r4 I Y
Sun's 1999 Worldwide Java Developer Conference’

Using the Java™ Cryptographic
Architecture (JCA) and Java™
Cryptography Extensions (JCE)

Steve Burnett
RSA Data Security, Inc.
burnett@rsa.com

Topics

 What is the Java™ Cryptographic
Architecture (JCA) and Java™
Cryptography Extensions (JCE)

 The JCA Programming Model
o Examples
« Random Number Generation

o [appendix]

What Is JCA/JCE?

JCA: Java " Cryptographic Architecture,
Philosophy of cryptographic
API, some “Implementation”

JCE: Java ™ Cryptography Extensions,
Additions to the “Implementation”
(export restrictions)

JCA

Introduced MessageDigest, Signature,
SecureRandom classes
(subsidiary classes: keys, etc.)

Introduced the concept of Provider
(getinstance)

JCA

JCA API Application/

Applet
java.security

|

SUN Acme
Provider g Provider

|

JCE

Extensions to the JCA

Separate package due to
export restrictions

Adds Cipher, KeyExchange,

MAC classes
(subsidiary classes: keys, etc.)

JCA/JCE

JCA API Application/

Applet
java.security

1 javax

SUN Acme
Provider { l
SunJCE
Provider

JCE API

- Z£0

JavaOne

LS mtmams Dentemes

History

JCA introduced JDK ™ 1.1 release

JCE distributed as “early access” at
the same time

JCE early access withdrawn, never
became a “product” during the
JDK™ 1.1 timeframe

History

I R EEEEEE N SN ESSI—Z—Z————
Why withdrawn?

Inadequate—For instance, could not
store keys or make key objects from

existing key data

DSA flaw

History

JCA reworked for the JDK ™ 1.2 release
(retaining backwards compatibility)

JCE rebuilt from “scratch” to be released
at the same time

Advanta ges

e Standard API

* You have some cryptographic
functionality without having to
go out and buy It

e Users and your customers will
nave this code, so you do not
nave to include the crypto as
part of your product

Disadvanta ges

o Java 2 platform (time to adopt)
e Missing algorithms (RSA, RC2, RC4)

e Hard to use (eight packages, many
methods, complicated paths)

* |nconsistent (init vs. Initialize vs. INitSign
VS. NO Init, getinstance vs. constructors)

 Real-world limitations (e.g. BER)

Topics

e What is the JCA/JCE

 The JCA Programming Model

o Examples

e Random Number Generation

o [appendix]

JCA/JCE Model

random Key Key
(maybe) Factory Generator

Key Object
(maybe)

Factory vs. Generator

Key Key
Factory Generator

Build a key object
from existing data

Build a new key
from random data

JCA/JCE Model

random Key Key
(maybe) Factory Generator

Alg Object

Key Object
(maybe)

INit

JCA/JCE Model

Alg Object

JCA/JCE Model

Final output

Unprocessed BE=
data

Alg Object

The JCA/JCE Model

1. getinstance
2. 1nit

3. update

4. final

Topics

 What is the JCA/JCE
 The JCA Programming Model

e Random Number Generation

o [appendix]

JCA/JCE Model Example

Digital Envelope

Bulk encryption using a symmetric cipher (DES),
encrypt the symmetric key using RSA

Symmetric vs. Public Key

5008

Symmetric key cryptography: The same key used
to encrypt is necessary to properly decrypt.

Symmetric vs. Public Key

Recipient’s Recipient’s
Public Key Private Key

B0 B BV

Public key cryptography: Two keys, what one
encrypts, the other decrypts. One iIs made public,
the other remains private. Knowledge of the
public key will NOT assist in breaking the
message or system.

