi % = | ength
Cal | EepronCRC32 (P1P2=address, CRCH % CRCL0%

16-bit and 32-bit CRC calculations are described in 6.8.4 CRC Calculations.

125

7. Communications

7.7.8 The SET STATE Command

SET STATE - Set the state of the card

Command syntax: | CLA | INS P1 P2
Co 0C state 00

Response: | SW1 | SW2
90 00

This command changes the state of the card, as folllows:

Compact and Enhanced BasicCards:

state: 01 02 03
New card state: | LOAD | TEST RUN

Professional BasicCard:

state: 01 02 03 04
New card state: | LOAD PERS TEST RUN

After this command is successfully called, no further commands are allowed until the card is reset.
Command-Specific Error Codes in SW1-SW2:

swLcLeError Lc or Le present

swlnvalidState Card is in RUN state

swCardUnconfigured The card has not been configured by ZeitControl. If you see this error,
contact ZeitControl for a replacement card.

SWP1P2Error P1 =00 or P1 > RUN or P2 <> 00

To call SET STATE from a Terminal program:

#I ncl ude COMVANDS. DEF
Call SetState (P1=State@

Note: This command may also be used to certify EEPROM code in Enhanced BasicCards ZC3.1,
ZC3.2, and ZC3.31. Contact ZeitControl if you need to know how this works.

126

7.7 Pre-Defined Commands

7.7.9 The GET APPLICATION ID Command

GET APPLICATION ID — Get the Application ID string

Command syntax: | CLA | INS P1 P2 Le
Co OE 00 00 00

Response: | ODATA SW1 | SwW2
Application-1D 61 len

This command returns the Application ID specified in the ZC-Basic source code statement:
Declare ApplicationID = Application-ID
Command-Specific Error Codes in SW1-SW2:

swlLcLeError Lc is present or Le is absent
swinvalidState Card is not in TEST or RUN state
SWP1P2Error P1<>00or P2 <>00
swDataNotFound Application ID not configured

To call GET APPLICATION ID from a Terminal program:

#1 ncl ude COVIVANDS. DEF
Cal | Get Applicationl D (Nane$)

127

7. Communications

7.7.10 The START ENCRYPTION Command

START ENCRYPTION - Start automatic encryption of command/response data

Compact and Enhanced BasicCards:

Command syntax: | CLA | INS P1 P2 Lc | IDATA

Response: | ODATA SW1 | SW2

Le

Cco 10 | algorithm | key 04 | Random number RA (4 bytes) 04

Random number RB (4 bytes) 90 00

Professional BasicCard:

Command syntax: | CLA | INS P1 P2 Lc IDATA

algorithm

Le

Cco 10 | algorithm | key leng | Random number RA (leng bytes) 00

11

12

21

22

31

32

Response: | ODATA Swi1 SW2
algorithm (1 byte); Random number RB (leng bytes) 61 leng+1
This command initiates automatic encryption of command and response data fields.
algorithm is one of the following cryptographic algorithms:
leng key length
SG-LFSR (Shrinking Generator — Linear Feedback Shift Register) 4 8
SG-LFSR with CRC-16 4 8
Single DES (Data Encryption Standard, 8-byte key) 4 8
Triple DES (Data Encryption Standard, 16-byte key) 4 10 (dedimal 16)
AES-128 (Advanced Encryption Standard, 128-bit key) 8 10 (decimal 16)
AES-192 (Advanced Encryption Standard, 192-bit key) 8 18 (decimal 24)
AES-256 (Advanced Encryption Standard, 256-bit key) 8 20 (decimal 32)

33

For descriptions of these algorithms, and the role of RA and RB, see Chapter 8: Encryption

Algorithms.

key is the key number. It must match one of the key numbers configured in the BasicCard program with
the ZC-Basic Declare Key statement, of length at least key length from the above table.

Algorithms supported in the Compact BasicCard
The Compact BasicCard supports algorithms 11 (SG-LFSR) and 12 (SG-LFSR with CRC-16).

Algorithms supported in the Enhanced BasicCard

The Enhanced BasicCard supports algorithms 21 (Single DES) and 22 (Triple DES).

128

7.7 Pre-Defined Commands

Algorithms supported in the Professional BasicCard

The different Professional BasicCard versions support various combinations of cryptographic
algorithms. See the Professional BasicCard Datasheet for up to date information. At the time of
writing, the following versions are available:

BasicCard Version Algorithms

ZCA4.5A AES-128

ZC4.5D Single DES, Triple DES

ZC5.4 AES-128, Single DES, Triple DES

ZC5.5 AES-128, AES-192, AES-256, Single DES, Triple DES

Automatic Algorithm Selection

The Professional and Enhanced BasicCards support automatic algorithm selection: If algorithm is zero,
then the card automatically selects the strongest algorithm that is compatible with len; and the key
length. In the Professional BasicCard, the algorithm thus selected is returned in the first byte of
ODATA.

The Compact BasicCard returns with SW1-SW2 = swUnknownAlgorithm if algorithm is zero.
Command-Specific Error Codes in SW1-SW2:

swKeyNotFound Key number key was not configured
swPolyNotFound Primitive polynomials were not initialised
swKeyTooShort Key number key is too short
swKeyDisabled Key number key is disabled

swUnknownAlgorithm algorithm is unknown, or is not enabled in the card
swAlreadyEncrypting Encryption is already enabled

swLclLeError Compact and Enhanced BasicCards: Lc <> 04, or Le is absent
Professional BasicCard: RA is too short, or Le is absent
swinvalidState Card is not in TEST or RUN state

To call START ENCRYPTION from a Terminal program for a Compact or Enhanced BasicCard, or a
Professional BasicCard with DES support:

#1 ncl ude COMVANDS. DEF
Call StartEncryption ([P1=Algorithm] P2=KeyNunber, Rnd)
To call START ENCRYPTION from a Terminal program for a Professional BasicCard:

#1 ncl ude COVMANDS. DEF
Cal | ProEncryption ([Pl=Algorithm] P2=KeyNunber, Rnd, Rnd)

Note that both forms are accepted by a Professional BasicCard with DES support.

Alternatively, COMMANDS.DEF defines the subroutine AutoEncryption, which automatically
selects the correct version of the command:

#1 ncl ude COMVANDS. DEF
Cal | Aut oEncryption (KeyNumnber)

129

7. Communications

7.7.11 The END ENCRYPTION Command

END ENCRYPTION - End automatic encryption

Command syntax: | CLA | INS P1 P2
Co 12 00 00

Response: | SW1 | SW2
90 00

This command ends automatic encryption of command and response data fields.
Command-Specific Error Codes in SW1-SW2:

swNotEncrypting Encryption is not currently enabled
swLclLeError Lc or Le present

swinvalidState Card is not in TEST or RUN state
SWP1P2Error P1<>00or P2 <>00

To call END ENCRYPTION from a Terminal program:

#l ncl ude COMMANDS. DEF
Cal | EndEncryption()

130

7.7.12 The ECHO Command

ECHO - Echo the command data

Command syntax:

Response:

7.7 Pre-Defined Commands

CLA | INS P1 P2 Lc IDATA Le
Cco 14 increment 00 datalen | data resplen

ODATA SW1 | SW2

data+increment 90 00

This command simply adds increment to each byte in data, and returns resplen bytes. It is intended for

testing communication and encryption (see 8.9 Encryption — a Worked Example).

Note: The Compact and Enhanced BasicCards ignore resplen, always returning datalen bytes.
Command-Specific Error Codes in SW1-SW2:

swLcLeError
SWP1P2Error

Lc <> length of IDATA or Le not present

P2 <> 00

To call ECHO from a Terminal program:
#I ncl ude COMVANDS. DEF

Call Echo (Pl=increnent,

S$, Le=respl en)

131

7. Communications

7.7.13 The ASSIGN NAD Command

ASSIGN NAD - Assign a Node Address to the card

Command syntax: | CLA | INS P1 P2
Co 16 NAD 00

Response: | SW1 | SW2
90 00

If 1 <= NAD <=7, this command tells the card to respond only to those messages in which the high
nibble of the first byte (the NAD) is equal to NAD. If NAD = 0, this command tells the card to respond
to all messages. Other values of NAD are invalid.

Notes:

e« The ASSIGN NAD command is not used by ZeitControl’s software; all commands sent by the
Terminal program have NAD=00.

e This command is supported only by Compact BasicCard ZC1.1 and Enhanced BasicCards ZC3.3
through ZC3.9.

Command-Specific Error Codes in SW1-SW2:
swLcLeError Lc or Le present
SWP1P2Error P1>07 or P2 <> 00
To call ASSIGN NAD from a Terminal program:

#| ncl ude COMVANDS. DEF
Cal | Assi gnNAD (P1=NAD)

132

7.7 Pre-Defined Commands

7.7.14 The FILE 10 Command

FILE 10 - Execute a file system operation (Enhanced and Professional BasicCards only)

Command syntax: | CLA | INS P1 P2 Lc IDATA Le
Cco 18 | SysCode | filenum | CommandLen | CommandData | ResponseLen
Response: | ODATA SW1 | SwW2
status (1 byte) + ResponseData 90 00

This command is sent whenever the Terminal program attempts to access the file system in the
BasicCard. The P-Code interpreter in the PC builds the command automatically, sends it to the
BasicCard, and interprets the response. SysCode is the same as the SysCode parameter to the SYSTEM
P-Code instruction — see 9.7.4 FILE SYSTEM Functions. The status byte in the ODATA field is the
FileError byte for the operation. The format of the CommandData and ResponseData fields depends
on the value of SysCode, and is not described in this document.

Command-Specific Error Codes in SW1-SW2:
swLclLeError Lc <> length of IDATA, or Le absent
SWP1P2Error SysCode is not a valid file system operation

The FILE 10 command was not designed to be called directly from a Terminal program. The P-Code
interpreter calls it automatically when a file system operation is requested — see Chapter 4: Files and
Directories for a description of the file system commands available in ZC-Basic.

133

7. Communications

7.8 The Command Definition File COMMANDS.DEF

The file COMMANDS.DEF can be found in the directory Basi cCar dPr o\ I nc. It contains:

e declarations of all the pre-defined commands;
« definitions of the ZC-Basic SW1-SW?2 status codes; and
« definitions of P-Code error codes.

See 7.6 Status Bytes SW1 and SW?2 for descriptions of the status and error codes.
Here is the file COMMANDS.DEF:

Rem Pr e-defi ned Basi cCard commands

#1 f Not Def CommandsDef I ncl uded ' Prevent nultiple inclusion
Const CommandsDef | ncl uded = True

Decl are Conmmand &HCO &HOO Get State(Lc=0, State@ Version$)
Decl are Command &HCO &HO2 Eepronti ze(Lc=0, Start% Length%
Decl are Command &HCO &HO04 Cl ear Eepron{Lengt h% Disable Le)

Rem Since Version 3.01, the WRI TE EEPROM command i s no | onger support ed.
Rem Use it at your own risk!

Rem

Rem Declare Command &HCO &HO6 Wit eEepronm(Data$, Disable Le)

Decl are Conmmand &HCO &HO8 ReadEepr om(Lc=0, Data$)

Decl are Command &HCO &HOA Eepr onTCRC(Lengt h%)

Decl are Command &HCO &HOA Eepr onCRC32(Lc=2, CRCHi % CRCL0% Le=4)
Decl are Command &HCO &HOC Set St at e()

Decl are Conmmand &HCO &HOE Get Appli cati onl D(Lc=0, Nane$)

Decl are Command &HCO &H10 Start Encryption(RA& Le=0)

Decl are Command &HCO &H12 EndEncryption()

Decl are Conmand &HCO &H14 Echo(S$)

Decl are Command &HCO &H16 Assi gnNAD()

Rem Basi cCard operating systemerrors

Const swComandOK = &H9000
Const swRet ri esRemai ni ng = &H63C0
Const swkepromiNiteError = &H6581
Const swBadEepr omHeap = &H6582
Const swBadFi | eChai n = &H6583
Const swKeyNot Found = &H6611
Const swPol yNot Found = &H6612
Const swKeyTooShort = &H6613
Const swKeyDi sabl ed = &H6614
Const swuUnknownAl gorithm = &H6615
Const swAl readyEncrypting = &H66C0
Const swNot Encrypti ng = &H66C1
Const swBadCommandCRC = &H66C2
Const swbhesCheckErr or = &H66C3
Const swCoprocessor Error = &H66C4
Const swiLcLeError = &H6700
Const swConmandToolLong = &H6781
Const swResponseToolLong = &H6782
Const swinvalidState = &H6985
Const swCar dUnconfi gured = &H6986
Const swiNewSt at eErr or = &H6987
Const swP1P2Err or = &H6A00
Const swQut si deEepr om = &H6A02

134

Const
Const
Const
Const
Const
Const

swDat aNot Found
swl NSNot Found
swReser vedl NS
swCLANot Found
swReser vedCLA
swi nt ernal Error

Rem SWL=&H61 i s Le war ni ng:

Const

swllLeWar ni ng

7.8 The Command Definition File COMMANDS.DEF

&H6A88
&H6D00
&H6D80
&HGEOO
&HGES0
&H6F00

&H61

Rem SWL=&H6C i s La warning (T=0 protocol

Const

Rem P-Code interpreter errors (SW=&H64, SW2=P- Code error)

Const

Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const

swllLaWar ni ng

swlPCodeErr or

pcSt ackOver f | ow
pcDi vi deByZer o
pcNot | nmpl enent ed
pcBadRanHeap
pcBadEepr onHeap
pcRet ur nW t hout GoSub
pcBadSubscri pt
pcBadBounds

pcl nval i dReal
pcOver f | ow
pcNegati veSqgrt
pcDi nensi onErr or
pcBadStri ngCal |
pcQut Of Menory
pcArrayNot Dynam ¢
pcArrayTooBi g
pcDel et edArray
pcPCodeDi sabl ed
pcBadSyst ental |
pcBadKey

pcBadLi braryCal |
pcSt ackUnder f | ow

Rem Error codes generated by the

Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const

swNoCar dReader
swCar dReader Er r or
swNoCar dl nReader
swCar dPul | ed
SWT1Error
swCar dEr r or

swCar dNot Reset
swKeyNot Loaded
swPol yNot Loaded
swBadResponseCRC
swCar dTi nedQut
swrler nout O Menor y
swBadDesResponse
swi nval i dConPor t
swConPor t Not Support ed
swNoPcscDri ver
swPcscReader Busy

&H6C

&H64

&HO1
&H02
&HO3
&HO4
&HO05
&HO6
&HO7
&HO8
&HO9
&HOA
&HOB
&HOC
&HOD
&HOE
&HOF
&H10
&H11
&H12
&H13
&H14
&H15
&H16

Ter m nal

&H6790
&H6791
&H6792
&H6793
&H6794
&H6795
&H6796
&H6797
&H6798
&H6799
&HGT79A
&H679B
&H679C
&H679D
&H679E
&H679F
&H67A0

135

7. Communications

Const swPcscError

Const swConPor t Busy

Const swBadATR

Const swIOErr or

Const sSWPTSErr or

Const swhat aOverrun

Const swCommandTooShort
Const swCommandFor mat
Const swResponseTooShort
Const swUnexpect edResponse
Const sw nval i dSet St at e
Const swrTer i nal Progr anRunni ng

#Endl f ' CommandsDef | ncl uded

136

&H67AL
&H67A2
&H67A3
&H67A4
&H67A7
&H67A8
&H67A9
&H67AA
&H67AB
&H67AC
&H67AD
&H67AE

8. Encryption Algorithms

The Compact BasicCard supports the following two encryption algorithms:

Algorithm
11 SG-LFSR (Shrinking Generator — Linear Feedback Shift Register)
12 SG-LFSR with CRC-16

The Enhanced BasicCard supports the following two encryption algorithms:

Algorithm
21 Single DES (Data Encryption Standard, 8-byte key)
22 Triple DES (Data Encryption Standard, 16-byte key)

The Professional BasicCard supports some or all of the following encryption algorithms:

Algorithm
21 Single DES (Data Encryption Standard, 8-byte key)
22 Triple DES (Data Encryption Standard, 16-byte key)
31 AES-128 (Advanced Encryption Standard, 128-bit key)
32 AES-192 (Advanced Encryption Standard, 192-bit key)
33 AES-256 (Advanced Encryption Standard, 256-bit key)

This chapter describes these algorithms in detail, to give interested readers the opportunity to evaluate
them. But you don’t need to know how these algorithms work in order to use them; if you only want to
know how to use them from ZC-Basic, skip this chapter and see instead 3.17.1 Implementing
Encryption.

