
An Introduction to Graph Rewriting

Rachid Echahed

CNRS and Université Grenoble Alpes, Grenoble, France

July 1 and 2, 2019

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 1 / 158

Graph Rewriting: Motivation
Handling real-world data structures

A Circular Linked List

A Doubly-Linked Circular List

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 2 / 158

Graph Rewriting: Motivation
Efficient Implementations

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 3 / 158

Graph Rewriting: Motivation
Various Application Domains

Programming, Graph Grammars, UML-like Modeling, Databases, etc.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 4 / 158

Graph Rewriting
Various Definitions of Graphs

Undirected graphs
Directed graphs
Labeled graphs
Hypergraphs
Multigraphs
Rooted graphs
Attributed graphs
...

n0 n1

n2 n3

n4 n5

n0 n1

n2 n3

n4 n5

n0 : l0 n1 : l1

n2 : l2 n3 : l3

n4 : l4 n5 : l5

R0

R1

R2

R3
R4

R5

R6

R7

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 5 / 158

Graph Rewriting

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 6 / 158

Graph Rewriting

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 7 / 158

Graph Rewriting : Elementary Actions

There are different possible elementary actions on graphs.

Delete an existing item (node or edge)
Add a new item
Merge two or more items
Clone (copy) an item or a subgraph
...

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 8 / 158

Graph Rewriting :Elementary Actions

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 9 / 158

Graph Rewriting
Different frameworks

Since late 1960’s!

There are several approaches, in the literature, to rewrite graphs:
I Imperative Programs
I Rule-Based Programs
I Graph Grammars
I Knowledge-Base updates
I Non-classical Logics
I ...

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 10 / 158

Graph Rewriting
Different frameworks

Since late 1960’s!
There are several approaches, in the literature, to rewrite graphs:

I Imperative Programs
I Rule-Based Programs

F Algebraic/Categorial approaches (DPO, SPO, SqPO, PBPO, . . .)
F Algorithmic approaches

I Graph Grammars
I Knowledge-Base updates
I Non-classical Logics
I ...

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 11 / 158

Some References

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 12 / 158

Outline

1 Introduction

2 Preliminary Definitions

3 Graph Rewriting: Elementary Actions

4 Some Algebraic Approaches to Graph Rewriting

5 Attributed Graph Transformation and PBPO rules

6 Termgraph Rewriting: An Algorithmic Approach

7 Verification of Graph Transfomation

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 13 / 158

Categories

A category C=(ObjC ,HomC , ◦, id) consists of
A class ObjC of objects
A class Homc of morphisms. We write Homc(A,B) for the
morphisms from object A to B and f : A→ B an element of
Homc(A,B)

A composition of morphisms ◦. For all objects, A,B and C,
◦ : Homc(A,B)xHomc(B,C)→ Homc(A,C).

Such that:
The composition ◦ is associative: For all morphisms f : A→ B,
g : B → C and h : C → D, (h ◦ g) ◦ f = h ◦ (g ◦ f) and
For every object A, there exists a morphism idA : A→ A called the
identity such that: for all morphism f : A→ B, f ◦ idA = f and
idB ◦ f = f .

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 14 / 158

Examples of categories

Category of sets :
objects are sets
morphisms are functions

Category of graphs :
objects are graphs
morphisms are graph homomorphisms

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 15 / 158

Graphs

In this talk we consider the category of graphs where objects and
morphisms are defined as follows:

A graph (or multigraph) G = (NG,EG, sG, tG) consists of
a set of nodes NG

a set of edges EG

a source function sG : EG → NG

a target function tG : EG → NG

A graph homomorphism between two graph G and T , h : G→ T ,
consists of two functions hN : NG → NT and hE : EG → ET such that :

hN ◦ sG = sT ◦ hE

hN ◦ tG = tT ◦ hE

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 16 / 158

Graph Homomorphism: Example

f
e1

zz

e2

$$
a b

Graph G

→ g

f1
��

f2
��

f3

��

c

Graph T

NG = {f ,a,b} and EG = {e1,e2}
NT = {g, c} and ET = {f1, f2, f3}
Notice that symbols f ,a,b, c,g represent nodes and not function
symbols!
A first homomorphism h : G→ T can be defined as follows:
hN(f) = g and hN(a) = hN(b) = c
hE (e1) = f1 and hE (e2) = f2

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 17 / 158

Graph Homomorphism : Example

f
e1

zz

e2

$$
a b

Graph G

→ g

f1
��

f2
��

f3

��

c

Graph T

NG = {f ,a,b} and EG = {e1,e2}
NT = {g, c} and ET = {f1, f2, f3}
Notice that symbols f ,a,b, c,g represent nodes and not function
symbols!
A second homomorphism k : G→ T can be defined as follows:
kN(f) = kN(a) = kN(b) = g
kE (e1) = kE (e2) = f3
Are there other homomorphisms between G and T ?

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 18 / 158

Pushout
Definition

A f //

g
��

B

g′

�� u

��

C
f ′
//

v ++

D
h

D′

The Pushout of morphisms f and g consists of an object D and two
morphisms f ′ and g′ such that :

Commutativity
g′ ◦ f = f ′ ◦ g, and
Universal Property
For all objects D′ and morphisms u and v such that u ◦ f = v ◦ g,
there exists a unique morphism h : D → D′ such that h ◦ g′ = u
and h ◦ f ′ = v .

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 19 / 158

Pushout

A f //

g
��

B

g′

�� u

��

C
f ′
//

v ++

D
h

D′

In Sets:
D = (B + C)/ ≡
with ≡ being the least equivalence generated by the pairs
{(f (x),g(x)) | x ∈ A} over B + C.
For all x ∈ B, g′(x) = x̄
For all x ∈ C, f ′(x) = x̄

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 20 / 158

Pushout: Example 1

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 21 / 158

Pushout: Example 1

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 22 / 158

Pushout: Example 2

f (1) = a, f (2) = b, f (3) = b, f (4) = c
g(1) = f ,g(2) = f ,g(3) = e,g(4) = d

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 23 / 158

Pushout: Example 2

f (1) = a, f (2) = b, f (3) = b, f (4) = c
g(1) = f ,g(2) = f ,g(3) = e,g(4) = d

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 24 / 158

Pushout: Example3

1

e1 &&

2

e2xx3

// a
e3��

b

�� ��

d
e4

66 n e5ee // PO object?

f (1) = a, f (2) = a, f (3) = b, f (e1) = f (e2) = e3
g(1) = n,g(2) = d ,g(3) = n,g(e1) = e5,g(e2) = e4

In graphs: The sets of nodes and edges of the pushout object (D) can
be constructed componentwise as pushouts in Sets (respecting the
source and target functions)

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 25 / 158

Pushout: Example3

1

e1 &&

2

e2xx3

// a
e3��

b

�� ��

d
e4

66 n e5ee // ā ē3ee

f (1) = a, f (2) = a, f (3) = b, f (e1) = f (e2) = e3
g(1) = n,g(2) = d ,g(3) = n,g(e1) = e5,g(e2) = e4

In graphs: The sets of nodes and edges of the pushout object (D) can
be constructed componentwise as pushouts in Sets (respecting the
source and target functions)

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 26 / 158

Pullback

D′

h~~

u

||
v

��

B

f
��

D

f ′
��

g′
oo

A Cg
oo

The Pullback of morphisms f and g consists of an object D and two
morphisms f ′ and g′ such that :

Commutativity
f ◦ g′ = g ◦ f ′, and
Universal Property
For all objects D′ and morphisms u and v such that f ◦ u = g ◦ v ,
there exists a unique morphism h : D′ → D such that g′ ◦ h = u
and f ′ ◦ h = v .