Symmetric vs. Public Key

Public key cryptography slow

Use symmetric encryption for
the data, then encrypt the key
(a smaller amount, generally
8 or 16 bytes) using public key

RSA Digital Envelope

Encrypt

DES key
Data Encrypted
| ! j : Data
Recipient’s Encrypted
RSA Public Key

Key

RSA Digital Envelope

Decrypt

DES key
Encrypted Data
Data
Encrypted ;
Key Recipient’s
RSA Private

Key

JCA/JCE Model

random Key Key
(maybe) Factory Generator

Alg Object

Key Object
(maybe)

INit

DES With CBC

 Algorithm object: Cipher
o Spec (for IV): IvParameterSpec
e random (not needed)

o Key Object: SecretKey
(built from KeyGenerator)

Spec

SecureRandom random =

SecureRandom.getinstance (SHA1PRNG);
random.setSeed
(System.currentTimeMillis ());

byte[] iv = new byte [8];
random.nextBytes (iv);

lvParameterSpec desCBCParams =
new IvParameterSpec (iv, 0, 8);

Seeding a PRNG

Generally, time of day Is
not a complete seed

For an initialization vector,
something that will not be
kept secret, It is good enough

Key Generator

o Algorithm object: KeyGenerator
e Spec (hot needed)
 random: well-seeded random object

o Key Object (not needed—we’re building
a key)

KeyGenerator

Step 1: getinstance

Provider sunJCE = new
com.sun.crypto.provider.SunJCE ();
Security.addProvider (sunJCE);

KeyGenerator desKeyGen =
KeyGenerator.getinstance
(“DES”, “SunJCE");

Staticall y Loaded Provider

... Jdk\jre\lib\jJava.security

security.provider.1 =
sun.security.provider.Sun

security.provider.2 =
com.sun.crypto.provider.SunJCE

Staticall y Loaded Provider

KeyGenerator desKeyGen =
KeyGenerator.getinstance
(HDES”);

KeyGenerator

Step 2: Init
byte[] newSeed =

random.generateSeed (20);
random.setSeed (hewSeed);

byte[] newSeed =
mySeedGenerator.getSeed (20);
random.setSeed (newSeed);

desKeyGen.init (random);

KeyGenerator

Step 3, Step 4: Update, Final

SecretKey desKey =
desKeyGen.generateKey ();

DES With CBC

« Algorithm object: Cipher
Ve Spec (for IV): IvParameterSpec

— et e reetee—

v* Key Object: SecretKey (built from
KeyGenerator)

Cipher

Step 1: getinstance

Cipher des =
Cipher.getinstance
(“DES/CBC/PKCS5Padding”,
“SunJCE");

Incidentally

Standard Names
(“DES”, “CBC”, “DiffieHellman”)

file:///D|/jcel.2/doc/guide/API_users guide.html

JCA/JCE Model

lvParameterSpec
desCBCParams Key

Generator

KeyGenerator
lﬂesKeyGen

Key Object

Cipher

Step 2: Init

des.init
(Cipher.ENCRYPT_MODE,
desKey, desCBCParams);

Cipher

Step 3: update

byte[] dataToEncrypt =
new byte[2048];
byte[] encryptedData =
new byte[2056]

Int encryptedDatalen = des.update
(dataToEncrypt, O, 2048,
encryptedData, 0);

Cipher

Step 4. final

encryptedDatalen +=
des.doFinal
(encryptedData,
encryptedDatalen);

The RSA Al gorithm

http://www.rsa.com/rsa/rsamath/index.html

JCA/JCE Model

random Key Key
(maybe) Factory Generator

Alg Object

Key Object
(maybe)

INit

RSA

Algorithm object: Cipher
Spec (not needed)

random (for padding): well-seeded
random object

Key Object: PublicKey (built from
KeyPairGenerator)

Generating RSA Key Pairs

KeyPair
Generator

Public Private
Key Object Key Object

KeyPairGenerator

o Algorithm object: KeyPairGenerator
e Spec (hot needed)
 random: well-seeded random object

o Key Object (not needed—we're
building keys)

KeyPairGenerator

Step 1: getinstance

KeyPairGenerator rsaKeyGen =
K(?I; Doesn’t Work Sill®=

KeyPairGenerator

Provider acme = new
com.acme.provider.Acme ();
Security.addProvider (acme);