8.1 The DES Algorithm

The DES algorithm is the internationally recognised Data Encryption Standard, defined in the ANSI
standard documents X3.92-1981 (Data Encryption Algorithm) and X3.106-1983 (Data Encryption
Algorithm — Modes of Operation). See these documents for a definition of the DES algorithm itself; for
a fuller treatment, including ‘C’ source code, see Bruce Schneier’s Applied Cryptography (Second
Edition, John Wiley & Sons, Inc., 1996).

As you can see from the dates of the ANSI documents, the DES algorithm is no longer young. In fact,
the original DES algorithm is usually referred to as Single DES, and must now be regarded as less than
completely secure. Special-purpose hardware can be constructed for several tens of thousands of
dollars, that can break Single DES encryption in less than a day. For this reason, a stronger version,
Triple DES, has become a de facto standard in the banking world. This algorithm is generally believed
to be safe against all currently feasible attacks. However, Single DES is still used for protecting
confidential but financially worthless data, such as a patient’s medical records.

The original ANSI X3.92 document defines DES as an encryption function that takes a 56-bit key K
and an 8-byte data block P as input, and returns an 8-byte data block C as output:

C= EK(P)
The inverse of this is the DES decryption function:
P =Dk(C)

(This notation is taken from Bruce Schneier’s Applied Cryptography: P and C denote plaintext and
ciphertext, E and D are encryption and decryption, and K is the key.)

137

8. Encryption Algorithms

Note that a Single DES key contains only 56 bits, although ZC-Basic requires 8-byte keys. This is
usual in DES implementations; the top bit of each byte can be used as a parity check, or simply thrown
away (which is what the BasicCard does).

The Triple DES algorithm takes a 16-byte key and splits it into two 8-byte keys KL and KR. Then the
encryption and decryption functions are given by

C= E3K(P) = ExL(Dkr(EkL(P))) and
P= DBK(C) = DkL(Ekr(DkL(C)))

(The four functions Ey , Dy , E% , and D can be called directly from ZC-Basic — see 3.17.6 DES
Encryption Primitives.)

Given such encryption and decryption functions, there are several ways that they can be used to encrypt
and decrypt a message of arbitrary length. The method used by the Enhanced BasicCard is described in
the next section.

8.2 Implementation of DES in the BasicCard

Apart from their encryption and decryption functions (E and D versus E* and D®), the implementations
of Single DES and Triple DES in the Enhanced BasicCard are identical. To start with, we need to
know how to encrypt a message that is longer than 8 bytes. (All commands and responses encrypted
with DES in the BasicCard are at least 8 bytes long.)

8.2.1 The Message Encryption Functions MEg and ME?

The Single DES message encryption function C = ME(P) is defined as follows. We are given:
e amessage P, at least 8 bytes in length;

e an 8-byte key K;

« the Single DES encryption and decryption functions Ex and Dy ;

« an 8-byte initialisation vector C, (more about this in 8.2.3 The Initialisation Vector).

First, split the message P into 8-byte blocks P, , P, ,..., Po_1, plus a final block P, that may be shorter
than 8 bytes. Pad this final block with m zeroes to a length of 8 bytes (so 0 <= m <= 7). Then compute,
for 1<=i<=n:

Ci = Ek(Ci-1 Xor P))

(Note that the initialisation vector C, is needed to compute C;.) Then throw away the last m bytes of
the penultimate block C,_; , and concatenate the resulting blocks C; ,..., C, to get the encrypted
ciphertext C.

If we threw away the last m bytes of the last block C,, , then the message C couldn’t be decrypted by its
recipient. But the recipient can reconstruct the last m bytes of C,_; , as follows:

The last block is computed from C, = Ex(C,_; Xor P,)
Therefore, Dk(C,) = C,1 Xor P,
which means that Ci1 = Dk(C,) Xor P,

But the last m bytes of P, are all zero, so the last m bytes of C,_; are equal to the last m bytes of
Dk(C,), which can be computed without prior knowledge of the plaintext P. This trick is called
ciphertext stealing, and it allows us to keep encrypted messages to their original size.

The Triple DES message encryption function C = ME(P) is defined in exactly the same way, except
that the key K is 16 bytes long, and the Triple DES encryption function E? is substituted for the Single
DES function E.

138

8.2 Implementation of DES in the BasicCard

8.2.2 The Message Decryption Functions MDy and MD?

The Single DES message decryption function P = MDg(C) is the inverse of ME. First restore the
penultimate block C,,_; to 8 bytes, as described in the previous section. Then compute, for 1 <=i<=n:

P = Ci_]_ Xor DK(Cl)

Throw away the last m bytes in P, (which should all be zero), and concatenate all the resulting blocks
P, ,..., P, to get the original plaintext message P.

The Triple DES message decryption function C = MD%(P) is defined in exactly the same way, except
that the Triple DES decryption function D? is substituted for the Single DES function D.

8.2.3 The Initialisation Vector

The initialisation vector Cy is determined as follows:

For the first command following a START ENCRYPTION command, the initialisation vector Cqy
depends on the command and response fields of the START ENCRYPTION command:

Command syntax: | CLA | INS P1 P2 Lc IDATA Le

Cco 10 | algorithm | key 04 | Random number RA (4 bytes) 04

Response: | ODATA SW1 | SW2
Random number RB (4 bytes) 90 00

In this case, Cy consists of the first two bytes of RA, followed by all four bytes of RB, followed by the
last two bytes of RA.

For subsequent commands and responses, C, is simply the last ciphertext block C, of the previous
message.
8.2.4 Encryption of Commands in the Enhanced BasicCard

A command has the following structure (shaded blocks are optional):

lcta| ns | p1 | P2 | | Le |IDATA | | Le |

Encryption consists of the following steps:

e |fthe Lc or Le fields are absent, insert Lc¢' = 00 and/or Le' = 00:

lctA| INs | PL | P2 | Lc | IDATA | Le |

e Append two zeroes (the resulting command now contains at least 8 bytes):

P=|cta| INs | PL | P2 | Lc [IDATA | Le | o0 | 00 |

« Encrypt the whole command P, with C = MEg(P) or C = ME%(P):

¢ Wrap the resulting ciphertext C in the original command parameters:

lctA| Nns | PL [P2 [Le+8| ¢ | e |

The resulting command is always exactly 8 bytes longer than the original command. These 8 bytes of
redundancy enable an authentication check to be done: the command parameters CLA INS P1 P2 Lc'

139

8. Encryption Algorithms

Le' 00 00 in the decrypted command must match the wrapping, otherwise the command is rejected,
with SW1-SW2 = swDesCheckError.

8.2.5 Encryption of Responses in the Enhanced BasicCard

A response has the following structure (the shaded block is optional):

| ODATA | | swi | sw2 |

Encryption consists of the following steps:

e Append six zeroes:

P=|ODATA |swi|sw2| oo | oo | oo | oo | 00 | 00 |

« Encrypt the resulting response P, with C = MEx(P) or C = MEk(P):

e Append the original SW1-SW2:

| Cc |swi|swe|

The resulting response is always exactly 8 bytes longer than the original response. As with command
encryption, these 8 bytes of redundancy enable an authentication check to be done on the response: if
the decrypted response doesn’t end with SW1-SW2 followed by six zeroes, the response is rejected,
and SW1-SW2 = swBadDesResponse is returned to the caller in the Terminal program.

Note: If status bytes SW1 SW2 indicate an error (i.e. SW1SW2 <> swCommandOK and SW1 <>
swlleWarning), then the response is not encrypted.

8.2.6 Encryption of Commands in the Professional BasicCard

The Professional BasicCard required a new encryption algorithm, because the algorithms described
above for the Enhanced BasicCard are not compatible with the T=0 protocol.

A command has the following structure (shaded blocks are optional):

lcta|l ns | Pt | P2 | | Le |IDATA | | Le |

Encryption consists of the following steps:

« Insert an LeFlag byte: 01 if Le is present, 00 if Le is absent:

lctA| INs | PL | P2 | | Le |IDATA | |LeFlag| | Le |

e Ifthe Le field is absent, append Le" = 00:

lcta|lins | p1 [P2 | | Le [IDATA | | LeFlag | Le |

e Calculate the 32-bit CRC of the resulting data:
CRC =CRC32 (CLA+ INS+P1+P2[+Lc+ IDATA] + LeFLag + Le")
The CRC32 function is defined in 6.8.4 CRC Calculations.

140

8.2 Implementation of DES in the BasicCard

If the Lc field is absent, insert Lc¢' = 00:

lcta] Ins | PL | P2 | Le | [IDATA | | LeFlag | Le' |

e Append two zeroes, followed by the CRC:

P=|cLA| INs | PL | P2 | Lc |IDATA | LeFlag| Le' | 00 | 00 | CRC |

Encrypt the whole command P, with C = MEk(P) or C = ME i(P):

e Wrap the resulting ciphertext C in the original command parameters:

lctA| INs | PL | P2 [Le+8 | C | Le |

Le" is computed as follows (this is where T=0 compatibility comes in):

* If Le was absent, then Le™ = 08
e IfLe=00,thenLe" =00
¢ Otherwise, Le" = Le + 08

The resulting command is 8 or 9 bytes longer than the original command. When the BasicCard receives
the command, it checks that the decrypted data matches the unencrypted command parameters, and that
the CRC is correct. If not, the command is rejected, with SW1-SW2 = swDesCheckError.

8.2.7 Encryption of Responses in the Professional BasicCard

A response has the following structure (the shaded block is optional):

| ODATA | | swi | sw2 |

Encryption consists of the following steps:
¢ Calculate the 32-bit CRC of the response:
CRC = CRC32 ([ODATA] + SW1 + SW2)
The CRC32 function is defined in 6.8.4 CRC Calculations.
e Append two zeroes and the CRC:

P=|ODATA |swi|sw2| oo | o0 |cRc|

« Encrypt the resulting response P, with C = MEg(P) or C = ME i(P):

e Append the original SW1-SW2:

| Cc | swi|swe|

The resulting response is always exactly 8 bytes longer than the original response. If the decrypted
response doesn’t end in SW1 SW2 00 00 CRC, the response is rejected, and SW1-SW2 =
swBadDesResponse is returned to the caller in the Terminal program.

Note: If status bytes SW1 SW2 indicate an error (i.e. SW1SW2 <> swCommandOK and SW1 <>
swlleWarning), then the response is not encrypted.

141

8. Encryption Algorithms

8.3 Certificate Generation Using DES

The ZC-Basic Certificate command is described in 3.17.7 Certificate Generation. The certificate
generation algorithm is as follows:

Let P be the data to be signed. Append the byte 80 to P (this ensures that messages differing only in the
number of trailing zeroes will have different certificates). Split the resulting P into 8-byte blocks Py ...,
P, , padding the last block P, with zeroes if necessary. Fill the initialisation vector C, with zeroes, and
then compute, for 1 <=i<=n:

Ci = Ex(Ci_1 Xor P) (for keys K shorter than 16 bytes)
Ci = EX(Ciy Xor P) (for keys K 16 bytes or longer)

The certificate is the final ciphertext block C,,.

8.4 The AES Algorithm

On 28™ February 2001, the US National Institute of Standards and Technology announced the
Advanced Encryption Standard (AES), the long-awaited replacement for the DES standard. AES is
described in “Draft Federal Information Processing Standard for the AES”. This document is available
from NIST’s web site, at http://csrc.nist.gov/encryption/aes. AES uses the Rijndael algorithm as its
cryptographic primitive. In its original specification, the Rijndael algorithm encrypts and decrypts data
blocks of length 128, 192, or 256 bits, using a key of length 128, 192, or 256 bits. The AES
specification fixes the block length at 128 bits (i.e. 16 bytes), but retains the three key length options.

AES with a 128-bit key length (or AES-128) is considered equal or superior in security to Triple DES.
However, it is roughly six times faster. Longer key lengths are correspondingly more secure. For
details of how to call the AES encryption primitives from a ZC-Basic program, see 6.2 AES: The
Advanced Encryption Standard Library.

8.5 Implementation of AES in the Professional BasicCard

This section parallels 8.2 Implementation of DES in the BasicCard. Here the functions Ex and Dy
are the AES-xxx encryption and decryption primitives, where xxx is the key length in bits: 128, 192, or
256. To start with, we need to know how to encrypt a message that is longer than 16 bytes. (All
commands and responses encrypted with AES in the BasicCard are at least 16 bytes long.)

8.5.1 The Message Encryption Function AES-ME

The AES-xxx message encryption function C = AES-ME(P) is defined as follows. We are given:
e amessage P, at least 16 bytes in length;

e al6-byte key K;

« the AES- xxx encryption and decryption functions Ex and Dy ;

* a16-byte initialisation vector C, (more about this in 8.5.3 The Initialisation Vector).

First, split the message P into 16-byte blocks Py , P, ,..., P, plus a final block P, that may be shorter
than 16 bytes. Pad this final block with m zeroes to a length of 16 bytes (so 0 <= m <= 15). Then
compute, for 1<=i<=n;:

Ci = Ek(Ci-1 Xor P))

(Note that the initialisation vector C, is needed to compute C;.) Then throw away the last m bytes of
the penultimate block C,_; , and concatenate the resulting blocks C; ,..., C, to get the encrypted
ciphertext C. For an explanation of why bytes are discarded from the penultimate block, see the
description of ciphertext stealing in 8.2.1 The Message Encryption Functions MEy and MEg

142

http://csrc.nist.gov/encryption/aes

8.5 Implementation of AES in the Professional BasicCard

8.5.2 The Message Decryption Function AES-MDg

The AES- xxx message decryption function P = AES-MDy(C) is the inverse of AES-MEy. First
restore the penultimate block C,_; to 16 bytes, as described for DES in 8.2.1 The Message Encryption
Functions MEk and ME&. Then compute, for 1 <=i<=n:

Pi = Ci_]_ Xor DK(Cl)
Throw away the last m bytes in P, (which should all be zero), and concatenate all the resulting blocks
P, ,..., P, to get the original plaintext message P.
8.5.3 The Initialisation Vector
The initialisation vector Cy is determined as follows:

For the first command following a START ENCRYPTION command, the initialisation vector Cqy
depends on the command and response fields of the START ENCRYPTION command:

Command syntax: | CLA | INS P1 P2 Lc IDATA Le

Cco 10 | algorithm | key 08 | Random number RA (8 bytes) 00

Response: | ODATA SW1 | SW2
algorithm (1 byte); Random number RB (8 bytes) 90 00

In this case, C, consists of the first four bytes of RA, followed by all eight bytes of RB, followed by
the last four bytes of RA.

For subsequent commands and responses, C, is simply the last ciphertext block C, of the previous
message.