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 27 / 158

Pullback

D′

h~~

u

||
v

��

B

f
��

D

f ′
��

g′
oo

A Cg
oo

In Sets,
D = {(x , y) ∈ BxC | f (x) = g(y)}
For all (b, c) ∈ D, g′(b, c) = b
For all (b, c) ∈ D, f ′(b, c) = c

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 28 / 158

Pullback

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 29 / 158

Pullback

1 2
e1ww

e2

gg ← PB object?

�� ��

a b
e3

gg ← 3 4
e4ww

e5

gg

5

f (1) = a, f (2) = b, f (e1) = f (e2) = e3
g(3) = a,g(4) = g(5) = b,g(e4) = g(e5) = e3

In graphs: The sets of nodes and edges of pullback object D can be
constructed componentwise as pullbacks in Sets (respecting the
source and target functions)

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 30 / 158

Pullback

1 2
e1ww

e2

gg ← 1 2
e6

hh

e7

UU

e8vv

e9

		

2′

�� ��

a b
e3

gg ← 3 4
e4ww

e5

gg

5
f (1) = a, f (2) = b, f (e1) = f (e2) = e3
g(3) = a,g(4) = g(5) = b,g(e4) = g(e5) = e3

In graphs: The sets of nodes and edges of pullback object D can be
constructed componentwise as pullbacks in Sets (respecting the
source and target functions)

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 31 / 158

Outline

1 Introduction

2 Preliminary Definitions

3 Graph Rewriting: Elementary Actions

4 Some Algebraic Approaches to Graph Rewriting

5 Attributed Graph Transformation and PBPO rules

6 Termgraph Rewriting: An Algorithmic Approach

7 Verification of Graph Transfomation

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 32 / 158

Adding New Items

Pushouts can be used to add new items to a graph.

f

a

// f
�� ��

b a c

�� ��

r
��
f

a

// r
��
f

�� ��
b a c

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 33 / 158

Merging Existing Items

Pushouts can be used to merge existing items of a graph.

a b // n

�� ��

f

�� ��
a // b

// f
��

n̄ YY

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 34 / 158

Deleting Existing Items

Both Pushouts and Pullbacks can be used to delete items within a
graph!
Single pushout can be used to delete items in a graph but requires
partial morphisms (out of this talk).

Use of pushout complement: A pushout complement (POC) of two
morphisms m : L→ G and l : K → L is an object D and two
morphisms l ′ : D → G and m′ : K → D such that the following diagram
is a pushout :

L

m
��

Kloo

m′

��
G D

l ′
oo

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 35 / 158

Deleting Existing Items

Example of the use of pushout complement

f
��

a

oo f

a

�� ��

r
��
f
��

a

oo r
��
f

a

Remark: Pushout complements may not exist or not be unique!

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 36 / 158

Pushout Complement

Pushout complements may not be unique!

f
��

a

oo f

a a′

�� ��

r
��
f
��

a

oo r
��
f

a

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 37 / 158

Pushout Complement

Pushout complements may not be unique!

f
��

a

oo f

a a′

�� ��

r
��
f
��

a

oo r
��
f

a a′

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 38 / 158

Pushout Complement
Exercise

f
��

a

oo f

�� ��

r
��

��

f
��

a

oo

POC?

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 39 / 158

Pushout Complement

Pushout complement may not exist!

f
��

a

oo f

�� ��

r
��

��

f
��

a

oo

no POC

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 40 / 158

Pushout Complement

Pushout complement may not exist!

f
��

a

oo f

�� ��

r
��

��

f
��

a

oo

no POC

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 41 / 158

Pushout Complement

a

a′

oo a

�� ��

f
��

a

oo

POC?

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 42 / 158

Pushout Complement

Pushout complement may not exist!

a

a′

oo a

�� ��

f
��

a

oo

no POC

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 43 / 158

Pushout Complement
Exercise

f
�� ��
a

oo f
��

a

�� ��

f
��

a

oo

POC?

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 44 / 158

Pushout Complement

Pushout complement may not exist!

f
�� ��
a

oo f
��

a

�� ��

f
��

a

oo

no POC

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 45 / 158

Existence of Pushout Complements (in Graphs)

L

m
��

Kloo

m′

��
G D

l ′
oo

Let m : L→ G and l : K → L be two graph morphisms. There exits a
pushout complement defined by a graph D and two morphisms
l ′ : D → G and m′ : K → D iff the following gluing conditions hold :

Dangling Condition:
{n ∈ NL | ∃e ∈ EG \m(EL), sG(e) = m(n) or tG(e) = m(n)} ⊆
l(NK)

Identification Condition:
I {n ∈ NL | ∃n′ ∈ NL,n 6= n′ and m(n) = m(n′)} ⊆ l(Nk)
I {e ∈ EL | ∃e′ ∈ EL,e 6= e′ and m(e) = m(e′)} ⊆ l(Ek)

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 46 / 158

Deleting Existing Items
Use of pullbacks: Example

r
��
f
��

a

oo r
��
f

a

�� ��

f

����

tt

��

g

33

**

99

a

UU

jj

YY

oo f

��

tt

��

g

33

**

99

a

UU

jj

YY

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 47 / 158

Deleting Existing Items
Use of pullbacks: Example

r
��
f
��

a

oo ?

�� ��

f

����

tt

��

g

33

**

99

a

UU

jj

YY

oo f

��

��

a

VV

YY

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 48 / 158

Deleting Existing Items
Use of pullbacks: Example

r
��
f
��

a

oo f

a

�� ��

f

����

tt

��

g

33

**

99

a

UU

jj

YY

oo f

��

��

a

VV

YY

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 49 / 158

Cloning Items
Use of Pullbacks

Cloning the subgraph containing nodes l0, l1, l2

l0
�� ""

��

l1 // l2
��

g1

OO ;;

// g2oo

oo l0

�� !!

��

l ′0
��

��

l1 // l2

��

l ′1 // l ′2

vvg1

OO <<

// g2oo

�� ��

l
##

��
g
%%

OO
oo l

##

��

l ′
yy

wwg
%%

OO

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 50 / 158

Cloning Items
Use of Pullbacks

Cloning the subgraph containing nodes l0, l1, l2

l0
�� ""

��

l1 // l2
��

g1

OO ;;

// g2oo

oo l0

�� !!

��

l ′0
��

��

vv }}
l1 // l2

��

l ′1oo // l ′2

vvg1

OO <<

// g2oo

�� ��

l
##

��
g
%%

OO
oo l

##

��

l ′
yyoo

wwg
%%

OO

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 51 / 158

Graph Rewriting
Give three rules implementing the following evolution

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 52 / 158

Graph Rewriting
Exercise

Starting from a graph G modeling agents (A), files (F) and an arbitrary
access relation (R) including possible prohibited accesses (R ⊆ AxF),
give a rewrite rule which transforms G into a graph that satisfies the
following policy.
There are two responsibility levels among agents : H and L. Files are
classified according to 3 security levels : 1, 2 and 3. Agents of
responsibility level H have the right to access files of security levels 1
and 2. Agents of responsibility level L have the right to access files of
security levels 2 and 3.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 53 / 158

Outline

1 Introduction

2 Preliminary Definitions

3 Graph Rewriting: Elementary Actions

4 Some Algebraic Approaches to Graph Rewriting

5 Attributed Graph Transformation and PBPO rules

6 Termgraph Rewriting: An Algorithmic Approach

7 Verification of Graph Transfomation

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 54 / 158

DPO Rules
First things first!