KeyPairGenerator rsaKeyGen =
KeyPairGenerator.getinstance
(HRSA”, HAcme”);

Of Course

... Jdk\jre\lib\java.security

security.provider.1 =
sun.security.provider.Sun

security.provider.2 =
com.acme.provider.Acme

KeyPairGenerator

Step 2: Init

byte[] newSeed =
mySeedGenerator.getSeed (20);
random.setSeed (newSeed);

rsaKeyGen.initialize
(1024, random);

L Strength (instead of Spec)

KeyPairGenerator

Step 3, Step 4: Update, Final

KeyPair rsaKeyPair =
rsaKeyGen.genKeyPair ();

PublicKey rsaPublic =
rsaKeyPair.getPublic ();

PrivateKey rsaPrivate =
rsaKeyPair.getPrivate ();

RSA Key Pair

byte[] encodedPublic =
rsaPublic.getEncoded ();

byte[] encodedPrivate =
rsaPrivate.getEncoded ();

Gettin g Key Data

Class specClass = Class.forName
(Javax.crypto.spec.X509EncodedKeySpec),

KeyFactory factory =
KeyFactory.getinstance
(“RSAH, (‘Acme”);

X509EncodedKeySpec keySpec =
factory.getKeySpec
(rsaPublic, specClass);

Gettin g Key Data

byte[] keyData =
keySpec.getEncoded ();

RSA

 Algorithm object: Cipher
—Seee-trotreeted—mm

A random (for padding): well-seeded
random object

v/ ¢ Key Object: PublicKey (bullt from
KeyPairGenerator)

Cipher

Step 1: getinstance

Cipher rsa =
Cipher.getinstance
(HRSA”, HAcme”);

Cipher

Step 2: init

rsa.init
(Cipher.ENCRYPT_MODE,
rsaPublic, random);

Cipher

Step 3: update

byte[] keyData =
desKey.getEncoded ();

byte[] encryptedKey =
new byte[128]

encryptedKeylLen = rsa.update
(keyData, O, 8, encryptedKey, 0);

Cipher

Step 4. final

encryptedKeyLen += rsa.doFinal
(encryptedKey,
encryptedKeyLen);

The JCA Model

1. getinstance
2. 1nit

3. update

4. final

Topics
I R EEEEEE N SN ESSI—Z—Z————
 What is the JCA/JCE
 The JCA Programming Model

o Examples

e Random Number Generation

o [appendix]

Random Numbers

Definition: Pseudo Random Numbers

Numbers produced by a deterministic
method that appear to be random

Random Classes

java.util.Random

java.security.SecureRandom

Instantiatin g

SecureRandom random =
SecureRandom.getinstance
(“SHA1PRNG");

SecureRandom random =
new SecureRandom ();

SecureRandom random =
new SecureRandom (new byte[4]);

2 =T %

JavaOne

Random Seeding

pseudo-random
output

Random Seeding

Random Seeding

The seed should be
as strong as the key

Quality and Quantity

Quality for unrepeatability
Quantity to increase brute-force time

Random Seeding

Quality = Entropy
Entropy: from order to chaos
Entropy: amount of information

Memory Statistics, Process Statistics,
Mouse Movement, Keystroke Timing

http://www.rsa.com/rsalabs/pubs/updates/bull-1.pdf

Random Seeding

Quantity
Rule of Thumb

At least
1 byte of random seed
for each 1 bit of key

Random Seedin ¢

Why not just use the seed as the key data?

1. Some of the seed bits may be known

2. Seed collection may be too
time-consuming

3. Seed collection may be
platform-dependent

4. Seed bytes may not be
pseudo-random

Autoseeding

SecureRandom class documentation: “We attempt to
provide sufficient seed bytes to completely randomize
the internal state of the generator (20 bytes). Note,
however, that our seed generation algorithm has not
been thoroughly studied or widely deployed. It relies
on counting the number of times that the calling thread
can yield while waiting for another thread to sleep for
a specified interval.”