8.5.4 Encryption of Commands

A command has the following structure (shaded blocks are optional):

lcta|l ins | Pt | P2 | | Le |IDATA | | Le |

Encryption consists of the following steps:

e Insert an LeFlag byte: 01 if Le is present, 00 if Le is absent:

lctA| INs | PL | P2 | | Le |IDATA | |LeFlag| | Le |

e Ifthe Le field is absent, append Le" = 00:

lcta|l ins | p1 [P2 | [Le [IDATA | | LeFlag | Le |

e Calculate the 32-bit CRC of the resulting data:
CRC =CRC32 (CLA + INS + P1 + P2 [+ Lc + IDATA] + LeFLag + Le")
The CRC32 function is defined in 6.8.4 CRC Calculations.
e Ifthe Lc field is absent, insert Lc' = 00:

lcta] Ins | Pr | P2 | Le | [IDATA | | LeFlag | Le' |

143

8. Encryption Algorithms

e Append ten zeroes, followed by the CRC:

P=|ctA| INs | PL | P2 | Lc |IDATA | LeFlag| Le' | 00 | .. | 00 |cRc]

e Encrypt the whole command P, with C = AES-ME(P):

e Wrap the resulting ciphertext C in the original command parameters:

lctA| INs | PL | P2 [Le+16 | € | Let]

Le™ is computed as follows:

e |f Le was absent, then Le" =10
e |fLe=00, then Le" =00
e Otherwise, Le" =Le + 10

The resulting command is 16 or 17 bytes longer than the original command. When the BasicCard
receives the command, it checks that the decrypted data matches the unencrypted command
parameters, and that the CRC is correct. If not, the command is rejected, with SW1-SW2 =
swAesCheckError.

8.5.5 Encryption of Responses

A response has the following structure (the shaded block is optional):

| ODATA | | swi | sw2 |

Encryption consists of the following steps:
e Calculate the 32-bit CRC of the response:
CRC = CRC32 ([ODATA] + SW1 + SW2)
The CRC32 function is defined in 6.8.4 CRC Calculations.
e Append ten zeroes and the CRC:

P=|ODATA | swi[sw2| o0 | .. | 00 |CRC |

e Encrypt the resulting response P, with C = AES-ME(P):

e Append the original SW1-SW2:

| Cc | swi|swe|

The resulting response is always exactly 16 bytes longer than the original response. If the decrypted
response doesn’t end in SW1 SW2 00..00 CRC, the response is rejected, and SW1-SW2 =
swBadAesResponse is returned to the caller in the Terminal program.

Note: If status bytes SW1 SW2 indicate an error (i.e. SW1SW2 <> swCommandOK and SW1 <>
swlleWarning), then the response is not encrypted.

144

8.6 The SG-LFSR Algorithm

8.6 The SG-LFSR Algorithm

This algorithm was designed by D. Coppersmith, H. Krawczyk, and Y. Mansour (“The Shrinking
Generator”, Advances in Cryptology — CRYPTO 93 Proceedings, Springer-Verlag, 1994). It uses two
Linear Feedback Shift Registers, A and S, to generate a stream of bits: the registers are run in parallel
until register S generates a 1 bit, at which point the bit generated simultaneously by register A is used
as the next bit in the stream.

The Compact BasicCard implements this algorithm with Linear Feedback Shift Registers A and S of
length 31 and 32 respectively. In order for the system to be secure against attack with registers of this
size, it is necessary to use generating polynomials PolyA and PolyS that are unknown to the attacker.
To this end, we supply a program for the generation of random cryptographic keys and primitive
polynomials — see 5.9.4 The Key Generator KEYGEN.EXE.

C++ source code for the SG-LFSR algorithm is provided in the development kit, in the directory
Basi cCar dPr o\ Sour ce\ SG LFSR

8.7 Implementation of SG-LFSR in the Compact BasicCard

The BasicCard implementation uses primitive polynomials PolyA and PolyS of degree 31 and 32
respectively, and a cryptographic key K, all of which are known only to the two communicating
parties. (The KEYGEN program generates random polynomials and keys — see 5.9.4 The Key
Generator KEYGEN.EXE.) The START ENCRYPTION command is called to enable encryption:

Command syntax: | CLA | INS P1 P2 Lc IDATA Le

Cco 10 | algorithm | key 04 | Random number RA (4 bytes) 04

Response: | ODATA SW1 | SW2
Random number RB (4 bytes) 90 00

The caller and responder both contribute 4-byte random numbers to the register initialisation procedure.
RA may take any value; for maximum security, a different RA should be generated for each session.
RB is generated by the BasicCard.

To describe how the encryption mechanism is initialised, we split all the parts into two-byte words:
RA(0):RA(1), RB(0):RB(1), and K(0):K(1):K(2):K(3), where K is the (eight-byte) key number key.

Then the two registers A and S are initialised as follows:

A(0) = (RA(0) Xor K(0)) And &H7FFF
A(1) = RB(0) Xor K(1)
S(0) = RB(1) Xor K(2)
S(1) = RA(1) Xor K(3)

So the initial value of each register depends on both of the random numbers, and on the key.
Zero is an invalid initialisation value, so as a final step:

If A(O) =0 And A(1) = O Then A(1) =1
If S(0) =0 And S(1) = O Then S(1) = 1

Encryption starts with the first command after the START ENCRYPTION command is received, and
remains in effect for commands and responses until an END ENCRYPTION command is received
(the responses to the START ENCRYPTION and END ENCRYPTION commands themselves are
not encrypted). A ZC-Basic command can tell what kind of encryption is currently active, by looking at
the pre-defined variables Encryption (the algorithm ID) and KeyNumber. (If encryption is currently
inactive, then Encryption is zero.) Encryption and decryption are identical, and consist of Xor-ing
each byte with the result of the function SG_LFSR::GetByte() (defined in the C++ source file
Basi cCar dPr o\ Sour ce\ SG- LFSR\sg | fsr. cpp).

145

8. Encryption Algorithms

A command has the following structure (shaded blocks are optional):

lcta| ins | Pt | P2 | | Le |IDATA | | Le |

Only the data field IDATA is encrypted. The command bytes CLA, INS, P1, P2, Lc, and Le are not
encrypted, for two reasons:

e The value of these bytes is often predictable. The number of predictable bytes that are encrypted
should be kept as low as possible, to make it harder to break the key.

e Compatibility with 1SO standards is lost if these bytes are altered.

A response has the following structure (the shaded block is optional):

| ODATA | | swi | sw2 |

Again, only the data field ODATA is encrypted. The status bytes SW1 and SW2 are not encrypted.

8.8 SG-LFSR with CRC

The SG-LFSR algorithm is simple to implement, and runs efficiently. However, it provides no
authentication for the data it encrypts — | don’t need to know the key in order to send encrypted
messages. It’s true that | won’t know what I’m sending, and | won’t understand the response. But |
could still cause problems by sending random data. If authentication is important (and it usually is),
then you should use encryption algorithm 12; SG-LFSR with CRC (Cyclic Redundancy Check). The
same 16-bit CRC is used as in the EEPROM CRC command. ‘C’ source code for calculating the CRC
is given in 6.8.4 CRC Calculations.

A command has the following structure (shaded blocks are optional):

lctA| INs | PL | P2 | | ke |IDATA | | Le |

It is encrypted as follows:

e A two-byte random number Rc is appended to IDATA, and Lc is amended accordingly. (Without
this random number, the CRC would be predictable in the case of a command with no IDATA
field. As the CRC is later encrypted, we want to avoid this.)

lcta] INns | PL | P2 | |Lev2 [IDATA | Re | | Le |

e The CRC is calculated over the whole of the resulting message (CLA INS P1 P2 Lc+2 IDATA
Rc Le). It is then appended to the two-byte random number, and Lc is updated accordingly.

lcta| INns | Pr | P2 | |Lc+4|IDATA | Re [crRc| | Le |

e The resulting message is encrypted using SG-LFSR, as described in section 8.7.

A response has the following structure (the shaded block is optional):

| ODATA | | swi | sw2 |

146

8.9 Encryption — a Worked Example

It is encrypted in a similar fashion:

e Atwo-byte random number Rr is appended to ODATA.

ODATA | Rr | |swi|sw2 |

e The CRC is calculated over the whole of the resulting response (ODATA Rr SW1 SW2), and
appended to the two-byte random number.

ODATA | Rr [CcRC| | swi | sw2 |

e The resulting response is encrypted using SG-LFSR, as described in section 8.7.

Note: If status bytes SW1 SW2 indicate an error (i.e. SW1SW2 <> swCommandOK and SW1 <>
swlleWarning), then the response is not encrypted.

8.9 Encryption —a Worked Example

This section shows the progression from ZC-Basic source code to encrypted messages. All source files
are supplied with the software development kit, in the Basi cCar dPr o\ Exanpl es\ echot est
directory.

8.9.1 The Source Code

We ran the KEYGEN program to generate encryption polynomials and two cryptographic keys:
KEYGEN TESTKEYS —-K99 -K100(16) -P

This produced output file TESTKEYS.BAS:

Decl are Pol ynom al s = &H609FBB9C, &HD23B770D

Decl are Key 99 = &H3E, &H1F, &HA7, &H55, &H81, &HDB, &HC3, &H25

Decl are Key 100(16) = &H83, &H24, &H24, &H59, &H86, &H8B, &HBF, &H3F, _
&HAO, &HC4, &H1B, &HFE, &H3E, &HF4, &HE2, &H16

We edited this file so that it could be included in a Compact BasicCard program:

Decl are Pol ynom als = &H609FBB9C, &HD23B770D
Decl are Key 99 = &H3E, &H1F, &HA7, &H55, &H81, &HDB, &HC3, &H25

#1 f Not Def Conpact BasicCard ' 16-bit keys not allowed in Conpact BasicCard
Decl are Key 100(16) = &H83, &H24, &H24, &H59, &H86, &H8B, &HBF, &H3F, _

&HAO, &HC4, &H1B, &HFE, &H3E, &HF4, &HE2, &H16
#End| f

Then we wrote a simple ZC-Basic Terminal program ECHOTEST.BAS to send encrypted ECHO
commands. The ECHOTEST program takes a single command-line parameter:

ECHOTEST 0 No encryption

ECHOTEST 1 Tests SG-LFSR encryption in the Compact BasicCard
ECHOTEST 2 Tests DES encryption in the Enhanced BasicCard
ECHOTEST 3 Tests DES encryption with CRC in the Professional BasicCard
ECHOTEST 4 Tests AES-128 encryption in the Professional BasicCard

We examine the first three cases (0, 1, and 2) in detail below.

The BasicCard program ECHOCARD.BAS just includes the key file:
#l ncl ude TESTKEYS. BAS

147

8. Encryption Algorithms

8.9.2 The Log Files

The COMPILE.BAT batch file in the source directory creates a Terminal program image file
ECHOTEST.IMG, and two BasicCard program image files COMPACT.IMG and ENHANCED.IMG:

..\..\ZCvBasi ¢ EchoTest -A -I..\..\Inc
..\..\ZCwvBasi ¢ EchoCard -0 Conpact.I M5 -CC1 -1..\..\Inc
..\..\ZCvBasi ¢ EchoCard -Q Enhanced. IM5G -CE1 -1..\..\Inc

The SIM.BAT batch file runs the EHCOTEST program three times, and creates the 1/O log files
PLAIN.LOG, COMPACT.LOG, and ENHANCED.LOG:

..\..\ZCVvBi m - CConpact -LPlain EchoTest 0
..\..\ZCVvsi m - CConpact -LConpact EchoTest 1
..\..\ZCVSi m - CEnhanced -LEnhanced EchoTest 2

These were the resulting log files. (Note: If you run the ECHOTEST program yourself, your log files
will be different, due to the different random numbers generated.)

PLAIN.LOG:

1: <- 3B EF 00 FF 81 31 20 45 42 61 73 69 63 43 61 72 64 20 5A 43 31 2E 31 BE
2: ->00 00 09 CO 14 01 00 03 61 62 63 00 BF
<- 00 00 05 62 63 64 61 03 02

COMPACT.LOG:

3: <- 3B EF 00 FF 81 31 20 45 42 61 73 69 63 43 61 72 64 20 5A 43 31 2E 31 BE
4: -> 00 40 OA CO 10 11 63 04 29 23 BE 84 04 D8
<- 00 40 06 E1 6C D6 AE 90 00 23
5. ->00 00 09 C0O 14 01 00 03 E5 D6 30 00 DC
<- 00 00 05 A2 A5 92 61 03 F2
6: -> 00 40 04 CO 12 00 00 96
<- 00 40 02 90 00 D2
7: -> 00 00 OA CO 10 12 63 04 52 90 49 F1 04 D1
<- 00 00 06 F1 BB E9 EB 90 00 DE
8: ->00 40 OD CO 14 01 00 07 92 98 33 C7 32 39 35 00 5F
<- 00 40 09 1F C1 1C 13 8F FO E7 61 03 62
9: ->00 00 09 CO 12 00 00 04 BC E2 DD C5 99
<- 00 00 02 90 00 92

ENHANCED.LOG:

10: <- 3B EF 00
11: -> 00 40 OA
<- 00 40 06
12: -> 00 00 11
<- 00 00 OD
13: -> 00 40 OD
<- 00 40 02
14: -> 00 00 OA
<- 00 00 06
15: -> 00 40 11
<- 00 40 0D
16: -> 00 00 OD
<- 00 00 02

81 31 20 45 42 61 73 69 63 43 61 72 64 20 5A 43 32 2E 31 BF
10 21 63 04 A3 F7 76 62 04 98

F1 B5 02 90 00 57

14 01 00 OB D1 2D DB 39 92 7D E3 43 EA 75 C8 00 9
BD C6 51 0OC F8 C7 F3 AF A0 CF 61 03 FB

12 00 00 08 34 70 7C 93 08 82 9B 89 A4

00 D2

10 22 64 04 FF 7D EA 1A 04 EE

82 DO F9 90 00 AC

14 01 00 OB C6 40 78 CA E4 BC A2 DE 79 05 29 00 CA
EC EB E4 B8 84 90 6F 6D OD 8D 61 03 37

12 00 00 08 F6 F8 43 29 1E A9 47 38 7B

00 92

S8¥8L888K8Q8T

ATR (Answer To Reset) from the simulated BasicCard, including the text “BasicCard ZC1.1”
Unencrypted ECHO command and response

START ENCRYPTION command (algorithm = &H11) and response

Encrypted ECHO command and response (algorithm = &H11)

END ENCRYPTION command and response

ATR from the simulated Compact BasicCard, as in 1 above.

START ENCRYPTION command (algorithm = &H12) and response

AR e

148

8.9 Encryption — a Worked Example

8: Encrypted ECHO command and response (algorithm = &H12)

9: END ENCRYPTION command and response

10: ATR from the simulated Enhanced BasicCard, including the text “BasicCard ZC2.1”
11: START ENCRYPTION command (algorithm = &H21) and response

12: Encrypted ECHO command and response (algorithm = &H21)

13: END ENCRYPTION command and response

14: START ENCRYPTION command (algorithm = &H22) and response

15: Encrypted ECHO command and response (algorithm = &H22)

16: END ENCRYPTION command and response

We will look at these commands one by one, disregarding the T=1 parameters NAD PCB LEN . . .
LRC in every message.