[EPS’73] H. Ehrig, M. Pfender, H. J. Schneider: Graph-Grammars: An
Algebraic Approach. SWAT (FOCS) 1973: 167-180

L←− K −→ R

A DPO rewrite step :

L
POCm

��

K
PO

loo r //

d��

R
m′
��

G D
l ′

oo
r ′

// H

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 55 / 158

DPO Rules
First things first!

[EPS’73] H. Ehrig, M. Pfender, H. J. Schneider: Graph-Grammars: An
Algebraic Approach. SWAT (FOCS) 1973: 167-180

L←− K −→ R

A DPO rewrite step :

L
POCm

��

K
PO

loo r //

d��

R
m′
��

G D
l ′

oo
r ′

// H

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 55 / 158

DPO Rules
An example

new

POCs (Pushout complement) are not unique when cloning items!
Delete actions are restricted by the gluing conditions.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 56 / 158

SQPO Rules

L←− K −→ R

A SQPO rewrite step :

L
FPBCm

��

K
PO

loo r //

d��

R
m′
��

G D
l ′

oo
r ′

// H

[ICGT 2006] Corradini et al. Sesqui-Pushout Rewriting. ICGT 2006:
30-45

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 57 / 158

SQPO Rules
An example

new

Clone action is still quite limited!

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 58 / 158

AGREE Rules

L Kloo r //
��
t
��

R

TK

L��
m
��

��

ηL =

��

K

PO (b)

loo r //
��

n
��

��

t=

��

R

p
��

G

PB (a)m
��

D
goo h //

n′

��

H

T (L) TKl ′
oo

Caution : The definition of AGREE transformation requires the
existence, in the underlying category, of a partial map classifier
[ICGT 2015][TCS 2019,to appear]

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 59 / 158

AGREE Rules
An example

new

(PB)

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 60 / 158

AGREE Rules
An example

new

(PB)

Clone action is more flexible than SQPO but can still be improved!

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 61 / 158

PBPO Rules
A PBPO rule consists of a (classical) first span of the form:

L← K → R

to which it is added a (typing) second span

L′ ← K ′ → R′

such that the two following squares commute :

L
=tL��

K
=

loo r //

tK��

R
tR��

L′ K ′
l ′

oo
r ′

// R′

[JLAMP2019]The PBPO graph transformation approach. J. Log.
Algebr. Meth. Program. 103: 213-231 (2019)

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 62 / 158

PBPO
A rewrite step

PBPO rule :
L

=tL��

K
=

loo r //

tK��

R
tR��

L′ K ′
l ′

oo
r ′

// R′

PBPO rewrite step : The match is defined as a pair (m, m’)!

L

= (a′)m
��

tL =

��

K

PO (b)

loo r //

n
��

tK =

��

R

p
��

tR =

��

G

PB (a)m′
��

Dgoo h //

n′
��

H

p′

��
L′ K ′

l ′
oo

r ′
// R′

= (b′)

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 63 / 158

PBPO Rewrite Step
Example

new

(PB)

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 64 / 158

PBPO Rewrite Step
Example

new

(PB)

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 65 / 158

The PBPO Approach :
Exercise

Give a rewrite rule that makes a copy of the pages of a local web site
or a copy of a whole directory
cp -r <directory> <new directory>
cp <a local web site>

AGREE needs a new rule for every specific shape of the web site
PBPO uses only one generic rule!

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 66 / 158

PBPO Rewrite Step
Example of the copy of local Web pages

new

(PB)

1

2 34
5

4
5
2 3

1
1'

2' 3'

'

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 67 / 158

PBPO vs AGREE, SQPO

Proposition
Let α be an AGREE rule in a category with a partial map classifier.
Then there is a PBPO rule ρα such that for each mono m : L� G we
have G⇒AGREE

α H if and only if G⇒ρα H using match (m,m) with
m : G→ T (L).

L Kloo r //
��
t
��

R

TK

L��
m
��

��

ηL =

��

K

PO (b)

loo r //
��

n
��

��

t=

��

R

p
��

G

PB (a)m
��

D
goo h //

n′

��

H

T (L) TKl ′
oo

Add R′ as a Pushout of morphisms t and r to end the construction!

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 68 / 158

PBPO vs SQPO

Proposition
Let α be a SQPO rule in a category with a partial map classifier. Then
there is a PBPO rule ρα such that for each mono m : L� G we have
G⇒SQPO

α H if and only if G⇒ρα H using match (m,m) with
m : G→ T (L).

L��
m
�� FPBC

Kloo r //
��
t��

R��
p
��

G D
goo h // H

L��
m
��

��

ηL =

��

K

PO (b)

loo r //
��

n
��

��

t=

��

R

p
��

G

PB (a)m
��

D
goo h //

n′

��

H

T (L) T (K)
l ′

oo

Add R′ as a Pushout of morphisms t and r to end the construction!

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 69 / 158

Outline

1 Introduction

2 Preliminary Definitions

3 Graph Rewriting: Elementary Actions

4 Some Algebraic Approaches to Graph Rewriting

5 Attributed Graph Transformation and PBPO rules

6 Termgraph Rewriting: An Algorithmic Approach

7 Verification of Graph Transfomation

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 70 / 158

Attributed Graphs
definition borrowed from [DEPR, FASE2014]

Let Graph be a category of structures (e.g., graphs)
Let Att be a category of attribute structures (e.g., Σ-algebras)
Let S : Graph→ Set be a functor
Let T : Att→ Set be a functor

Definition
The category AttG of attributed graphs is defined as the comma
category S ↓ T .

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 71 / 158

Attributed Graphs

Let S : Graph→ Set be a functor
Let T : Att→ Set be a functor

Attributed Graph : Ĝ = (G,A, α)
I G in Graph,
I A in Att and
I α : S(G)→ T (A) (in Set) is a labelling function

Morphisms : ĝ : Ĝ→ Ĝ′, where Ĝ = (G,A, α) and
Ĝ′ = (G′,A′, α′), is a pair ĝ = (g,a) with g : G→ G′ is a morphism
in Graph and a : A→ A′ is a morphism in Att such that
α′ ◦ Sg = Ta ◦ α (in Set).

Ĝ

ĝ �� =

G
g
��

SG

Sg
��

α // TA

Ta
��

A

a
��

Ĝ′ G′ SG′ α′
// TA′

=

A′

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 72 / 158

Partially Attributed Graphs
Partially Attributed Graph : Ĝ = (G,A, α)

I G in Graph,
I A in Att and
I α : Sp(G)→ Tp(A) (in Pfn) is a partial labeling function

Morphisms: ĝ : Ĝ→ Ĝ′, where Ĝ = (G,A, α) and
Ĝ′ = (G′,A′, α′), is a pair ĝ = (g,a) with g : G→ G′ is a morphism
in Graph and a : A→ A′ is a morphism in Att such that
α′ ◦ Spg ≥ Tpa ◦ α (in Pfn).