Autoseedin g

If you do not seed, the first time the
object generates random bytes, it
will autoseed

byte[] newSeed =
random.generateSeed (20);
random.setSeed (hewSeed);

.lavaOne

1999 Worldwide Java Develo

Using the JCA/JCE

Steve Burnett
RSA Data Security, Inc.
burnett@rsa.com

Appendix

Passwords

Password-Based Encryption (aka PBE)

PBEKeySpec (char[] password)

Why not a String?

Passwords

New York Times , Aug. 27, 1997

“Drake discovered his passphrase was being
written out to disk by PGP when he decided to
scan through the data stored on his disk with
Norton Utilities, a common tool for analyzing
hard disks. He searched the disk for the phrase
and found it written in five different places.”

Overwrite Sensitive Data

byte[] keyData = new byte[16];

random.nextBytes (keyData);

SecretKeySpec keySpec =
new SecretKeySpec

(keyData, “RC4™),

OverwriteClass.overwrite (keyData);

Export

U.S. government does not allow the
export of strong encryption except
under certain circumstances (e.g.
financial or weak crypto)

“Crypto with a hole” is illegal

Crypto With a Hole

JCA API Application/
Applet

java.security

1 l javax

SUN Acme
Provider 1 l
SunJCE
Provider

JCE API

i L] =

JavaOne

LS wtmam Dentemrn

Crypto With a Hole

JCA API Application/
Applet

java.security

|

SUN
Provider

Future: Signed Providers

JCA API Application/

Applet
java.security

JCE API

1 Will not
: load a
avax -
J provider
SUN l unless
Provider signed

SunJCE S
Provider £ oiS
JavaOne

Future: Si gned Providers

. ______———=u.. .
Microsoft CAPI does this already

U.S. crypto company builds a full
strength provider and promises not to
export—Java Software (the company)
applies a digital signature to the jar file

Any crypto company builds an export
strength provider—There’s no reason they
can’t export; Java Software (the company)
applies a digital signature to the jar file

Future: Signed Providers

You build an application that calls on
the JCE—Either there will be

no crypto provider (no crypto: OK)
unsigned provider (won’t load = no crypto: OK)

signed provider (govt knows if it's outside the
country, it's weak crypto)

Openin g the Envelope

Private Key: rsaPrivate
Encrypted DES key:. encryptedKey

DES encryption parameters: Init vector
(lvParameterSpec)

Encrypted Data: encryptedData

Real World

PKCS #7, SIMIME or
OpenPGP/MIME message

3011
06 05
2b Oe 03 02 O7
04 08
<Init vector>

Openin g the Envelope

Cipher rsa = Cipher.getinstance
(“RSA”, “Acme”);

rsa.init
(Cipher.DECRYPT_MODE, rsaPrivate);

Openin g the Envelope

byte[] decryptedKey = new byte|8];

Int decryptedKeylLen = rsa.update
(encryptedKey, O,
encryptedKeylLen,
decryptedKey, 0);

Openin g the Envelope

decryptedKeylLen += rsa.doFinal
(decryptedKey, decryptedKeyLen);

Openin g the Envelope

SecretKeyFactory factory =
SecretkKeyFactory.getlinstance
(“DES”, “SunJCE");

SecretKeySpec keySpec =
new SecretKeySpec
(decryptedKey, O,
decryptedKeylLen, “DES”);

Openin g the Envelope

SecretKey desKey =
factory.generateSecret
(keySpec);

Openin g the Envelope

Cipher des = Cipher.getinstance
(“DES”, “SunJCE");

des.init
(Cipher.DECRYPT_MODE, desKey
desCBCParams);

Openin g the Envelope

byte[] decryptedData =
new byte[encryptedDatalen];

Int decryptedDatalLen = des.update
(encryptedData, O,
encryptedDatalen,
decryptedData, 0);

Openin g the Envelope

decryptedDatalLen += des.doFinal
(decryptedData, decryptedDatalen);

Sun's 1999 Worldwide Java Developer Conference"