8.9.3 Unencrypted ECHO Command and Response
The parameter “abc” is 61 62 63 in hexadecimal. The ECHO command adds P1=01 to every byte:

Command: | CLA | INS P1 P2 Lc IDATA Le
Co 14 01 00 03 61 62 63 00

Response: | ODATA SW1 | SW2
62 63 64 61 03

8.9.4 START ENCRYPTION (Algorithm = &H11)

The Rnd function in the Terminal program returned RA = &H2923BE84, and the random-number
generator in the BasicCard operating system returned RB = &HE16CDG6AE. This led to the following
START ENCRYPTION command-response pair:

Command: | CLA | INS P1 P2 Lc IDATA Le
Co 10 11 63 04 29 23 BE 84 04

Response: | ODATA SW1 | SW2
El1 6C D6 AE | 90 00

Together with the polynomials and key 99 from file KEYS.BAS:

Decl are Pol ynomi al s = &H609FBBIC, &HD23B770D
Decl are Key 99 = &H3E, &H1F, &HA7, &H55, &H81, &HDB, &HC3, &H25

we now have all the data we need to initialise the SG_LFSR encryptor. As described in section 8.7, we
build the A and S registers from the following two-byte words:

RA(0) 2923, RA(1) = BE84

RB(0) E16C, RB(1) D6 AE

K(0) = 3E1F, K(1) = A755, K(2) = 81DB, K(3) = C325
Then

A(0) = (RA(0) Xor K(0)) And &H7FFF = 173C
A(1) = RB(0) Xor K(1) = 4639
S(0) = RB(1) Xor K(2) = 5775
S(1) = RA(1) Xor K(3) = 7DAL

Now the Terminal program operating system initialises its SG-LFSR encryptor, first with the
polynomials PolyA and PolyS, and then with the registers A and S:

SG LFSR Encryptor (0x609FBB9CL, 0xD23B770DL) ;
Encryptor.Initialise (0x173C4639L, 0x57757DAl1L) ;

(C++ source code for the SG_LFSR class is provided in the development kit — see 8.6 The SG-LFSR
Algorithm.) The IDATA and ODATA sections of subsequent commands and responses will be

149

8. Encryption Algorithms

encrypted by Xor-ing them with successive bytes returned by Encryptor. GetByte(). The
initialisation values given here generate the sequence:

84 B4 53 C0 C6 F6. ..

8.9.5 Encrypted ECHO Command (Algorithm = &H11)

From the above sequence, the IDATA and ODATA sections of the encrypted ECHO command and
response will be:

61 Xor 84 = E5, 62 Xor B4 = D6, 63 Xor 53 = 30
62 Xor Q0 = A2, 63 Xor C6 = A5, 64 Xor F6 = 92
So the ECHO command and response will be:
Command: | CLA | INS P1 P2 Lc | IDATA Le

Cco 14 01 00 03 | E5 D6 30 00

Response: | ODATA SW1 | SW2
A2 A5 92 61 03

8.9.6 END ENCRYPTION

Before calling START ENCRYPTION for algorithm &H12, the END ENCRYPTION command
must be called to cancel the currently enabled encryption. It has no IDATA or ODATA field, so it is
not affected by encryption algorithm &H11:

Command: | CLA | INS P1 P2
Co 12 00 00

Response: | SW1 | SW2
90 00

8.9.7 START ENCRYPTION (Algorithm = &H12)

This time, the Rnd function in the Terminal program returned RA = &H529049F1, and the random-
number generator in the BasicCard operating system returned RB = &HF1BBE9EB. This led to the
following START ENCRYPTION command-response pair:

Command: | CLA | INS P1 P2 Lc IDATA Le
Co 10 12 63 04 52 90 49 F1 04

Response: | ODATA SW1 | SW2
F1 BB E9 EB 90 00

We repeat the process from section 8.9.4 to generate the new A and S registers:
RA(0) = 5290, RA(1l) = 49F1

RB(0) = F1BB, RB(1) = E9EB

K(0) = 3E1F, K(1) = A755, K(2) = 81DB, K(3) = C325
A(0) = (RA(O) Xor K(0)) And &H7FFF = 6C8F

A(1) = RB(0) Xor K(1) = 56EE

S(0) = RB(1) Xor K(2) = 6830

S(1) = RA(1) Xor K(3) = 8AD4

150

8.9 Encryption — a Worked Example

So the Terminal program operating system re-initialises its SG-LFSR encryptor:
Encryptor.Initialise (0Ox6C8F56EEL, 0x68308AD4L) ;

and the sequence generated this time is
F3 FA 50 74 94 OF 45 7D A2 78 C8 B3 82 61 3B EE 99 40...

8.9.8 Encrypted ECHO Command (Algorithm = &H12)
The unencrypted ECHO command:

Command: | CLA | INS P1 P2 Lc IDATA Le
Co 14 01 00 03 61 62 63 00

e Add a two-byte random number Rc, and set Lc = 05:

CLA | INS P1 P2 Lc | IDATA Rc Le
Co 14 01 00 05 |61 6263 | B3 A6 00

¢ Add the CRC calculated over CO 14 01 00 05 61 62 63 B3 A6 00, and set Lc = 07:

CLA | INS P1 P2 Lc | IDATA Rc CRC Le
Co 14 01 00 07 | 616263 |B3 A6 |36 70 00

e Encrypt IDATA Rc CRC with the SG-LFSR sequence F3 FA 50 74 94 OF 45 to get the final
version:

CLA | INS P1 P2 Lc | IDATA Rc CRC Le
Cco 14 01 00 07 (929833 |C732 |39 35 00

The unencrypted response to the ECHO command:

Response: | ODATA SW1 | SW2
62 63 64 61 03

e Add a two-byte random number Rr:

ODATA Rr SW1 | Sw2
62 63 64 | DB 3C | 61 03

* Add the CRC calculated over 62 63 64 DB 3C 61 03:

ODATA Rr CRC SW1 | SW2
62 63 64 | DB 3C | 72 86 61 03

e Encrypt ODATA Rr CRC with the SG-LFSR sequence 7D A2 78 C8 B3 82 61:

ODATA Rr CRC SW1 | SW2
1F C1 1C | 13 8F | FO E7 61 03

151

8. Encryption Algorithms

8.9.9 END ENCRYPTION

This time, the END ENCRYPTION command is affected by the encryption algorithm. The
unencrypted END ENCRYPTION command:

Command: | CLA | INS P1 P2
Co 12 00 00

¢ Add a two-byte random number Rc, and set Lc = 02:

CLA | INS P1 P2 Lc | Rc
Cco 12 00 00 02 |87 0C

* Add the CRC calculated over CO 12 00 00 02 87 0C, and set Lc = 04:

CLA | INS P1 P2 Lc | Rc CRC
Co 12 00 00 04 |87 0C |44 85

e Encrypt Rc CRC with the SG-LFSR sequence 3B EE 99 40:

CLA | INS P1 P2 Lc | Rc CRC
Co 12 00 00 04 | BC E2 | DD C5

The response is not encrypted:

Response: | SW1 | SW2
0 00

8.9.10 START ENCRYPTION (Algorithm = &H21)

This time, the Rnd function in the Terminal program returned RA = &HA3F77662, and the random-
number generator in the BasicCard operating system returned RB = &HC7F1B502;

Command: | CLA INS P1 P2 Lc IDATA Le
(0] 10 12 63 04 A3 F7 76 62 04

Response: | ODATA SW1 | SW2
C7 F1 B5 02 90 00

So the initialisation vector Cy is loaded with A3 F7 C7 F1 B5 02 76 62.

8.9.11 Encrypted ECHO Command (Algorithm = &H21)
The unencrypted ECHO command:

Command: | CLA INS P1 P2 Lc IDATA Le
(0] 14 01 00 03 61 62 63 00

152

8.9 Encryption — a Worked Example

Add two zeroes:

CLA | INS P1 P2 Lc | IDATA Le
Co 14 01 00 03 | 61 62 63 00 | 00 00

Now we must encrypt the plaintext message P = C0 14 01 00 05 61 62 63 00 00 00 using
the Single DES message encryption function MEyx . Referring back to 8.2.1 The Message
Encryption Functions MEx and ME%:

K=3E 1F A7 55 81 DB C3 25 is key number 99 from TESTKEYS.BAS;
Co=A3 F7 C7 F1 B5 02 76 62 from the START ENCRYPTION command;
P,=C0 14 01 00 03 61 62 63 is the first message block;

P,= 00 00 00 (00 00 00 00 00) is the second message block;

m=5 is the length of padding required in P, .

So we compute (you can check these in ZC-Basic, using the DES function):

C; = Ex(Cy Xor P;) = Ex(63 E3 C6 F1 B6 63 14 01)=D1 2D DB 19 3E 80 Bl FB
C, = Ex(C, Xor P,) =Ex(D1 2D DB 19 3E 80 B1 FB)=39 92 7D E3 43 EA 75 C8

and we throw away the last m bytes of C; to get:
C=MEx((P)=D1 2D DB 39 92 7D E3 43 EA 75 C8

To get the final version, C is wrapped in the original CLA INS P1 P2 . .. Le, with Lc adjusted
appropriately:

CLA | INS P1 P2 Lc | C Le
Co 14 01 00 0B | D1 2D DB 39 92 7D E3 43 EA 75 C8 00

The unencrypted response to the ECHO command:

Response: | ODATA SW1 | SW2
62 63 64 61 03

Add six zeroes:

ODATA SW1 | Sw2
62 63 64 61 03 00 00 00 00 00 00

Encrypt P =62 63 64 61 03 00 00 00 00 00 00 using MEy , where

K=3E 1F A7 55 81 DB C3 25 is key number 99 from TESTKEYS.BAS;
Co=39 92 7D E3 43 EA 75 C8 is C, from the ECHO command just received,;
P, =62 63 64 61 03 00 00 00 is the first message block;

P,= 00 00 00 (00 00 00 00 00) is the second message block;

m=5 is the length of padding required in P, .

So we compute:

C1 = Ex(Co Xor P;) = Ex(5B F1 19 82 40 EA 75 C8)=BE BD C6 6C 9E B0 59 F2
C, = Ex(C1 Xor P,) = Ex(BE BD C6 6C 9E B0 59 F2) =51 0C F8 C7 F3 AF A0 CF

and we throw away the last m bytes of C; to get:
C=ME(P)=BE BD C6 51 0C F8 C7 F3 AF A0 CF

153

8. Encryption Algorithms

* Now the original SW1-SW?2 are appended, to get:

C SW1 | SwW2
BE BD C6 51 0C F8 C7 F3 AF A0 CF 61 03
8.9.12 END ENCRYPTION
The unencrypted END ENCRYPTION command:
Command: | CLA | INS P1 P2
Co 12 00 00
e AddLc'=00, Le' =00, and two zeroes:
CLA | INS P1 P2 Lc' Le'
Co 12 00 00 00 00 | 00 00

e EncryptP=C0 12 00 00 00 00 00 00 with MEk , where

K=3E 1F A7 55 81 DB C3 25
C,=51 0C F8 C7 F3 AF A0 CF

P,=C0 12 00 00 00 00 00 00

m=0

So we compute:

is key number 99 from TESTKEYS.BAS;
is C, from the ECHO response;

is the only message block;

is the length of padding required in P .

C; = Ex(Co Xor P;) = Ex(91 1E F8 C7 F3 AF A0 CF)=34 70 7C 93 08 82 9B 89

and C = MEg(P) is simply C; .

¢ The final version:

CLA

INS

P1

P2

Lc

C

Cco

12

00

00

08

34 70 7C 93 08 82 9B 89

(Le is not appended in this case, because it wasn’t present in the unencrypted command.)

The response is not encrypted:

Response:

Swi

SW2

90

00

8.9.13 Triple DES (Algorithm = &H22)

The three commands (START ENCRYPTION, ECHO, and END ENCRYPTION) are encrypted in
exactly the same way for Triple DES as for Single DES, with two exceptions:

e Triple DES requires a 16-byte key, so key number 100 is used instead of key number 99;

« the Triple DES message encryption function ME is subsituted for MEy .

154

9. The ZC-Basic Virtual Machine

Note: Throughout this chapter, bold numbers are hexadecimal.

9.1 The BasicCard Virtual Machine

9.1.1 The Compact BasicCard

The Compact BasicCard contains 100 bytes of RAM (= 256 in decimal), and 3E0 bytes of EEPROM
(= 992 in decimal). Of this, the operating system uses the first 47 bytes of RAM and the first 23 bytes
of EEPROM. The memory available for use by an application written in ZC-Basic is thus B9 bytes of
RAM and 3BD bytes of EEPROM.

9.1.2 The Enhanced BasicCard

The Enhanced BasicCard contains 100 bytes of RAM (= 256 in decimal), and up to 3FEO bytes of
EEPROM (= 16352 in decimal). Of this, the operating system uses the first 6B bytes of RAM, and the
first 15D bytes of EEPROM. If the file system is not disabled, it requires 7 bytes of RAM, plus 6 bytes
for each file slot. (Files and directories themselves are allocated from the EEPHEAP region.)

9.1.3 The Professional BasicCard

The Professional BasicCard contains up to 800 bytes of RAM (= 2048 in decimal), and up to 7FEQ
bytes of EEPROM (= 32736 in decimal). The amount of RAM and EEPROM used by the operating
system varies from version to version, but the figures in 9.1.2 The Enhanced BasicCard give a rough
guide.

9.1.4 Memory Layout in the BasicCard
RAM and EEPROM are divided into regions, in the following order:

RAM Regions EEPROM Regions
RAMSYS System RAM EEPSYS System EEPROM
STACK The P-Code stack STRVAL Single-to-String code*
RAMDATA Public and Static data CMDTAB Command descriptor table
RAMHEAP Run-time memory allocation PCODE The ZC-Basic program code
FILEINFO Open file slots and file system work- STRCON String constants
space (Enhanced BasicCard only) KEYTAB Keys for encryption

(FRAME) Procedure frame (contained in STACK) EEPDATA Eeprom data
EEPHEAP Run-time memory allocation
Libraries Plug-In Libraries

* The STRVAL region is only present for Enhanced BasicCard programs that use Single-to-String
conversion — see 3.23.5 Single-to-String Conversion.

The ZC-Basic compiler calculates how much static memory is required for each region, and assigns
any remaining memory to RAMHEAP and EEPHEAP, for run-time memory allocation of strings,
arrays, and files. The map file lists the sizes of all these regions — see 10.4 Map File Format.

9.2 The Terminal Virtual Machine

A Terminal program contains a CODE segment and a DATA segment, each of which may be up to 64
kilobytes long. The CODE segment contains only the PCODE region. The DATA segment contains

155

9. The ZC-Basic Virtual Machine

RAM and EEPROM regions (see 2.2.4 Permanent Data for the meaning of EEPROM data in a
Terminal program). The regions occur in the following order (RAM before EEPROM):

RAM Regions EEPROM Regions
STACK The P-Code stack EEPDATA Eeprom data
RAMSYS System RAM EEPHEAP Run-time memory allocation

RAMDATA Public and Static data
RAMHEAP Run-time memory allocation
STRCON String constants
(FRAME) Procedure frame (contained in STACK)

9.3 The P-Code Stack

The P-Code Virtual Machine has three registers:
PC Program counter (2 bytes)
SP Stack Pointer (1 or 2 byte)
FP Frame Pointer (1 or 2 bytes)

SP and FP are 1 byte if RAM is 256 bytes (the Compact and Enhanced BasicCards), otherwise 2 bytes
(the Professional BasicCard and the Terminal).

The P-Code stack grows upwards; the SP register contains the address of the first free byte on the
stack. The stack contains four kinds of data:

e« Command parameters, received from the 1/O port (BasicCard only). These are located at the
bottom of the stack.

e Procedure parameters and return addresses. Before a procedure is called, its parameters are pushed
onto the P-Code stack. (If the procedure is a Function, space is reserved below the parameters for
the function return value.)

« FRAME data, consisting of Private data and compiler-generated temporary variables. Each
procedure has its own FRAME region, of a fixed size, that is allocated from the stack when the
procedure is called. The FP register points to the base of the FRAME region.

« Intermediate results of computations. The Virtual Machine has no data registers; all computation is
performed on the top of the P-Code stack.