Ĝ

ĝ ��
=

G

g
��

SpG

Spg
��

α / TpA

Tpa
��

A

a
��

Ĝ′ G′ SpG′ α′
/ TpA′

≥

A′

Remark: ≥ states that morphisms preserve defined attributes
A morphism of partially attributed structures (g,a) is called strict
when α′ ◦ Spg = Tpa ◦ α.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 73 / 158

PBPO Rules for Attributed Graphs

(L,A, αL)

=t̂L��

(K ,A, αK)

=

(l,idA)oo (r ,idA) //

t̂K��

(R,A, αR)

t̂R��
(L′,A′, αL′) (K ′,A′, αK ′)

(l ′,idA′)
oo

(r ′,idA′)
// (R′,A′, αR′)

with the additional conditions
αL, α

′
L, αR and α′R are total labeling functions

The morphism t̂K is strict
The morphism t̂K is injective on non-attributed items

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 74 / 158

PBPO Rewrite Step
The Attributed case

(L,A, αL)

=(m,a)
��

t̂L
=

��

(K ,A, αK)

PO

(l,idA)oo (r ,idA) //

(n,a)
��

t̂K
=

��

(R,A, αR)

(p,a)
��

t̂R
=

��

(G,A0, αG)

PB(m′,a′)
��

(D,A0, αD)(g,idA0
)oo h //

(n′,a′)
��

(H,A0, αH)

(p′,a′)
��

(L′,A′, αL′) (K ′,A′, αK ′)
(l ′,idA′)

oo
(r ′,idA′)

// (R′,A′, αR′)

=

Does H always exist?
Is H completely attributed?

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 75 / 158

PBPO Rewrite Step
Easy examples

n : x ← n : x → n : x
↓ ↓ ↓

n : 6 ← n : 6 → n : 6
↓ ↓ ↓

n : nat ← n : nat → n : nat

Node n is preserved together with its attribute

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 76 / 158

PBPO Rewrite Step
Easy examples

n : x ← n : ⊥ → n : char of int(suc(x))

↓ ↓ ↓
n : 68 ← n : ⊥ → n : “E”
↓ ↓ ↓

n : nat ← n : ⊥ → n : char

Node n is preserved but re-attributed

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 77 / 158

PBPO Rewrite Step
Problematic Examples

n : x ← n : ⊥ →r̂ n : 2
↓ ↓n̂ ↓

n : 6 ← n : 6 → n :?
↓ ↓ ↓

n : nat ← n : nat → n : nat

Case of a non strict t̂K

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 78 / 158

PBPO Rewrite Step
Problematic Examples

n = n′ : x ← n : ⊥
n′ : ⊥

→ n : 2
n′ : 3

↓ ↓ ↓
n = n′ : 6 ← n = n′ : ⊥ → n = n′ :?
↓ ↓ ↓

n = n′ : nat ← n = n′ : ⊥ → n = n′ : nat

Case where t̂K is not injective on non-attributed items

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 79 / 158

PBPO Rewrite Step
Problematic Examples

n : x ← n : ⊥ → n : suc(x)

↓ ↓ ↓
n : 6
n′ : 8

← n : ⊥
n′ : ⊥

→ n : 7
n′ : ⊥

↓ ↓ ↓
n : nat
n′ : nat

← n : ⊥
n′ : ⊥

→ n : nat
n′ : nat

Case where a non-attributed element in K̂ ′, n′, has no antecedent in K̂ .

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 80 / 158

Existence and Total Attribution of Transformed Graphs
(L,A, αL)

=(m,a)
��

t̂L
=

��

(K ,A, αK)

PO

(l,idA)oo (r ,idA) //

(n,a)
��

t̂K
=

��

(R,A, αR)

(p,a)
��

t̂R
=

��

(G,A0, αG)

PB(m′,a′)
��

(D,A0, αD)(g,idA0
)oo h //

(n′,a′)
��

(H,A0, αH)

(p′,a′)
��

(L′,A′, αL′) (K ′,A′, αK ′)
(l ′,idA′)

oo
(r ′,idA′)

// (R′,A′, αR′)

=

Proposition
If the following conditions hold

αL, α
′
L, αR and α′R are total labeling functions

The morphism t̂K is strict and injective on non-attributed items
G is completely attributed
∀n ∈ G, if ∃nK ′ ∈ K ′ such that nK ′ is not attributed and
m′(n) = l ′(nK ′), then ∃nk ∈ K with n = m(l(nK)) and nK ′ = tK (nK).

Then the graph H exists and is completely attributed
ISR2019 (Paris) R. Echahed July 1 and 2, 2019 81 / 158

Outline

1 Introduction

2 Preliminary Definitions

3 Graph Rewriting: Elementary Actions

4 Some Algebraic Approaches to Graph Rewriting

5 Attributed Graph Transformation and PBPO rules

6 Termgraph Rewriting: An Algorithmic Approach

7 Verification of Graph Transfomation

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 82 / 158

Termgraph Rewriting
Motivation

Handling Data-structure rewriting
including cyclic data-structures with pointers
such as circular lists, doubly-linked lists, etc.
Data-structures are more complex than terms (Cycles, Sharing)
Difficult to encode efficiently using terms
Usually described by pointers (⇒ pointer rewriting)
Formally described as termgraphs
Informally: termgraph = term with cycles and sharing

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 83 / 158

Termgraph Rewriting
Motivation

0 + x → x
s(x) + y → s(x + y)
double(x) → x + x

Term rewrite systems constitute a very well established domain with
several results : Confluence, Termination, Strategies, Proof methods
(equational reasoning, induction) etc.
However, subterm sharing, as in termgraph, does not preserve
classical properties of term rewriting such as, e.g., the confluence
property.

double(x) // +

�� ��
x

double
��
t

//
+

�� 		
t

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 84 / 158

Sharing Subterms (information) and Term Rewriting

Consider the following rules:

f (a,b) → c
a → b

Sharing does not preserve properties of tree (term) rewriting !

Term rewrite derivation: f (a,a)→ f (a,b)→ c

Termgraph rewrite derivation:
f
�� ��
a

// f
��

b

6→

[Plump 99] survey on rewriting with “dags”.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 85 / 158

Termgraphs
[Barendregt et al. 87]
[Plump 99, survey on acyclic term-graphs]

Let Ω be a set of operation symbols.
A term-graph t over Ω is defined by:

a set of nodes Nt ,
a subset of labeled nodes NΩ

t ⊆ Nt ,
a labeling function Lt : NΩ

t → Ω,
a successor function St : NΩ

t → N ∗t ,

1 : f
1

��
2
��

3
��

2 : b 3 : g

1
��2��

4 : • 5 : h

1

gg

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 86 / 158

Termgraphs

[Barendregt et al. 87]
[Plump 99, survey on acyclic term-graphs]

Let Ω be a set of operation symbols and F a set of feature symbols.
A term-graph t over Ω and F is defined by:

a set of nodes Nt ,
a set of edges Et

a subset of labeled nodes NΩ
t ⊆ Nt ,

a node labeling function Ln
t : NΩ

t → Ω,
an edge labeling function Le

t : Et → F
a source function St : Et → Nt ,
a target function Tt : Et → Nt ,

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 87 / 158

Algorithmic approach
[Barendregt et al. 87]
Shape of a rule:

L→ R

where L and R are rooted term-graphs.
A rule can be defined as one graph together with two roots

(L + R, r1, r2)

where r1 and r2 are the roots of L and R respectively
Let ρ be the rule (L + R, r1, r2)
We say that G rewrites to H using the rule ρ if

L matches a subgraph of G (h : L→ G |n)

(build phase) Construct graph G1 = G + h(R)

(redirection phase) G2 = [h(r1)� h(r2)]G1

(garbage collection phase) H = G2 |root
A cumbersome definition, hard to deal with in practice!