The first P-Code instruction in a procedure is
ENTER frame-size
This instruction sets up the FRAME region as follows:

* Push FP

e Push SP + frame-size + size of SP (i.e. SP + frame-size + 1 or SP + frame-size + 2)
 FP=SP

e SP =SP + frame-size

The last instruction in every procedure is
LEAVE
This undoes the effect of the ENTER instruction before returning to the caller:

e SP=FP-sizeof FP (i.e. FP-1or FP -2)
» PopFP
e PopPC

156

9.4 Run-Time Memory Allocation

9.4 Run-Time Memory Allocation

The Virtual Machine has two heaps for the run-time allocation of strings and arrays: RAMHEAP and
EEPHEAP. Each is composed of variable-length blocks, that are either allocated or free; adjacent free
blocks are concatenated as soon as they are created. In addition, an allocated block in EEPHEAP is
either permanent or temporary. Each block consists of a block header followed by a data area. The
block header contains the length of the data area, and one or two bits describing the block:

EEPHEAP block RAMHEAP block (small RAM) RAMHEAP block (large RAM)
F | T | Len (14 bits) F | Len (7 bits) F | Len (15 bits)
Data area (Len bytes) Data area (Len bytes) Data area (Len bytes)

F =1 if the block is free, 0 if the block is allocated.

T =1 if the block is temporary, 0 if the block is permanent. A temporary block is automatically freed
the next time the BasicCard is reset or the Terminal program is run.

Note: If Fis 1, then T is not used as a temporary block flag. This means that, although allocated blocks
in EEPHEAP are limited to 16383 bytes, a free block (and thus the total size of the heap) may be up to
32767 bytes long.

9.5 Data Types

The BasicCard Virtual Machine implements the following data types:

CHAR 1-byte unsigned integer

WORD 2-byte signed integer

LONG 4-byte signed integer

REAL 4-byte IEEE-format floating-point number
STRING See Strings below

These types correspond to the ZC-Basic data types Byte, Integer, Long, Single, and String
respectively. Arithmetic operations are provided for WORD, LONG, and REAL data; CHAR data
must be converted to WORD before performing arithmetic on it.

9.5.1 Strings
There are two types of string: variable-length and fixed-length.

e A variable-length string is a 2-byte pointer to a Pascal-type string, which consists of a length byte
followed by the string contents.

« A fixed-length string is a sequence of characters, whose length is known at compile time.

Both types are restricted to 254 bytes in length; if an operation would result in a longer string, it
truncates the result.

String variables take various forms, depending on the storage type:

Eeprom A fixed-length Eeprom string variable is a sequence of characters in the
EEPDATA region. A variable-length Eeprom string variable is a 2-byte
pointer, in the EEPDATA region, to a Pascal-type string in the EEPHEAP
region.

Public, Static A fixed-length Public or Static string variable is a sequence of characters in
the RAMDATA region. A variable-length Public or Static string variable is
a 2-byte pointer, in the RAMDATA region, to a Pascal-type string, which

157

9. The ZC-Basic Virtual Machine

may be in RAMHEAP or EEPHEAP. Strings are allocated from
RAMHEARP if there is room, but if not they are allocated from EEPHEAP.
In this case they are marked as temporary, so that they can be deleted when
the BasicCard is reset or the Terminal program is restarted.

Private A fixed-length Private string variable is a sequence of characters in the
FRAME region. A variable-length Private string variable is a 2-byte
pointer, in the FRAME region, to a Pascal-type string, which may be in
RAMHEAP or EEPHEAP.

String parameters A String parameter takes up 3 bytes on the stack: a one-byte length
followed by a two-byte address. If length <= 254, the address points directly
to a fixed-length string. If length = 255, the address is a handle, and points
to a variable-length string variable. (This is the reason for the 254-byte
length restriction on all strings.)

9.6 P-Code Instructions

In this section, names in italics obey the following conventions:
< Initial characters s and u denote signed and unsigned values respectively.

« Initial character r, or second character c, w, |, denote REAL, CHAR, WORD, and LONG data
respectively.

e Als the address of an array descriptor.
o X$,Y$, Z$ are STRINGs.

9.6.1 Miscellaneous Instructions

Name OpCode Param Description

NOP 00 No operation

ADDSP 01 scDelta SP +=scDelta. If scDelta > 0, ‘pushed’ bytes are initialised to zero.
DUP 02 ucLen Push the top ucLen stack bytes

COMPL 03 Pop slY ; pop sIX ; compare ; push for WORD comparison

RAND 04 Push a LONG random number

ERROR 05 uckrror Generate a P-Code error condition

SYSTEM 06 ucSysCode Operating system call — see 9.7 The SYSTEM Instruction.

9.6.2 Data Conversion Instructions

Name OpCode Description

CVTCW 07 Pop ucX ; swY = ucX ; push swY
CVTWC 08 Pop swX ; ucY = swX ; push ucY
CVTWL 09 Pop swX ; slY = swX ; push slY
CVTLW 0A PopsIX; swY =sIX ; push swY

158

9.6 P-Code Instructions

9.6.3 Data Access Instructions (Push and Pop)

Name OpCode Param Description

PUCCB 0B ucConst Push constant CHAR ucConst

PUCWB 0C scConst Push constant scConst sign-extended to WORD
PUCWC 0D ucConst Push constant ucConst zero-extended to WORD
PUCWW OE swConst Push constant WORD swConst

PURCB OF ucAddr Push CHAR at address ucAddr

PURWB 10 ucAddr Push WORD at address ucAddr

PURLB 11 ucAddr Push LONG at address ucAddr

PURSB 12 ucAddr Push STRING at address ucAddr

PUECW 13 uwAddr Push CHAR at address uwAddr

PUEWW 14 uwAddr Push WORD at address uwAddr

PUELW 15 uwAddr Push LONG at address uwAddr

PUESW 16 uwAddr Push STRING at address uwAddr

PUFCB 17 scAddr Push CHAR at address FP + scAddr

PUFWB 18 scAddr Push WORD at address FP + scAddr

PUFLB 19 scAddr Push LONG at address FP + scAddr

PUFSB 1A scAddr Push STRING at address FP + scAddr
PUFAB 1B scAddr Push FP + scAddr as WORD

PUSAB 1C ucAddr Push SP — ucAddr as WORD

PUPSB 1D scAddr Push 3-byte STRING parameter at address FP + scAddr
PUINC 1E Pop uwAddr ; push CHAR at address uwAddr
PUINW 1F Pop uwAddr ; push WORD at address uwAddr
PUINL 20 Pop uwAddr ; push LONG at address uwAddr
PORCB 21 ucAddr Pop CHAR at address ucAddr

PORWB 22 ucAddr Pop WORD at address ucAddr

PORLB 23 ucAddr Pop LONG at address ucAddr

POECW 24 uwAddr Pop CHAR at address uwAddr

POEWW 25 uwAddr Pop WORD at address uwAddr

POELW 26 uwAddr Pop LONG at address uwAddr

POFCB 27 scAddr Pop CHAR at address FP + scAddr

POFWB 28 scAddr Pop WORD at address FP + scAddr

POFLB 29 scAddr Pop LONG at address FP + scAddr

POINC 2A Pop uwAddr ; pop CHAR at address uwAddr
POINW 2B Pop uwAddr ; pop WORD at address uwAddr
POINL 2C Pop uwAddr ; pop LONG at address uwAddr

159

9. The ZC-Basic Virtual Machine

9.6.4 Integer Arithmetic Instructions

Name OpCode Description

ADDW 2D Pop swY ; pop swX ; push swX + swY
ADDL 2E Pop slY ; pop sIX ; push sIX + slY
SUBW 2F Pop swY ; pop swX ; push swX — swY
SUBL 30 Pop slY ; pop sIX ; push sIX — slY
MULW 31 Pop swY ; pop swX ; push swX * swY
MULL 32 Pop slY ; pop sIX ; push sIX * slY

DIVW 33 Pop swY ; pop swX ; push swX / swY
DIVL 34 Pop slY ; pop sIX ; push sIX / slY
MODW 35 Pop swY ; pop swX ; push swX Mod swY
MODL 36 Pop slY ; pop sIX ; push sIX Mod slY
ANDW 37 Pop uwY ; pop uwX ; push uwX And uwY
ANDL 38 Pop ulY ; pop ulX ; push ulX And ulY
ORW 39 Pop uwY ; pop uwX ; push uwX Or uwY
ORL 3A PopulY; pop ulX ; push ulX Or ulY
XORW 3B Pop uwY ; pop uwX ; push uwX Xor uwY
XORL 3C Pop ulY ; pop ulX ; push ulX Xor ulY
NEGW 3D Pop swX ; push —swX

NEGL 3E Pop sIX ; push —sIX

ABSW 3F Pop swX ; push Abs(swX)

ABSL 40 Pop sIX ; push Abs(sIX)

INCW 41 Pop swX ; push swX + 1

INCL 42 Pop sIX ; push sIX + 1

NOTW 43 Pop uwX ; push Not(uwX)

NOTL 44 Pop ulX ; push Not(ulX)

160

9.6 P-Code Instructions

9.6.5 Program Control Instructions

(Inthe ENTER and LEAVE instructions, F denotes the size of the FP register: 1 in the BasicCard, 2 in
the Terminal.)

Name OpCode Param Description

CALL 45 uwAddr Procedure call or GoSub: push PC+3 as WORD ; PC = uwAddr
ENTER 46 uckFrmSiz Push FP ; push SP + ucFrmSiz + F ; FP = SP ; SP = SP + ucFrmSiz
LEAVE 47 Return from procedure: SP = FP —F ; pop FP ; pop PC

RETURN 48 Return from GoSub: pop PC

JUMPB 49 scDisp PC =PC + scDisp + 2

JUMPW 4A uwAddr PC = uwAddr

JZRWB 4B scDisp Pop swX ; if swX = 0 then PC = PC + scDisp + 2

JNZWB 4C scDisp Pop swX ; if swX <> 0 then PC = PC + scDisp + 2

JEQWB 4D scDisp Pop swY ; pop swX ; if swX = swY then PC = PC + scDisp + 2
JNEWB 4E scDisp Pop swY ; pop swX ; if swX <> swY then PC = PC + scDisp + 2
JLEWB 4F scDisp Pop swY ; pop swX ; if swX <= swY then PC = PC + scDisp + 2
JGTWB 50 scDisp Pop swY ; pop swX ; if swX > swY then PC = PC + scDisp + 2
JGEWB 51 scDisp Pop swY ; pop swX ; if swX >= swY then PC = PC + scDisp + 2
JLTWB 52 scDisp Pop swY ; pop swX ; if swX < swY then PC = PC + scDisp + 2
LOOP 53 scDisp Pop swX ; if swX >= 0 then execute JLEWB else execute JGEWB
EXIT 54 Exit the Virtual Machine

9.6.6 Array Instructions

Name OpCode Param Description
ARRAY 55 Pop A ; pop subscript swir for each dimension r, in reverse order ;
push address of array element A (swill, swl2, ..., swin)
CHKDIM 56 ucNdims Pop A ; push A ; if Dim(A) <> ucNdims then execute ERROR 0C
ALLOCA 57 Pop A ; pop bounds word uwBr for each dimension r, in reverse
order; allocate data area of A and initialise all elements to 0
FREEA 58 Pop A ; if Dynamic then deallocate A, else set all elements of Ato 0
FREEA$ 59 Pop string array A ; free all strings in A ; if Dynamic then deallocate A
BOUNDA 5A Pop swHi ; pop swLo ; push 400*swLo + (swHi — swLo) as WORD
LBOUND 5B Pop A ; pop ucDim ; push lower bound of subscript ucDim as WORD
UBOUND 5C Pop A ; pop ucDim ; push upper bound of subscript ucDim as WORD

161

9. The ZC-Basic Virtual Machine

9.6.7 String Instructions

Name OpCode Description

COPY$ 5D PopX$;popY$; X$=VY$

FREE$ 5E Pop 2-byte handle to variable-length string X$; X$ = empty string
ADD$ 5F Pop X$;popZ$;popY$; X$=Y$+7Z$

MID$ 60 Pop swLen ; pop swStart ; pop X$; push Mid$(X$, swStart, swLen)
LEFTS$ 61 Pop swLen ; pop X$; push Left$(X$, swLen)

RIGHT$ 62 Pop swlLen ; pop X$; push Right$(X$, swLen)

LTRIM$ 63 Pop X$; push LTrim$(X$)

RTRIM$ 64 Pop X$; push RTrim$(X$)

UCASES$ 65 Pop X$; pop Y$; X$ = UCase$(Y$)

LCASE$ 66 Pop X$; pop Y$; X$ = LCase$(Y$)

STRINGS$ 67 Pop X$; pop ucChar ; pop swLen ; X$ = String$(swLen, ucChar)

STRLS$ 68 Pop X$; pop sIX ; X$ = Str$(sIX)

HEX$ 69 Pop X$; pop sIX ; X$ = Hex$(sIX)

ASC$ 6A Pop X$; push Asc(X$) as CHAR

LEN$ 6B Pop X$; push Len(X$) as CHAR

COMPS$ 6C Pop Y$; pop X$; compare ; push for WORD comparison
VALLS$ 6D Pop X$; slVal = Val&(X$, ucLen) ; push slVal ; push ucLen

VALHLS$ 6E Pop X$; slval = ValH(X$, ucLen) ; push slVal ; push ucLen

9.6.8 Data Initialisation Instructions

Name OpCode Params Description
RDATA 6F ucAddr, ucLen, data Copy data (ucLen bytes) to address ucAddr
FDATA 70 scAddr, ucLen, data Copy data (ucLen bytes) to address FP + scAddr

162

9.6 P-Code Instructions

9.6.9 Floating-Point Instructions

Note: These instructions are not implemented in the Compact BasicCard.

Name OpCode Description

COMPR 71 Pop rY ; pop rX ; compare ; push for WORD comparison
CVTWR 72 Pop swX ; push swX as REAL

CVTRW 73 Pop rX ; push rX as WORD

CVTLR 74 Pop sIX ; push sIX as REAL

CVTRL 75 Pop rX ; push rX as LONG

ADDR 76 Pop rY ; pop rX; push rX + rY

SUBR 77 Pop rY ; pop rX; push rX —rY

MULR 78 Pop rY ; pop rX; push rX * rY

DIVR 79 Pop rY ; pop rX ; push rX/rY

NEGR 7A PoprX; push-rX

ABSR 7B Pop rX ; push Abs(rX)

SQRTR 7C Pop rX ; push Sgrt(rX)

STRR$ 7D Pop X$; pop rX ; X$ = Str$(rX)

VALRS$ 7E Pop X$; rval = Val!(X$, ucLen) ; push rVal ; push ucLen

9.6.10 The XMIT Command Call Instruction

Note: This instruction is available only in a Terminal program.

Name OpCode Params Description

XMIT 7F ucType, ucLen Send command and process response

Before this instruction is executed, a command must be pushed onto the P-Code stack:

|cLtA| INs | PL | P2 | Lc | IDATApaddedtouclenbytes | Le |

Then the command is transmitted according to ucType, as follows:

ucType

0 Send Lc bytes in IDATA (no Le)

1 Send Lc bytes in IDATA, followed by Le

2 The top 3 bytes of the IDATA field contain a variable-length string parameter X$. Send
ucLen — 3 bytes in IDATA, followed by X$.

3 The same as ucType = 2, with Le appended to IDATA.

4 The top 3 bytes of the IDATA field contain a variable-length string parameter X$. Send up
to Lc bytes of (ucLen — 3 bytes followed by X$).

5 The same as ucType = 4, with Le appended to IDATA.

7 The same as ucType = 3, but X$ was passed ByVal.

9 The same as ucType = 5, but X$ was passed ByVal.

163

9. The ZC-Basic Virtual Machine

9.6.11 Abbreviated Instructions

Instructions from 80 to FF are single-byte abbreviations of 2-byte PUFxB / POFxB instructions. For
example, PUFLF1 (instruction A6) is an abbreviation of PUFLB F1.