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 88 / 158

Rewrite Rules with actions

Shape of a rewrite rule :
[L | C]→ R

L is a term-graph pattern
C is a node constraint,

∧n
i=1(αi 6≈ βi).

R is a sequence of actions a1; a2; . . . ; an

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 89 / 158

Actions

We consider three kinds of actions :
Node definition α : f (α1, . . . , αn)

Edge redirection α�i β

Global redirection α� β

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 90 / 158

Application of actions
a[t] denotes the application of action(s) a to the termgraph t

Let t = n : f (p,q :a)

n : f
1

��

2

��
p q :a

Let t1 = p :h(p)[t] = n : f (p :h(p),q : a)

n : f
1

��

2

��
p :h

1

KK q :a

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 91 / 158

Application of actions
a[t] denotes the application of action(s) a to the termgraph t

Let t1 = p :h(p)[t] = n : f (p :h(p),q : a)

n : f
1

��

2

��
p :h

1

KK q :a

Let t2 = n�2 p[t1] = n : f (p :h(p),p); q : a

n : f
1

�� 2uup :h

1

KK q :a

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 92 / 158

Application of actions

a[t] denotes the application of action(s) a on the term-graph t
Let t2 = n�2 p[t1] = n : f (p :h(p),p); q : a

n : f
1

�� 2uup :h

1

KK q :a

Let t3 = p � q[t2] = n : f (q,q); p :h(q)

n : f

1 ��

2

��
p :h 1 // q :a

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 93 / 158

Rewrite Step

Let t be a termgraph

Let ρ be a rewrite rule [L | C]→ R

t rewrites to s at node α, t →α s iff:

∃m : L→ t a homomorphism
m(rootL) = α

α is reachable from roott
m(C) holds
s = m(R)[t]

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 94 / 158

Termgraph Rewrite Systems (tGRS)
Example

Length of a circular list :

r : length(p)→ r : length′(p,p)

r : length′(p1 : cons(n,p2),p2)→ r : s(0)

[r : length′(p1 : cons(n,p2),p3) | p2 6≈ p3]→ r : s(q); q : length′(p2,p3)

Remark: term rewrite systems are tGRS’s.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 95 / 158

Termgraph Rewrite Systems
Example

In-situ list reversal :

o : reverse(p)→ o : rev(p,nil)

o : rev(p1 : cons(n,nil),p2)→ p1 �2 p2; o � p1

o : rev(p1 : cons(n,p2 : cons(m,p3),p4)→ p1 �2 p4; o �1 p2; o �2 p1

Visual Programming would help!

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 96 / 158

DPO approach of rewrite rules with actions

A categorical approach can be found in [TERMGRAPH 06, ENTCS07,
RTA07]

L

m
��

Kloo

d
��

r // R

m′

��
G Dl ′oo r ′ // H

Figure: Double pushout: a rewrite step (G→ H)

Redirections of edges (pointers) are handled by
K = disconnection(L,E ,N) and the morphisms l and r .
Remark: Morphisms l and r are not injective! D is not unique!

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 97 / 158

Confluence

f (x)→ x
g(x)→ x

The following term-graph
n : f

��
q :g

bb

rewrites to
n : f
��

q :g
��

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 98 / 158

Confluence

α : f (β : c)→ β : a;α� β

α : g(β : c)→ β : b;α� β

p : f

��

q :g

��
q :c

The label of node q may end as q : a or q : b

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 99 / 158

Computing with non-confluent
orthogonal Termgraph Rewrite Systems

How to evaluate the following termgraph ?
addlast(length(n : [1,2]),n)

Two normal forms
I [1,2,2] (evaluate addlast after length)
I [1,2,3] (evaluate length after addlast)

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 100 / 158

Termgraphs with Priority

[PPDP06][RTA07][RTA08]
Endow Termgraphs with priorities (G, <G) to express which node
should be evaluated first

I m1 :addlast(m2 : length(n : [1,2]),n); m1 < m2

Priorities should not be a total order (stay declarative)
Which nodes should be ordered?
Solution: Order only nodes producing a “side-effect”

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 101 / 158

Strategies

A strategy φ is a partial function which takes a rooted termgraph t and
returns a node (position) n and a rule R,

φ(t) = (n,R)

such that the termgraph t can be reduced at node n using the rule R,

t →n t ′

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 102 / 158

Needed Nodes

Let φ be a rewrite strategy.
Let φ(t) = (p,R).
The node p is needed iff for all derivations

t →β1 t1 →β2 . . . tn−1 →βn tn

such that tn is a value, there exists i ∈ [1..n] s.t. βi = p

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 103 / 158

Inductively sequential Term Rewrite Systems

Constitute a subclass of TRSs for which efficient rewrite strategies
are available [Antoy 92]
Are as expressive as Strongly Sequential TRSs
Are defined by means of data-structures called Definitional trees

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 104 / 158

Definitional Trees -case of terms-

Let R be the following TRS
f(k,nil) → R1
f(0,cons(x,l)) → R2
f(succ(n),cons(x,l)) → R3

A definitional tree of operator f is a hierarchical structure whose leaves
are the rules defining f .

f(k, l)
f(k, nil)→ R1
f(k, cons (x, u))

f(0, cons (x,u))→ R2
f(succ(y), cons (x,u))→ R3

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 105 / 158

Definitional trees
-case of termgraphs-

r : length′(p1 : nil ,p2 : •)→ rhs1
r : length′(p1 : cons(n : •,p2 : •),p2)→ rhs2
[r : length′(p1 : cons(n : •,p2 : •),p3 : •) | p2 6

.
= p3]→ rhs3

A definitional tree T of the operation length′ is given bellow:

r : length′(p1 : •,p2 : •)
r : length′(p1 : nil ,p2 : •)→ rhs1
r : length′(p1 : cons(n : •,p3 : •),p2 : •)

r : length′(p1 : cons(n : •,p2 : •),p2)→ rhs2
[r : length′(p1 : cons(n : •,p2 : •),p3 : •) | p2 6

.
= p3]→ rhs3

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 106 / 158

A Rewrite strategy φ

Consider the following definitional tree T of the operation g :

r : g(p1 : •,p2 : •)
r : g(p1 : nil ,p2 : •)→ rhs1
r : g(p1 : cons(n : •,p3 : •),p2 : •)

r : g(p1 : cons(n : •,p2 : •),p2)→ rhs2
[r : g(p1 : cons(n : •,p2 : •),p3 : •) | p2 6

.
= p3]→ rhs3

φ(1 : g (2 : g(3 : g(nil ,p),q),4 : g(nil ,o)))
= φ(2 : g(3 : g(nil ,p),q))
= φ(3 : g(nil ,p))
= (3,Rule1)

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 107 / 158

Naive extension of TRS’s

Contrary to term rewriting, Definitional trees are not enough to ensure
the neededness of positions computed by the strategy φ, in the context
of term-graph rewriting.

Proposition: Let SP = 〈Ω,R〉 be tGRS such that Ω is
constructor-based and the rules of every defined operation are stored
in a definitional tree. Let t be a rooted termgraph. Then,

1 if φ(t) = (p,R), the node p is not needed in general.
2 if φ(t) is not defined, g can still have a constructor normal form.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 108 / 158

Counter-examples

r : f (p : 0)→ r � p r : h(p : 0,q : succ(n : •))→ q � p
r : f (p : succ(p′ : •))→ r � p

Let t = n : succ
��

r : succ
��

p : f

��
q : succ
��

s : h
��

__

u : 0

φ(t) = (p, r : f (p : succ(p′ : •))→ r � p).
However, the node p is not needed in t .

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 109 / 158

Counter-examples

r : g(p : 0)→ r � p r : h(p : 0,q : succ(n : •))→ q � p

Let t = n : succ
��

r : succ
��

p : g

��
q : succ
��

s : h
��

``

u : 0

φ(t) is not defined!.
However, the termgraph t rewrites to n : succ(u : 0).

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 110 / 158

Inductively Sequential Termgraph Rewrite Systems

Let SP = 〈Ω,R〉 be a tGRS.
SP is called inductively sequential iff

The rules of every defined operation can be stored in a definitional
tree and
for all rules [L | C]→ r in R, for all global (respectively, local)
redirections of the form p � q (respectively, p �i q for some i),
occurring in the right-hand side r , p = RootL.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 111 / 158

Main Properties of Strategy Φ

In presence of Inductively Sequential Termgraph Rewrite Systems

The positions computed by Φ are needed
Φ is c-normalizing
Φ is c-hyper-normalizing
Derivations computed by Φ have minimal length

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 112 / 158

Confluence

Inductively sequential tGRS are not confluent!

f (p : •,p)→ 0
[f (p : •,q : •) | p 6= q]→ 1
r : g(q : •)→ r � q

Let t = n : f

zz $$
p : g // q : 0

There are two different derivations starting from t :

t →n 1
t →p f (q : 0,q)→n 0

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 113 / 158

Admissible termgraphs

[JICSLP98]
Ω is contructor-based, i.e. Ω = D ∪ C and D ∩ C = ∅
D is a set of defined operations
C is a set of constructors

A termgraph is admissible if none of its cycles includes a defined
operation.

n :succ(n) is an admissible termgraph
n :+(n,n) and n : tail(n) are not admissible

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 114 / 158

Admissible termgraphs

The set of admissible termgraphs is not closed under rewriting

n : f (m)→ q :g(n); n� m

Let Ω = D ∪ C with C = {0, succ} and D = {f ,g}

n1 : f (m1 :0)→ q1 :g(q1)

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 115 / 158

Admissible Inductively sequential Termgraph Rewrite
Systems

Let SP = 〈Ω,R〉 be an inductively sequential tGRS. SP is called
admissible iff for all rules [π | C]→ r in R the following conditions are
satisfied

for all global (respectively, local) redirections of the form p � q
(respectively, p �i q for some i), occurring in the right-hand side
r , we have p = Rootπ and q 6= Rootπ.
for all actions of the form α : f (β1, . . . , βn), for all i ∈ 1..n,
βi 6= Rootπ
the set of actions of the form α : f (β1, . . . , βn), appearing in r , do
not construct a cycle including a defined operation.
Constraint C includes disequations of the form p 6 .= q where p and
q are labeled by constructor symbols.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 116 / 158

Admissible Inductively sequential Termgraph Rewrite
Systems

[ICGT08][JICSLP98]
In presence of Admissible Inductively sequential Termgraph Rewrite
Systems

The set of admissible termgraphs is closed under the rewrite
relation defined by admissible rules.
Φ computes needed positions
Admissible termgraphs admit unique normal forms

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 117 / 158

Narrowing
Lifting optimal rewrite strategies to narrowing in the case of Admissible termgraph
rewrite systems

Let R be the following TRS
≤ (0,y) → true
≤ (s(x),0) → false
≤ (succ(x),succ(y)) → ≤(x,y)

A definitional tree of operator ≤ is as follows:

≤(i, j)
≤ (0, j)→ true
≤ (s(i1), j)
≤ (s(i1),0)→ false
≤ (s(i1), s(j1))→≤ (i1, j1)

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 118 / 158

Definitional Trees -case of terms-

≤(i, j)
≤ (0, j)→ true
≤ (s(i1), j)
≤ (s(i1),0)→ false
≤ (s(i1), s(j1))→≤ (i1, j1)

How to narrow the expression ≤ (i , j + k)?
≤ (i , j + k) j 7→0 ≤ (i , k) i 7→0 true

Remark: The assignement j 7→ 0 is useless!

The use of definitional trees prevents non necessary assignments and
develops ≤ (i , j + k) i 7→0 true

Key idea: Get rid of most general unifiers. Use of definitional trees to
make a traversal of term (graphs) and compute only necessary
positions and instantiations.ISR2019 (Paris) R. Echahed July 1 and 2, 2019 119 / 158

Some Results

Needed Term narrowing [POPL94][JACM2000]
Needed Graph Narrowing [JICSLP98]
Needed Collapsing Narrowing [Gratra 2000]
Narrowing-based algorithm for data-structure rewriting [ICGT06]

Goal
o : equal(p : length(q), s(s(0))) = true

Solution : a circular list of length two
[q : cons(n1, r : cons(n2,q)) | q 6≈ r]

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 120 / 158

Outline

1 Introduction

2 Preliminary Definitions

3 Graph Rewriting: Elementary Actions

4 Some Algebraic Approaches to Graph Rewriting

5 Attributed Graph Transformation and PBPO rules

6 Termgraph Rewriting: An Algorithmic Approach

7 Verification of Graph Transfomation

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 121 / 158

Partrial Correctness à la Hoare of Graph Rewrite
Systems

To be proven: {Pre(input)} Program {Post(output)}

Program is a graph or model transformation system
input and output are graphs or models
Pre and Post are formulas, of a given logic L, over the inputs and
the outputs

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 122 / 158

Logically Decorated Graphs

Let L be a set of formulas, a logically dec-
orated graph G is a tuple (N,E , λN , λE , s, t)
where:

N is a set of nodes,
E is a set of edges,
λN : N → 2L is a node labeling function,
λE : E → L is an edge labeling function
source and target functions: s : E → N
and t : E → N

n0 : l0 n1 : l1

n2 : l2 n3 : l3

n4 : l4 n5 : l4

R0
R1

R2

R3

R4

R5
R6 R7

In this talk, the set L consists of description logic (DL) formulas.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 123 / 158

Why considering Description Logics (DLs)?

DLs constitute a formal basis of knowledge representation
languages.

DLs provide logical basis for ontologies.
(E.g., the web ontology language OWL is based on DLs)

Reasoning problems for DLs are decidable (in general)

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 124 / 158

DL Syntax

a DL syntax allows one to define:

Concept names, which are equivalent to classical first-order logic
unary predicates,

Role names, which are equivalent to binary predicates and

Individuals, which are equivalent to classical constants.

There are various DLs in the literature, they mainly differ by the logical
operators they offer to construct concept and role expressions or
axioms.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 125 / 158

DL syntax: Concepts and roles
Let C0 (resp. R0 and O) be a set of atomic concepts (resp. atomic
roles and nominals).
Let c0 ∈ C0, r0 ∈ R0, o ∈ O, and n an integer.

The set of concepts C and roles R are defined by:
C := > | c0 | ∃R.C | ¬C | C ∨ C

| o (nominals,O)
| ∃R.Self (self loops,Self)
| (< n R C) (counting quantifiers,Q)

R := r0
| U (universal role,U)
| R−(inverse role, I)

Examples of DL logics: ALC, ALCUO, ALCUI, . . .