Name OpCode
PUFWED - PUFWFC 80-8F
PUFWO0O0 - PUFWOF 90-9F
PUFLEB - PUFLFA AO0-AF
PUFLO00 - PUFLOF BO-BF

POFWED - POFWFC CO0-CF

POFWO0O0 - POFWOF
POFLEB - POFLFA
POFLO00 - POFLOF

DO-DF
E0-EF
FO-FF

Description

Push WORD at address FP — (93 — OpCode)
Push WORD at address FP + (OpCode — 90)
Push LONG at address FP — (B5 — OpCode)
Push LONG at address FP + (OpCode — B0)
Pop WORD at address FP — (D3 — OpCode)
Pop WORD at address FP + (OpCode — D0)
Pop LONG at address FP — (F5 — OpCode)
Pop LONG at address FP + (OpCode - F0)

9.7 The SYSTEM Instruction

The SYSTEM P-Code instruction (OpCode 06) calls an operating system function, according to the
first parameter, SysCode.

9.7.1 SYSTEM Functions in the Compact BasicCard
The Compact BasicCard has just three SYSTEM functions:

OpCode SysCode Name

06 00 WTX Send a Waiting Time Extension request
06 01 CommandString | Convert a command parameter to a variable-length string
06 02 ResponseString Convert a variable-length string to a response parameter

9.7.2 SYSTEM Functions in Later BasicCards
The Enhanced and Professional BasicCards have five SYSTEM functions with SysCode < 80:

OpCode SysCode Name

06 00 WTX Send a Waiting Time Extension request

06 03 EnableKey Enable or disable a cryptographic key or its error counter
06 40 Certificate Calculate a cryptographic certificate

06 41 DES DES block encryption primitives

06 55 Key Built-in Key() function

In addition, these BasicCards support the

FILE SYSTEM functions — see 9.7.4 FILE SYSTEM

Functions. Professional BasicCards also support some subset of the Plug-In Library procedures — see
9.7.5 Plug-In Library Procedures.

164

9.7 The SYSTEM Instruction

9.7.3 SYSTEM Functions in the Terminal

OpCode SysCode Name

06 00 WTX Give the card more time

06 40 Certificate Calculate a cryptographic certificate

06 41 DES Des block encryption primitives

06 42 Cls Clear the screen

06 43 UpdateScreen Update the screen

06 44 InKey$ Check for keyboard input

06 45 CardReader Look for a card reader

06 46 CardInReader Check whether a card is in the reader

06 47 ResetCard Reset the card in the card reader

06 48 WriteEeprom Write EEPROM data back to the image file

06 49 KeyFile Load a key file

06 4A EnableEncrypt Enable auto-encryption (the default)

06 4B DisableEncrypt Disable auto-encryption

06 4C EnableOvCheck | Enable overflow checking (the default)

06 4D DisableOvCheck | Disable overflow checking

06 4E Time$ Date and time as e.g. “Wed Jun 20 15:50:35 1998”
06 4F ChDrive Change the current disk drive

06 50 CurDrive Retrieve the current disk drive

06 51 LongSeed Seed the random number generator with a LONG value
06 52 StringSeed Seed the random number generator with a STRING
06 53 OpenLogFile Start logging of 1/0 to file

06 54 CloseLogFile End logging of 1/0 to file

In addition, the Terminal supports the FILE SYSTEM functions listed in the next section.

9.7.4 FILE SYSTEM Functions

The file system functionality in the Terminal and the Enhanced BasicCard is implemented through the
SYSTEM P-Code instruction. Such FILE SYSTEM commands all have 80 <= SysCode <= BF:

OpCode SysCode Name

06 80 MkDir Create a directory

06 81 RmDir Delete a directory

06 82 ChDir Change the current directory

06 83 CurDir Retrieve the current directory

06 84 DirCount Count the filenames that match a wild-card spec
06 85 DirFile Return the nth matching filename

06 86 EraseFile Delete a data file

06 87 RenameFile Rename or move a file or directory

165

9. The ZC-Basic Virtual Machine

OpCode SysCode Name
06 88 OpenFile Open a file
06 89 OpenFreeFile Open a file after finding a free file slot for it
06 8A CloseFile Close a file
06 8B CloseAll Close all files
06 8C FreeFile Find a free file slot
06 8D FileLength Return the length of an open file
06 8E GetFilepos Return the read/write pointer of an open file
06 8F SetFilepos Set the read/write pointer of an open file
06 90 EOF Return True if at the end of an open file
06 91 Get Read from a binary file
06 92 GetPos Get after setting the read/write pointer
06 93 Put Write to a binary file
06 94 PutPos Put after setting the read/write pointer
06 95 Startinput Set the counter of matched input items to 0
06 96 EndInput Return the counter of matched input items
06 97 Read Read a specified number of bytes from a sequential file
06 98 ReadlLong Read a formatted LONG value from a sequential file
06 99 ReadSingle Read a formatted SINGLE value from a sequential file
06 9A ReadString Read a formatted STRING from a sequential file
06 9B ReadBlock Read a formatted fixed-size block from a sequential file
06 9C ReadLine Read a line from a sequential file
06 9D WriteLong Write a formatted LONG value to a sequential file
06 9E WriteSingle Write a formatted SINGLE value to a sequential file
06 9F WriteString Write a formatted STRING to a sequential file
06 A0 PrintLong Write an ASCII LONG value to a sequential file
06 Al PrintSingle Write an ASCII SINGLE value to a sequential file
06 A2 PrintString Write an ASCII STRING to a sequential file
06 A3 PrintSpaces Write a specified number of spaces to a sequential file
06 A4 PrintTab Advance to the next 14-character output field
06 A5 SetColumn Advance to a specified output column
06 A6 PrintNewLine Print a new-line character
06 A7 LockFile Set the access conditions on a file or directory
06 A8 GetLocks Retrieve the access conditions on a file or directory
06 A9 GetAttr Retrieve the attributes of a file or directory
06 AA SetAttr Set the attributes of a file or directory (Terminal only)

166

9.7 The SYSTEM Instruction

9.7.5 Plug-In Library Procedures

Values of SysCode between CO and FF are reserved for Plug-In Library procedures — see 3.13.2 Plug-
In Library Procedures. For details of which codes are assigned to which procedures, see the
individual Library.DEF files supplied with ZeitControl’s development software.

167

10. Output File Formats

This chapter describes the formats of the various output files generated by the ZC-Basic compiler:

e Image file: program and data in binary format, for use by ZCMSIM and BCLOAD programs.

e Debug file: symbolic debugging information, for the ZCMDTERM and ZCMDCARD
debuggers.

e List file: source program, compiled P-Code, and data in human-readable text format.

e Map file: the addresses of all symbols in the program, ordered by name and by location.

Note: Throughout this chapter, bold numbers are hexadecimal.

10.1 ZeitControl Image File Format

Debug and Image files consist of Sections, each of which starts with a 4-byte ASCII name, followed by
a 4-byte section length. Sections are guaranteed to occur in the following order:

For a BasicCard program:

‘ZCIF’ Signature Section — “ZeitControl Image File”

‘VERS’ Version Section — File format version

‘VMTP’ Virtual Machine Type Section — target machine

‘CONF’ Configuration File Section (Professional BasicCard only)

‘EEPR’ EEPROM Image Section — EEPSYS, CMDTAB, PCODE, STRCON, KEYTAB,
EEPDATA, and EEPHEAP regions

‘LOAD’ Program Load Section, containing the commands to download to the BasicCard

‘CERT’ Code Certification Section (certain Enhanced BasicCard versions)

For a Terminal program:

‘ZCIF’ Signature Section — “ZeitControl Image File”

‘VERS’ Version Section — File format version

‘VMTP’ Virtual Machine Type Section — target machine

‘CODFE’ P-Code Section — Contents of PCODE region

‘DATA’ Data Section - RAMSYS, STRCON, RAMDATA, and RAMHEAP regions
‘EEPR’ EEPROM Image Section - EEPDATA and EEPHEAP regions

Numerical 2-byte and 4-byte fields are stored Isb to msb, Intel-style (or Little-Endian). This is in
contrast to the Virtual Machine, which is Big-Endian.

Some sections contain string tables. A string table consists of consecutive null-terminated strings.
Whenever a name occurs in a Section field, it is to be interpreted as an offset into the string table of the
current Section.

10.1.1 Signature Section

Length
4 *ZCIF’ (“ZeitControl Image File™)
4 Total length of all remaining sections (= file length — 8)

10.1.2 Version Section

Length
4 ‘VERS’
4 Section length = 04

1 Major version of software that created this file

168

10.1 ZeitControl Image File Format

1 Minor version of software that created this file
1 Major version of oldest software compatible with this file
1 Minor version of oldest software compatible with this file

10.1.3 Virtual Machine Type Section

Length
4 ‘VMTP’
4 Section length len
len MachineType

If len = 2, the first byte of MachineType is as follows:

00 Terminal
01 Compact BasicCard
02 Enhanced BasicCard

and the second byte is the Machine Sub-type (00 for Terminal, 01 for Compact BasicCard, various values
for Enhanced BasicCard).

If len > 2, the Image File contains a Professional BasicCard program, and MachineType is an ASCII
string containing the version ID of the card.

10.1.4 Configuration File Section (Professional BasicCard only)

Length
4 ‘CONF’
4 Section length len

len Full path name of .ZCF BasicCard Configuration File

10.1.5 P-Code Section (Terminal only)

Length
4 ‘CODFE’
4 Section length len
2 Program entry point
len-2 | P-Code. The P-Code in the Terminal starts at address 0000.

10.1.6 Data Section (Terminal only)

Length
4 ‘DATA’
4 Section length
2 Start address of RAM data
2 Length of RAM data
2 Number of records n
2 Start address of record 0
2 Length leng of record 0
leng Contents of record 0

169

10. Output File Formats

2 Start address of record n — 1

2 Length len,_; of recordn -1

len,.; | Contents of record n—1

All RAM bytes not contained in a record must be initialised to 00.
The Data Section contains the RAMSYS, STRCON, RAMDATA, and RAMHEAP regions.

10.1.7 EEPROM Image Section

Length
4 ‘EEPR’
4 Section length
2 Start address of EEPROM data
2 Length of EEPROM data
2 Number of records n
2 Start address of record 0

2 Length len, of record 0

leng Contents of record 0

2 Start address of record n — 1

2 Length len,_; of recordn -1

len,.; | Contents of record n—1

All EEPROM bytes not contained in a record must be initialised to FF.

In the Terminal, the EEPROM Image Section contains just the EEPDATA and EEPHEAP regions. In
the BasicCard, it contains the EEPSYS, CMDTAB, PCODE, STRCON, KEYTAB, EEPDATA, and
EEPHEAP regions.

10.1.8 Program Load Section (BasicCard only)

Length
4 ‘LOAD’
4 Section length
1 State of BasicCard after download (from #State directive or —S parameter)
2 Number nye of WRITE EEPROM commands
2 Number nege 0f EEPROM CRC commands
2 Address of WRITE EEPROM command 0

1 Length len, of WRITE EEPROM command 0
leng Contents of WRITE EEPROM command 0

2 Address of WRITE EEPROM command nye — 1

1 Length len ,_; of WRITE EEPROM command nye — 1
len,; | Contents of WRITE EEPROM command nye — 1

2 Address of EEPROM CRC command 0

170

10.2 ZeitControl Debug File Format

2 Length of EEPROM CRC command 0

2 CRC of EEPROM CRC command 0

2 Address of EEPROM CRC command ncge — 1

2 Length of EEPROM CRC command ncge — 1

2 CRC of EEPROM CRC command ncge — 1

10.1.9 Code Certification Section
This Section is only required for Enhanced BasicCards ZC3.1, ZC3.2, and ZC3.31.

Length
4 ‘CERT’
4 Section length len

2 Start address of Certified Code

len-2 | Code Certificate, to be sent in the SET STATE command

10.2 ZeitControl Debug File Format

A debug file has the same format as an image file, with additional sections containing debug

information. The Signature Section has a different name:

‘ZCDF’ Signature Section — “ZeitControl Debug File”

The debug information sections occur immediately after the “VMTP’ Virtual Machine Type Section:
‘FILE’ Files Section — Names of all source files

‘TYPE’ Types Section — Descriptions of all data types used in the program

‘SYMB’ Symbols Sections — Labels and variables, one Section for each scope

‘LINE’ Line Numbers Section — Source line number information

‘FIXU’ Fixups Section — Cross-references

10.2.1 Signature Section

Length
4 *ZCDF’ (“ZeitControl Debug File™)
4 Total length of all remaining sections (= file length — 8)

10.2.2 Files Section
This section contains the names and timestamps of all the source files in the program:
Length

4 ‘FILE’

4 Section length

2 String table length lenst

lenst | String table

2 Number of files n

2 Name of file 0

4 Number of lines in file 0

2 Length of longest line in file 0

171

10. Output File Formats

4 Timestamp of file 0

Name of filen—-1

Number of lines in filen -1

Length of longest line in filen -1

B NS I = I S

Timestamp of filen-1

10.2.3 Types Section
This section contains definitions of every data type that occurs in the program.

Length
4 ‘TYPE’

4 Section length

2 String table length lenst

lenst | String table

2 Number of type entries n
7 Type 0
7 Typen-1

Type format (shaded bytes are zero):

Byte 0
Integer 1
Long 2
Single 3
String 4
String*n 5 n
Array 6 ElementType nDims
UserType 7 TypeName nMembers
Member 8 MemberName MemberType Offset
ElementType, MemberType Indices of types in the Types section
TypeName, MemberName Offsets in the string table
nDims Number of dimensions of the array
nMembers Number of members in the user-defined type
Offset Offset of the member in its user-defined type UserType

A UserType entry is immediately followed by nMembers type entries of type Member.

10.2.4 Symbols Sections

The first Symbols Section contains global symbols. Each subsequent Symbols Section contains the
local symbols for a single procedure. Symbols are sorted by name (according to the “C’ library function
st ri cnp). Symbols beginning with ‘$” are compiler-generated names.

172

Length

10.2 ZeitControl Debug File Format

4 ‘SYMB’

4 Section length

2 Procedure start address (0000 for the global Symbols Section)

2 Procedure end address (0000 for the global Symbols Section)

2 String table length lenst

lenst | String table

2 Number of symbols n

8 Symbol 0

8 Symboln-1

Symbol format (shaded bytes are zero):

Const Long 0 SymbolName 4-byte integer
Const Single 1 SymbolName 4-byte floating-point number
Const String 2 SymbolName String Len
Label 3 SymbolName Address
Variable 4 SymbolName Address Type Storage
Library Proc 5 SymbolName Code | Subcode
Command 6 SymbolName Address CLA INS

SymbolName, String

Type
Storage

Code, Subcode

2-byte offsets in the string table
Index in the Types section

0 = 2-byte absolute
1 = 1-byte absolute

2 = 1-byte signed, FP-relative (procedure parameters, Private data)
3 = indirect 1-byte signed, FP-relative (String and array parameters)

SYSTEM code and subcode

10.2.5 Line Numbers Section

Line-number entries are sorted in increasing code address order.

Length

4 ‘LINE’

4 Section length

2 Number of line-number entries n

10 Line-number entry O

10 Line-number entry n —1

Line-number entry format:

Code address (2 bytes)

File number (2 bytes)

Line number (2 bytes)

File position (4 bytes)

173

10. Output File Formats

10.2.6 Fixups Section

This Section contains two tables: Labels and Operands. Entries in the Labels table give the label(s) at a
given address. Entries in the Operands table give the operand of a P-Code instruction as a symbol

(Label or Variable).

Length
4 ‘FIXU’
4 Section length
2 Number of entries in Labels table nLabs
6 Label entry O

6 Label entry nLabs — 1

2 Number of entries in Operands table nOps

6 Operand entry 0

6 Operand entry nOps — 1

Label entries and Operand entries have the same format:

Code address (2 bytes)

Symbols Section (2 bytes)

Index of symbol in Symbols Section (2 bytes)

10.3 List File Format

The format of the list file is illustrated by means of a small example program:

Decl are ApplicationlD = "Snall

Exanmpl e Progrant

Eeprom Mont hLength(1 To 12) = 1, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
Const InvalidMonth = &H6F01
Conmand &HB0 &HOO Get Mont hLength (N)

If N<1 O
SWLSWP
El se

N > 12 Then

= I nval i dMbnt h

N = Mont hLength (N)

End | f
End Conmand

This program was compiled for the Compact BasicCard version ZC1.1, with list file and map file

requested:

ZCBASI C MONTHLEN -CC1 -OL -QM
The list file, MONTHLEN. LST:

O Fi |l e MONTHLEN. BAS
®1 Declare ApplicationlD = "Small

© $Applicationl D
(4] EEPDATA
EEPDATA

2 Eeprom Mont hLength(1 To 12)

© Mont hLengt h:
EEPDATA
Mont hLengt h Dat a:
EEPDATA
EEPDATA

174

Exanpl e Progrant

8082: 15 53 6D 61 6C 6C 20 45 78 61 6D 70 6C 65 20 50
8092: 72 6F 67 72 61 6D

1, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31

8098: 80 A0 02 01 04 0B 00 18

80A0: 00 01 00 1C 00 1F 00 1E 00 1F 0O 1E 00 1F 00 1F
80B0O: 00 1E 00 1F 00 1E 00 1F

Const 80008000:

3

EEPDATA

Const | nval i dMont h

80B8:

80 00 80 00

= &H6FO01

4 Command &H80 &HOO Get Mont hLength (N)
Get Mont hLengt h:

10.3 List File Format

(6] PCODE @ 804E: ®46 00 © ENTER 00
CVDTAB 8043: 02 80 00 02 80 4E CO0 18 07 80 77
5 If N<1 O N> 12 Then
PCCODE 8050: 8F PUFWC (N) ©
PCCODE 8051: 0C 01 PUCWB 01
PCCODE 8053: 15 80B8 PUELW Const 80008000
PCODE 8056: 3C XORL
PCODE 8057: 52 09 JLTWB $If001
PCCODE 8059: 8F PUFWFC (N)
PCCODE 805A: 0C OC PUCWB 0C
PCCODE 805C. 15 80B8 PUELW Const 80008000
PCODE 805F: 3C XORL
PCODE 8060: 4F 06 JLEVWB $El se001
6 SWSW2 = I nvalidMonth
$1f001:
PCCDE 8062: OE 6F01 PUCWN 6F01
PCODE 8065: 22 45 PORVWB SWLSW2
PCODE 8067: 54 EXIT
7 El se
8 N = Mont hLength (N)
$El se001:
PCODE 8068: 8F PUFWFC (N)
PCODE 8069: OE 8098 PUCWN Mont hLengt h
PCCODE 806C. 55 ARRAY
PCCODE 806D: 1F PU NW
PCODE 806E: CF POFWFC (N)
9 End |f
10 End Conmmand
PCCODE 806F: 54 EXIT
$I ni t Code:
PCODE 8070: 46 00 ENTER 00
PCODE 8072: 6F 80 01 RDATA 80 01
FF FF
PCCDE 8076: 47 LEAVE
O Input filename
® Source code, with line number
© Compiler-generated label (begins with ‘$”)
® Eeprom data (EEPDATA is the name of the region)
© User-generated label (no initial ‘$”)
® P-Code (PCODE is the name of the region)
® Address of P-Code instruction
O P-Code instruction and operands, in hexadecimal
© P-Code instruction and operands, in text
® Implicit operand of abbreviated P-Code instruction, in parentheses

175

10. Output File Formats

10.4 Map File Format

The map file MONTHLEN. MAP from the example program in the previous section, 10.3 List File

Format:

O Input file: MONTHLEN. BAS

@ ==———= RAM regi ons =====
Narme Start End Length
RAMSYS 00 4B 4C
STACK 4C 7F 34
RAMDATA 00
RAVHEAP 80 FF 80

© —==== EEPROM r egi ons =====
Narme Start End Length
EEPSYS 8020 8042 0023
CVDTAB 8043 804D 000B
PCODE 804E 8081 0034
STRCON 0000
KEYTAB 0000
EEPDATA 8082 80BB 003A
EEPHEAP 80BC 83FF 0344

® —==== Synbol s by nane =====
Name Scope
Al gorithm A obal
Car dMnj or Ver si on d obal
Car dM nor Ver si on G obal
CLA G obal
Conpact Basi cCard G obal

Const 80008000
Fal se

Get Mont hLengt h
I NS

I nval i dMbnt h
KeyNunber

Lc

Le

Mont hLengt h
Mont hLengt h Dat a
N

P1

P1P2

P2

PCodeErr or
ResponselLengt h
SW

SWLSW2

Swe

True

176

Get Mont hLengt h
d obal
d obal
d obal
d obal
d obal
d obal
d obal
d obal
d obal
Get Mont hLengt h
d obal
d obal
d obal
d obal
d obal
d obal
d obal
d obal
d obal

Addr ess Type

47

80B8

804E
48

40
4B
44
8098
80A0
FC
49
49
4A
41
43
45
45
46

PUBLI C BYTE
CONST=0001
CONST=0001
PUBLI C BYTE
CONST=0001
EEPROM LONG
CONST=0000
COVWAND &HB0 &HOO0
PUBLI C BYTE
CONST=6F01
PUBLI C BYTE
PUBLI C BYTE
PUBLI C BYTE
EEPROM | NTEGER ARRAY
ARRAY DATA
PARAM | NTEGER
PUBLI C BYTE
PUBLI C | NTEGER
PUBLI C BYTE
PUBLI C BYTE
PUBLI C BYTE
PUBLI C BYTE
PUBLI C | NTEGER
PUBLI C BYTE
CONST=FFFFFFFF

RAM syst em dat a:

Name

Al gorithm
KeyNunber
PCodeErr or
ResponselLengt h
Le

SW

SWLSW2

Swe

CLA

I NS

P1

P1P2

P2

Lc

EEPROM user dat a:

Name

Mont hLengt h
Mont hLengt h Dat a
Const 80008000

® User code:
Name

Get Mont hLengt h
Initialisation Code

@ Local vari abl es:

Input filename.

Q00000

Get Mont hLengt h

RAM regions: The addresses and lengths of the regions in RAM.
EEPROM regions: The addresses and lengths of the regions in EEPROM.
Symbols by name: All the symbols in alphabetical order.

Symbols by location: All the symbols, ordered according to location and address.
User code: The addresses of all the procedures and labels in the source program.
Local variables: The signed FP-relative addresses of parameters and Private data.

10.4 Map File Format

Addr ess

Type

PUBLI C BYTE
PUBLI C BYTE
PUBLI C BYTE
PUBLI C BYTE
PUBLI C BYTE
PUBLI C BYTE
PUBLI C | NTECER
PUBLI C BYTE
PUBLI C BYTE
PUBLI C BYTE
PUBLI C BYTE
PUBLI C | NTECER
PUBLI C BYTE
PUBLI C BYTE

Type

EEPROM | NTEGER ARRAY
ARRAY DATA
EEPROM LONG

Type

COMVAND &H80 &HOO0
SUB

Type

PARAM | NTEGER

177

Index

A

ADS .o 37
ACCess Conditions.........cccvvevveerieiieiieiieiinns 62
ACos Mathematical Function..............c........ 99
Advanced Encryption Standard 87,142
AES Algorithm ..., 142
AES FUNCLioNccceeeiiiii e, 87
AES Library ... 87
Algorithm.......coiii 44, 47
AHOWIXXX vt 19
ANSWEr TO RESEL.....cccvvviieiiiic e, 43
Append MOdeccvvevereie e 59
Application IDcccvvvvvvirccee e 43
Array Descriptor Format..........cc.ccceveverennenn 49
Array FUNCLIONSoovvvevvvvcececeeceee 37
Array Parameterscoocvevvevvereeinsinneeninens 36
ATTAYS it 22
AS TYPE . 23
ASC et 37
ASin Mathematical Function..............c......... 99
ASSIGN NAD Commandcccevvevennen. 132
Assignment Statements.........cccovevverererereenns 27
AL AdArESS...ccvviivieireeieece e 23
ATan Mathematical Function..............c........ 99
ATan2 Mathematical Function..................... 99
ATR e 43, 107
ATR Declaration...........cccoeveeveiieiieieiieinnns 43
ATIDULES .o 57
Automatic Encryption.........c.cccoceveieiencnnenn 47
B

BasiCCard........coccovveevieiiieecee st 8
BasicCard Virtual Machine................c........ 155
BasicCard-Specific Features............ccccceeeene 43
BCKEYS.EXE.....ccooiiieiieeceeee e 82
BCLOAD.EXEccooeieiieeiteecte e 80
Beep Subroutingcccccoeevvvvvivniciee 102
2 T[] PSS 48
Binary FileS......ccocoovvivvvvinieceecccenns 61, 62
Binary mode........cccooviiiiiiiiiiieee e 59
Block Waiting Time.........ccccceeevenennne 21,107
Built-in Commands.........cccccevevveeiiveenneenne, 117
Built-in FUNCLioNnSccooveviviiicieccie e, 37
BWT o 21, 107
Byte data typecccoeveiiieiieeeeee e 22
C

Call v 35
Card LOAdENccveviieeieeecre et 80
Card State.......ccceeviiriecreccece e 20
CardInReadercccvvevieviecieceececie e, 45
CardReaderccccveeveeieiiecreecree e 45
Ceil Mathematical Function.............c..cc........ 99
Certificate ...cocevviiciiece e 38, 41

178

Certificate Generationc.cccceevevenen. 41, 142
ChDIr e 55
ChDFIIVE .ot 57
Chr$..o 37
CLA oot 32,34,44
ClassS BYLecoveiiiiiiieiieeeee e 32, 34,44
CLEAR EEPROM Command................... 122
Close File.......cooiiiiiiiiecce e, 60
Close Log Filecooueiiiiiiiieicece e, 46
ClS ot 44
Command CallS........ccccovviineiiiniee 35
Command Definition...........ccocveevceneiiennn, 32
Command-response protocol..........ccocvevverennnne 7
COMMANDS.DEF......cccoviriiiiniicrienns 134
CommUNICAtIONS.......ccvreirireecrieen 45, 106
Compact BasicCard...........cccovrrverereerererennens 11
COMPOIT ... 47
Computed GOTO/GOSUD.....ccvveeiiiiee, 31
Conditional Compilationc.ccccceeererennn. 19
Cos Mathematical Functionc.cccceeueeee. 99
CosH Mathematical Functionc........ 99
CRC16 FUNCtioNccccvvieiiirieiiineecinns 101
CRC32 FUNCLioNcvvvivieiiiieicireeicis 101
Create File ..o 58
CUIDIT i 55
CUIDIIVE oo 58
Current DisK DFiVEooovvveeereiieeeeeene, 57,58
CUISOIX ittt 48
CUISOTY e 48
CUStOM LOCK ... 63
D

Data Declaration.........ccocooeeieiiiiinicnciene 23
Data StOrageceeveereereeiee e 21
Data TYPES....cvverreeeeieree e 22
Data Types, P-COdE.........cccvvereireneinien, 157
Date ... 46
Debug File Format...........cocoovvinvinincnnnn, 171
Debug File, Generatingccocoeeveriinenae 78
Declare ApplicationIDcccooceviiinnnnne 43
Declare ATR ..o 43
Declare Key ... 39
Declare Polynomials..........cc.ccooeioiiiiiincnncns 40
DEfBYLe ... 48
DEfINT...ociiiiiee e 48
DEfLNG ..ot 48
DEfSNQG .o 48
DEfStriNG ...ocvieiiiiec e 48
DefType Statement.........ccovvvvvrvieneincnieeas 48
Delete Fileovvevce e 58
DES AIgorithm........ccoceovvineiiiinneneceee 137
DES Encryption Primitivescccceoenee. 41
DT et 56, 64
Directory Attributes.ccocvvvriniiiiiiieie 57
Directory Commandsccocereeeeieeneneniens 54

Directory Definition.........ccccceevvvvevevciciennnns 64
Directory Namescccoovvvvieniveierieneneneens 51
Directory-Based File Systems..........cc.ccoeeeeee 51
Disable Encryption..........cccooeveicnennne 43, 47
Disable Key.......cccooiiiiiiiiiiieeccce 41
Disable OverflowCheck..........cccceoeiinnnene 48
DiSK DIIVE...c..cciiiiiiie e 57, 58
DO-L00P ..t 30
DYNAMIC AITaYS ...ccvveveeeeieriesveseeiereenieseeseens 22
E

EC-161 Library.....c.cccoceovviniviincneieienennens 92
EC161GenerateKeyPairccccccoeverennne 94
EC161HashANdSignccocvvvvevevieieiennnns 94
EC161HashAndVerify........ccocoveveiieicnnnns 94
EC161SeSSiONKEY.....ccceiiiiiiiieiieieieie e 95
ECLE61Set CUr Ve ..o 93
EC161SetPrivateKeyccocvvivevereeierennnns 94
EC161SharedSecret.........cccovvvviirerieniennas 95
ECLBLSIgN .ovvvvvveeeeeeiese et 94
ECL16LIVErify ..covviieeece e 95
EC-167 Library......ccccocooiniiiiiiiiiicicne 88
EC167GenerateKeyPairc.cccoeeeenne 89
EC167HashANdSignccocvoviiiiiiinicnne 90
EC167HashAndVerify.......c.ccocooiiiiincnnns 90
EC167SeSSIONKEY.....ccoveiiiiiriiieiieieeie e 91
ECL67Set CUM Ve ..o 89
EC167SetPrivateKeyccoovvviveieeienennns 90
EC167SharedSecret..........ccoovvviiiviciniennne 90
ECLO7SIgN ..ot 90
ECLO67VErify . .covciieieeiece e 90
ECHO Command..........cccoeviineniniencnnn 131
EEPROM CRC Command.........c.ccccouenen. 125
Eeprom data........cccceeveevverevnnnnieeeeieerene e 21
EEPROM SIZE Commandcc........ 121
Elliptic Curve Library......ccccooevevevvnivinnnnns 88
Enable Encryption.........cccceevevevciicinnnnns 43,47
Enable KeY......ocoovoveieiiie e 40
Enable OverflowCheck...........cc.cccoeiinnnene 48
ENCryption......cocooeeiiiiiircee e 39
Encryption Algorithms...........cccccoeeiininnne 137
Encryption FUNCLIONSccccoveiiiieiiiiiiee 38
END ENCRYPTION Command............... 130
Enhanced BasicCard.........cccocevvvereiienienas 11
EOF ..o 64
Error COUNEENooviiiiicicese e 40
Error DIrectiVeccoovvevveviciiecc e 20
Error File, Generatingccocvevvervevvriernnnnns 78
Error Handlingccoovevevevvvninceeeecenins 42
Executable Files.........ccooiviiiniiiiiiiiiiee 13
Execute SUbroutingccccoceverieiieicnnenn 101
EXIT oo 28
Exp Mathematical Function..............c.cccc.e.. 99
EXPressionscccoveeeieeieienie e 25
F

fa... File Attributes........ccocooeveiiieniiinnn, 57
FastEepromWrites Subroutine 102
fe... File System Errorsccccccevevvevvvcnnnnnnn 53
o[@0 SRS 48