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 126 / 158

Examples of properties

Examples of some requirements about the organization of a hospital:

All patients of a pediatrician are children:
First-order formula:
∀x , y .Pediatrician(x) ∧ Has patient(x , y)⇒ Child(y)
DL formula (ALCU): ∀U.Pediatrician⇒ ∀Has patient .Child

Dr. Smith is a pediatrician:
First-order formula: ∃x .Dr .Smith = x ∧ Pediatrician(x)
DL formula (ALCUO): ∃U.Dr .Smith ∧ Pediatrician
All patients are a doctor’s patients:
First-order formula:
∀x , y .Patient(x)⇒ Has patient(y , x) ∧ Doctor(y)
DL formula (ALCUI):∀U.Patient ⇒ ∃Has patient−.Doctor

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 127 / 158

Examples of properties

Examples of some requirements about the organization of a hospital:

All patients of a pediatrician are children:
First-order formula:
∀x , y .Pediatrician(x) ∧ Has patient(x , y)⇒ Child(y)
DL formula (ALCU): ∀U.Pediatrician⇒ ∀Has patient .Child
Dr. Smith is a pediatrician:
First-order formula: ∃x .Dr .Smith = x ∧ Pediatrician(x)
DL formula (ALCUO): ∃U.Dr .Smith ∧ Pediatrician

All patients are a doctor’s patients:
First-order formula:
∀x , y .Patient(x)⇒ Has patient(y , x) ∧ Doctor(y)
DL formula (ALCUI):∀U.Patient ⇒ ∃Has patient−.Doctor

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 127 / 158

Examples of properties

Examples of some requirements about the organization of a hospital:

All patients of a pediatrician are children:
First-order formula:
∀x , y .Pediatrician(x) ∧ Has patient(x , y)⇒ Child(y)
DL formula (ALCU): ∀U.Pediatrician⇒ ∀Has patient .Child
Dr. Smith is a pediatrician:
First-order formula: ∃x .Dr .Smith = x ∧ Pediatrician(x)
DL formula (ALCUO): ∃U.Dr .Smith ∧ Pediatrician
All patients are a doctor’s patients:
First-order formula:
∀x , y .Patient(x)⇒ Has patient(y , x) ∧ Doctor(y)
DL formula (ALCUI):∀U.Patient ⇒ ∃Has patient−.Doctor

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 127 / 158

Examples of properties (Continued)
Examples of some requirements about the organization of a hospital:

1 An operation can only be associated with one operating room:
First-order formula:
∀x , y , z.Operation(x) ∧ Scheduled in(x , y) ∧ Scheduled in(x , z) ∧
Operation room(y) ∧Operation room(z)⇒ y = z
DL formula (ALCUQ):
∀U.Operation⇒ (< 2Scheduled in.Operation room)

2 A doctor can not be his/her own patient:
First-order formula: ∀x .Doctor(x)⇒ ¬Has patient(x , x)
DL formula (ALCUQ): ∀U.Doctor ⇒ ¬∃Has patient .SELF

3 Only ”private” nodes can have access to ”private” nodes. Public
”nodes” cannot have access to ”private” nodes:
First-order formula:
∀x .y .(Has access(x , y) and Private(y))⇒ Private(x)
DL formula (ALCUI): ∀U.Private⇒ ∀Has access−.Private

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 128 / 158

Examples of properties (Continued)
Examples of some requirements about the organization of a hospital:

1 An operation can only be associated with one operating room:
First-order formula:
∀x , y , z.Operation(x) ∧ Scheduled in(x , y) ∧ Scheduled in(x , z) ∧
Operation room(y) ∧Operation room(z)⇒ y = z
DL formula (ALCUQ):
∀U.Operation⇒ (< 2Scheduled in.Operation room)

2 A doctor can not be his/her own patient:
First-order formula: ∀x .Doctor(x)⇒ ¬Has patient(x , x)
DL formula (ALCUQ): ∀U.Doctor ⇒ ¬∃Has patient .SELF

3 Only ”private” nodes can have access to ”private” nodes. Public
”nodes” cannot have access to ”private” nodes:
First-order formula:
∀x .y .(Has access(x , y) and Private(y))⇒ Private(x)
DL formula (ALCUI): ∀U.Private⇒ ∀Has access−.Private

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 128 / 158

Examples of properties (Continued)
Examples of some requirements about the organization of a hospital:

1 An operation can only be associated with one operating room:
First-order formula:
∀x , y , z.Operation(x) ∧ Scheduled in(x , y) ∧ Scheduled in(x , z) ∧
Operation room(y) ∧Operation room(z)⇒ y = z
DL formula (ALCUQ):
∀U.Operation⇒ (< 2Scheduled in.Operation room)

2 A doctor can not be his/her own patient:
First-order formula: ∀x .Doctor(x)⇒ ¬Has patient(x , x)
DL formula (ALCUQ): ∀U.Doctor ⇒ ¬∃Has patient .SELF

3 Only ”private” nodes can have access to ”private” nodes. Public
”nodes” cannot have access to ”private” nodes:
First-order formula:
∀x .y .(Has access(x , y) and Private(y))⇒ Private(x)
DL formula (ALCUI): ∀U.Private⇒ ∀Has access−.Private

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 128 / 158

Graph Transformation: Considered Rules

The considered Graph Rewriting rules are of the form L→ R where:
L is a graph
R is a sequence of elementary actions

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 129 / 158

Some Elementary Actions
Let C0 (resp. R0) be a set of node (resp. edge) labels. An elementary
action, say a, may be of the following forms:

a node addition addN(i) (resp. node deletion delN(i))

a node label addition addC(i , c) (resp. node label deletion
delC(i , c)) where i is a node and c is a label in C0.
an edge addition addE (e, i , j , r) (resp. edge deletion delE (e, i , j , r))
where e is an edge, i and j are nodes and r is an edge label in R0.
a global edge redirection i � j where i and j are nodes. It
redirects all incoming edges of i towards j .
a merge action mrg(i , j) where i and j are nodes.
a clone action cl(i , j ,Lin,Lout ,Ll in,Ll out ,Ll loop) where i and j are
nodes and Lin, Lout , Ll in, Ll out and Ll loop are subsets of R0. It
clones a node i by creating a new node j and connects j to the
rest of a host graph according to different information given in the
parameters Lin,Lout ,Ll in,Ll out ,Ll loop.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 130 / 158

Some Elementary Actions
Let C0 (resp. R0) be a set of node (resp. edge) labels. An elementary
action, say a, may be of the following forms:

a node addition addN(i) (resp. node deletion delN(i))
a node label addition addC(i , c) (resp. node label deletion
delC(i , c)) where i is a node and c is a label in C0.

an edge addition addE (e, i , j , r) (resp. edge deletion delE (e, i , j , r))
where e is an edge, i and j are nodes and r is an edge label in R0.
a global edge redirection i � j where i and j are nodes. It
redirects all incoming edges of i towards j .
a merge action mrg(i , j) where i and j are nodes.
a clone action cl(i , j ,Lin,Lout ,Ll in,Ll out ,Ll loop) where i and j are
nodes and Lin, Lout , Ll in, Ll out and Ll loop are subsets of R0. It
clones a node i by creating a new node j and connects j to the
rest of a host graph according to different information given in the
parameters Lin,Lout ,Ll in,Ll out ,Ll loop.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 130 / 158