FIlE oo 65
File Attributes. ... 57
File Definition ..o, 65
File Definition Sections...........ccccceveviienennn. 10
FILE 10 Commandccccoeovrerieienicnnnn 133
File Names.......cccoiiiiiice e 51
File System Commands.........c.cccoceveicrnnnenne. 53
File tYPeS ..o 67
FIEEFTOr ..o 44, 48
FILEIO.DEF......ccooiiiiiiieeee s 65
Files and Directories.........cocevvvervvireencrnenns 51
FiXed arrays......ccoveveruerenereseseseereesienieseens 22
Floor Mathematical Function...............c........ 99
FOIABIS ..o 51
FOr-LOOP ..ot 29
FreeFile. ... 64
Function Calls ..., 35
Function Definition ..o, 31
G

GET APPLICATION ID Command......... 127
Get LOCK ..ot 63
GET STATE Command.........cccccovvrernne 120
GEEALLE .o 57
GetDateTime Subroutineccoceevvennne. 100
GOSUD ...t 28
GOTO et 28
H

HEXS oo 37
Hexadecimal Constantsc.coceeveneneniens 16
Hypot Mathematical Function...................... 99
|

/O LOGUING ..cveieieiieieesiee e 46
I-block (T=1 protocol)........cccccvvvrereirnnnnn. 112
IDEA Library......cccooevveniiiineinenece 98
ldeaDecrypl.. ... 98
1deaENCryPt ..o 98
If-Then-EISeccovvveereer e 29
Image File Format........cccoooiveiiiiiie, 168
Image File, Generatingccccceveveiencnnnn 78
Image FilesS ..o 13
Implementing Encryption..........c.ccccceenennne 39
Initialisation Codecccoevveiiiiiiiiiieiccee 9
INKEYS ..o 45
INPUL ..., 45, 61
INPUE MOAE ..o 59
INS ..o 32, 34,44
Installation of Support Software.................... 67
Instruction byte.......ccocvevvivecerennien, 32,34, 44
Integer data type.......coceveveneiinieeee 22
Inverse CoNVeNtioN..........cccceveiereeierieneniene 19
K

Key Configuration............ccoceeeveniniennnnnens 40
Key Declaration..........ccccooerirencinienenenens 39
Key Error COUNter.........ceveeveiiieiieiienieine 40
Key GENEratorcccovevvererininiesieeeeeie s 81
Key Looiiiiiiciieecc e 82

179

ZeitControl BasicCard

Keyboard INputcccoveievinrir e 45
KEYGEN.EXEccoooviiiiiiieec e 81
KeyNUMDEN ..o 44, 47
Kl oo 58
L

LabeIS. ..o 28
LBOUNd ..ot 37
LG ittt 44
LCaSES ... 37
L ittt e 44
Leftd ..o 37
Len (0f data) ...ocoveeeeeevece e 37
Len (Of file) cvvveeeeee e 64
LIDEFIOF oo 83
LiDraries. ... 83
LIBVER.EXE ...ocoviiiiiieice e 83
Line INPUL ..o 45, 61
List File Formatccocovoviiiiiiiiiec 174
List File, Generatingcccooeveievenicnenncns 78
Listing DireCtiVes.......ccccoveririeiieieiencienins 20
LOAD State......ccoervenrerieiineiieieeeeene e 117
LOCK. .ttt 63
LOCK File . 62
Log10 Mathematical Function...................... 99
LogE Mathematical Function........................ 99
Long data typeccooevereneniiieece e 22
LTrimS .o 38
M

Map File Formatcccccooeniiiiiiiiienc 176
Map File, Generatingcccoceveveiencnenncns 78
MATH Library ..o 99
Memory Allocation..........cceveevviveierercneniens 50
Message Decryption Functions........... 139, 143
Message Encryption Functions............ 138, 142
MIAS .o 38
MISC Libraryccccevevvvienivinsieeesesesie 100
MKDIF ..ot 54
N

NAIME ..o 55
NEW state.......cooeieiiiniieie e 117
NPAFAMS ...t 48
Numerical EXPressionsc.ccooeeeeeiereneniens 25
Numerical FUNCtioNS..........cccvvveineininiennns 37
0]

Octal ConstantS.........ccvvereireniinenecsieee 16
OpeNn File....ooe e 58
Open File SIotS......ccovvvveeeeee e 20
Open Log File.....ccccoooveieveniirsreeeeecee, 46
OpLioN Basecccceveiieiiiee e 48
Option EXPlCIt ..o, 49
OPLIONS. ..o e 18
Output File FOrmatsccccooeieieieniiennns 168
OUutPUE MOME ... 59
Overflow Checking........ccooooovveeciencicnee, 48

180

P

| 44
PAP2...eceeee e 44
P s 44
Param$cocooiee ettt 48
Parameter Passing.........ccccoevevereneeiicnieniennn, 36
Path NamMES......ccoveiicie e 51
pc... P-Code Errors.......cocooiiiiiiieiccieins 115
PC/SC FUNCLIONScvveeiviieeeeeecieeeree e 46
P-Code INStruCtionScocevvvveeiiee e 158
P-Code INterpreter......ccoevvvevesveveiereseenens 79
P-Code StacK........ccovevvvieiciiiirie e 156
PCOEEITOr.....ccvviiceeeeee e 44, 48
Permanent Data..........ccccveeeeeiiiiiivieneeenn, 11, 14
PERS Statevvvviiiiiiiiiiiiiee e 117
PKCS ... 83
Plug-In Librariescccocovineninienicienee, 83
Polynomial Declaration............ccccoceeiiennenne. 40
Pow Mathematical Function...........cccccoeuuee... 99
Pre-Defined Commandsccccceevveernnee. 117
Pre-Defined Constants..........coocevvvvevveeevinennn. 21
Pre-Defined FilesS......ccccooveviveeeeiee v 52
Pre-Defined Variables...........ccoovevvinene 44, A7
Pre-Processor DireCtivesc.ccoevevvveeeveeenne. 18
Print....ccoooiii e 45, 60
Private data........cccccooeveeeiiiiiii e 21
Procedure Callscocooeveviiiiiiiiiiiiee e 35
Procedure Definitioncocevvevviveeevvnenen. 31
Procedure Definitions...........cccecvveieveeeiiiieeenns 9
Procedure Parameters..........ccocevvvevvvveeesvnennn. 36
Processor Cards..........cooocvveeviveieesiviee e 6
Professional BasicCard..............ccoceevvvvievennnne. 12
Program Layoul...........ccooveiiiriieineeneeneenens 9
Programming processor card..........c.cccceeeruennn 7
Public data........ccocvevveeeeeiieeeeee e 21
[| 61
R

Random Files.........cooveiviiiiiie e 61, 62
Random modecccooeeviiiieiiii e 59
Random Number Generation...........c...cocuue.... 42
RaNdOMIze.........ooceveeeeciie e 42
RandomString Subroutineccccc.e... 102
READ EEPROM Command...................... 124
Read From FileSocovveeiiiieeeeeie e 61
Read Key File........ccoviiiiiiiiiiieiciee 40
REad LOCKevvveeieeeiee et 62
Read UNIOCK.........coueveeeieeieeie e 62
Read Write LOCKcooveevvveeiiicieece e, 62
Read Write UnlocK..........cocevveiiiiiieiiiieeee 62
REDIM ... 22
Renaming Files........ccooviniiniiiiciee, 55
Reserved WOordsccceovcveeeeeciiiie v 17
ReSEtCard......ccc.coocveeeieiie e 45
ResponseLength...........ccocooviiiiiiiicne 44, 47
REtUIN....oooii 28
RIGhtS ..o 38
RMDIC e 54
RN oo 37, 42
RSA Library ..o 83

RSADECIYPL ..o 85
RSAENCIYPL....ociveece e 85
RsaGenerateKeycccooeeieeieiienienieniens 84
RSaOAEPDECIYPLcoveeieeiieiieciciesiieine 87
RSaOAEPENCIYpt.......cccooviiiiiiiiiiiieie 87
RSaPKCSIDECIYPL....ccoviiiiiieiecieeiesiieniae 86
RSaPKCSIENCIryptcccooevviiiiieiiiiieie 86
RSaPKCSLSIgN. ..o 86
RsaPKCSIVErify ..o 86
RsaPseudoPrimeccocoovveveiiinciicnieas 85
RSaPUBICKEYocvveeeiee s 85
RTHIMS....coiiiiiee e 38
RUN SEALE ... 117
Run-Time Memory Allocation.................... 157
S

Save Eeprom Data.........cccoeeveieeieiiicnienienn 46
Screen OULPULoeeeveeeiiee e 44
Searching for FileS.........ccooeviiiiiiiiie, 56
Secure Hash Algorithm..........cccccooeiiiinnn. 97
SEEK i 64
SeleCt CaSe...ocvvireere e 30
Sequential Files.......ccooevvveveviviinincee, 60, 61
SET STATE Commandcccceovvnnnnnne. 126
SEEATEN ..o 57
SG-LFSR ..ot 145
SG-LFSR with CRCccccovviiiiricicee, 146
SHA-L Library ..., 97
ShaAPPENdccoeiiiiiieeee e 97
ShaENG.....ooiiiiii e 97
ShaHash ..., 97
ShaRandomHash...........cccocviiiiiiinen, 98
ShaRandomSeedccccoovvvvvenensienen, 98
ShaStart ... 97
Shrinking Generator..........ccoeevveveveriernnnnns 145
Sin Mathematical Function............cc.cccoeneen. 99
Single data typeccovvvvve e 22
SinH Mathematical Function........................ 99
Sleep SUDrOULINe........ccooiiiiiiice e 101
SOUrCE File ..o, 16
Source File InClusion ..., 18
SPACES ... 38
SOt 37
StACK SIZE...cvviviieisiere e 20
START ENCRYPTION Command.......... 128
States of the BasicCardcccccrvvviinine 117
Static data.......coovevviere 21
Storage RequIremMentscecvevverereerereerenens 53
SEEP 38
String data typecoeveeeriniece e 22
String EXPressionscocoeeviveeieiene e, 27
String FUNCLIONS ..o 37
String Parameter Format ..., 50
String Parameters........ccoovoveeeiiie i, 36
STEINGS...eceiii e 38
String™n data typeccoevvevvvvieeece e 22
Strings, P-Codecccoocvviviveveice e 157
Subrouting Calls........cccoovvieniinieneee 35
Subroutine Definition..........ccoceevevveivieneen 31
Support SOftWarecccecvvevvviese e 67

Index

SuspendSW1SW2Processing Subroutine..103

SW... Status Codes........ccceevvveievrieireeireeirennne, 114
SWL.ooiicc s 44,114
SWISW2 ..o 44, 48
SW2..iieeee s 44,114
SYSTEM Instructioncccccoevvevveevveennne.. 164
T

T=1Protocolccoceevvveiieeiirieccee e 112
Tan Mathematical Function.............cccccvevee. 99
TanH Mathematical Function....................... 99
Terminal Program..........ccccoevvveveiverereneneens 13
Terminal Program Layoutcccccevevveenne 13
Terminal Virtual Machine............ccccooeeveaee. 155
Terminal-Specific Featurescccccevvvenne. 44
TEST State ..evveeeiiee e 117
TIMES oo 46
Timelnterval Function...........ccccoevvveeveene, 100
TOKENSvvi ittt 16
TEIMS e 38
]

L8] 2701013 [o 1S 37
UCASES......ooiieiieceeceee e 38
UNIXTIME .ot 100
UNIOCK....cvii e 63
UNIOCK File.eecicceeceee e 62
UpdateCRC16 Subroutingcccccceueeene 101
UpdateCRC32 Subroutingccccceeueeens 101
User-Defined Parametersccccceevveeeveennee. 37
User-Defined TYPEScccooevervrvneiicieiene, 24
\

Vall oo 38
Val& oo 38
A Z21 1 [38
Virtual card readers.......cocceevvveeeeeeieeceeeinen. 69
Virtual Maching.........cocveeveeiiie e 155
W

While-Loop ...ooeoviiriieiieene e 30
W oo 60
Write EEProm ... 46
WRITE EEPROM Command................... 123
WIrite LOCK ..ocovviiviiiiii e 62
Write to file c.ooovviiiie 60
Write UnlocK.......cooovviiviiiiiiicieccee e, 62
WTX REQUESEcovviieiriiiecereereeee e 113
WTX Statementoooveeeeeieeeeeveeeenee, 43, 47
Z

ZC-Basic Compiler.......ccccovvivvevereneiennnnn 78
ZC-Basic languageccocevvvervieneneienieen 16
ZCINC Environment Variable...................... 18
ZCMBASIC.EXE.....cocoviiviieieeieeiecvieeiens 78
ZCMDCARD.EXE.......cocovv e, 75
ZCMDTERM.EXEcoovooviiiieciiciecieins 73
ZCMSIM.EXEcooviiiiiiiceceeeee e 79
ZCPDE.EXE ...coviiiiieeceece e 71
ZCPORT Environment Variable............ 47,77

181

182

	The BasicCard
	Processor Cards
	Programmable Processor Cards
	BasicCard Features
	BasicCard Programs
	BasicCard Program Layout
	The Compact BasicCard
	The Enhanced BasicCard
	The Professional BasicCard

	The Terminal
	The Terminal Program
	Terminal Program Layout

	The ZC-Basic Language
	The Source File
	Tokens
	Pre-Processor Directives
	Data Storage
	Data Types
	Arrays
	Data Declaration
	User-Defined Types
	Expressions
	Assignment Statements
	Program Control
	Procedure Definition
	Procedure Declaration
	Procedure Calls
	Procedure Parameters
	Built-in Functions
	Encryption
	Random Number Generation
	Error Handling
	BasicCard-Specific Features
	Terminal-Specific Features
	Miscellaneous Features
	Technical Notes

	Files and Directories
	Directory-Based File Systems
	The BasicCard File System
	File System Commands
	Directory Commands
	Creating and Deleting Files
	Opening and Closing Files
	Writing To Files
	Reading From Files
	File Locking and Unlocking
	Miscellaneous File Operations
	File Definition Sections
	The Definition File FILEIO.DEF

	Support Software
	Hardware Requirements
	Installation
	File Types
	Physical and Virtual Card Readers
	Windows-Based Software
	The ZCPDE Professional Development Environment
	The ZCMDTERM Terminal Program Debugger
	The ZCMDCARD BasicCard Program Debugger
	Command-Line Software

	Plug-In Libraries
	RSA: The Rivest-Shamir-Adleman Library
	AES: The Advanced Encryption Standard Library
	EC–167: The 167-Bit Elliptic Curve Library
	EC–161: The 161-Bit Elliptic Curve Library
	SHA–1: The Secure Hash Algorithm Library
	IDEA: International Data Encryption Algorithm
	MATH: Mathematical Functions
	MISC: Miscellaneous Procedures

	Communications
	Overview
	Answer To Reset
	The T=0 Protocol
	The T=1 Protocol
	Commands and Responses
	Status Bytes SW1 and SW2
	Pre-Defined Commands
	The Command Definition File COMMANDS.DEF

	Encryption Algorithms
	The DES Algorithm
	Implementation of DES in the BasicCard
	Certificate Generation Using DES
	The AES Algorithm
	Implementation of AES in the Professional BasicCard
	The SG-LFSR Algorithm
	Implementation of SG-LFSR in the Compact BasicCard
	SG-LFSR with CRC
	Encryption – a Worked Example

	The ZC-Basic Virtual Machine
	The BasicCard Virtual Machine
	The Terminal Virtual Machine
	The P-Code Stack
	Run-Time Memory Allocation
	Data Types
	P-Code Instructions
	The SYSTEM Instruction

	Output File Formats
	ZeitControl Image File Format
	ZeitControl Debug File Format
	List File Format
	Map File Format

	Index