Some Elementary Actions
Let C0 (resp. R0) be a set of node (resp. edge) labels. An elementary
action, say a, may be of the following forms:

a node addition addN(i) (resp. node deletion delN(i))
a node label addition addC(i , c) (resp. node label deletion
delC(i , c)) where i is a node and c is a label in C0.
an edge addition addE (e, i , j , r) (resp. edge deletion delE (e, i , j , r))
where e is an edge, i and j are nodes and r is an edge label in R0.

a global edge redirection i � j where i and j are nodes. It
redirects all incoming edges of i towards j .
a merge action mrg(i , j) where i and j are nodes.
a clone action cl(i , j ,Lin,Lout ,Ll in,Ll out ,Ll loop) where i and j are
nodes and Lin, Lout , Ll in, Ll out and Ll loop are subsets of R0. It
clones a node i by creating a new node j and connects j to the
rest of a host graph according to different information given in the
parameters Lin,Lout ,Ll in,Ll out ,Ll loop.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 130 / 158

Some Elementary Actions
Let C0 (resp. R0) be a set of node (resp. edge) labels. An elementary
action, say a, may be of the following forms:

a node addition addN(i) (resp. node deletion delN(i))
a node label addition addC(i , c) (resp. node label deletion
delC(i , c)) where i is a node and c is a label in C0.
an edge addition addE (e, i , j , r) (resp. edge deletion delE (e, i , j , r))
where e is an edge, i and j are nodes and r is an edge label in R0.
a global edge redirection i � j where i and j are nodes. It
redirects all incoming edges of i towards j .

a merge action mrg(i , j) where i and j are nodes.
a clone action cl(i , j ,Lin,Lout ,Ll in,Ll out ,Ll loop) where i and j are
nodes and Lin, Lout , Ll in, Ll out and Ll loop are subsets of R0. It
clones a node i by creating a new node j and connects j to the
rest of a host graph according to different information given in the
parameters Lin,Lout ,Ll in,Ll out ,Ll loop.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 130 / 158

Some Elementary Actions
Let C0 (resp. R0) be a set of node (resp. edge) labels. An elementary
action, say a, may be of the following forms:

a node addition addN(i) (resp. node deletion delN(i))
a node label addition addC(i , c) (resp. node label deletion
delC(i , c)) where i is a node and c is a label in C0.
an edge addition addE (e, i , j , r) (resp. edge deletion delE (e, i , j , r))
where e is an edge, i and j are nodes and r is an edge label in R0.
a global edge redirection i � j where i and j are nodes. It
redirects all incoming edges of i towards j .
a merge action mrg(i , j) where i and j are nodes.

a clone action cl(i , j ,Lin,Lout ,Ll in,Ll out ,Ll loop) where i and j are
nodes and Lin, Lout , Ll in, Ll out and Ll loop are subsets of R0. It
clones a node i by creating a new node j and connects j to the
rest of a host graph according to different information given in the
parameters Lin,Lout ,Ll in,Ll out ,Ll loop.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 130 / 158

Some Elementary Actions
Let C0 (resp. R0) be a set of node (resp. edge) labels. An elementary
action, say a, may be of the following forms:

a node addition addN(i) (resp. node deletion delN(i))
a node label addition addC(i , c) (resp. node label deletion
delC(i , c)) where i is a node and c is a label in C0.
an edge addition addE (e, i , j , r) (resp. edge deletion delE (e, i , j , r))
where e is an edge, i and j are nodes and r is an edge label in R0.
a global edge redirection i � j where i and j are nodes. It
redirects all incoming edges of i towards j .
a merge action mrg(i , j) where i and j are nodes.
a clone action cl(i , j ,Lin,Lout ,Ll in,Ll out ,Ll loop) where i and j are
nodes and Lin, Lout , Ll in, Ll out and Ll loop are subsets of R0. It
clones a node i by creating a new node j and connects j to the
rest of a host graph according to different information given in the
parameters Lin,Lout ,Ll in,Ll out ,Ll loop.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 130 / 158

Graph Rewrite Systems: Example

ρ2:

l : LLIN ∧ ∀ins in.⊥

l ′ : LLIN ∧ ∀ins in.⊥ ∧ ¬l

i : Insecticide mrg(l , l ′)

ρ0: l : LLIN ∧ ∃ins in.> i : DDT delN(l)

ρ1:

l : LLIN

i : Insecticide

m : ModeOfAction

h : House

l ′ : LLIN

i ′ : Insecticide

m′ : ModeOfAction ∧ ¬m

cl(l ′, l ′′, ~L);
delE (e, l ,h, ins in);

addE (e′, l ′′,h, ins in)

has ins

has ins

has ins has ins

has moa has moa

e : ins in

has ins

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 131 / 158

Match

To be able to apply rules, we need to define when they can be
applied.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 132 / 158

Match

Definition: Match
A match h between a lhs L and a graph G is a pair of functions
h = (hN ,hE), with hN : NL → NG and hE : EL → EG such that:

1 ∀e ∈ EL, sG(hE (e)) = hN(sL(e))

2 ∀e ∈ EL, tG(hE (e)) = hN(tL(e))

3 ∀n ∈ NL,∀c ∈ λL
N(n),hN(n) |= c

4 ∀e ∈ EL, λG
E (hE (e)) = λL

E (e)

Remark: The third condition says that for every node, n, of the lhs, the
node to which it is associated, h(n), in G has to satisfy every concept
in λL

N(n). This condition clearly expresses additional negative and
positive conditions which are added to the “structural” pattern
matching.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 133 / 158

Rewrite Step and Rewrie Derivation

Rewrite step
Let ρ = L→ R be a rule and G and G′ be two graphs.
G rewrites into G′ using rule ρ, noted G→ρ G′ iff:

There exists a match h from the left-hand side L to G, and
G h(R) G′. I.e., G′ is the result of performing h(R) on G

Rewrite derivation
Let R be graph transformation system and G and G′ be two
graphs.
A rewrite derivation from G to G′, noted G→R G′, is a sequence
G→ρ0 G1 →ρ1 ...→ρn G′ such that ∀i .ρi ∈ R.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 134 / 158

Strategies

A strategy is a word of the following language defined by s ::=

I ρ (application of a rule)
I s; s (sequential composition of strategies)
I s ⊕ s (non-deterministic choice between two strategies)
I s∗ (iteration as long as possible of a strategy)
I . . .

Example: Strategy strat = s0; s∗1; s2 performs once the
sub-strategy s0, iterates as much as possible sub-strategy s1,
before performing once sub-strategy s2.
A derivation G→ρ0 G1 →ρ1 ...→ρn G′ is controlled by a strategy
strat iff the word ρ0ρ1 . . . ρn belongs to the language defined by
strategy strat .

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 135 / 158

Strategies

A strategy is a word of the following language defined by s ::=

I ρ (application of a rule)
I s; s (sequential composition of strategies)
I s ⊕ s (non-deterministic choice between two strategies)
I s∗ (iteration as long as possible of a strategy)
I . . .

Example: Strategy strat = s0; s∗1; s2 performs once the
sub-strategy s0, iterates as much as possible sub-strategy s1,
before performing once sub-strategy s2.

A derivation G→ρ0 G1 →ρ1 ...→ρn G′ is controlled by a strategy
strat iff the word ρ0ρ1 . . . ρn belongs to the language defined by
strategy strat .

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 135 / 158

Strategies

A strategy is a word of the following language defined by s ::=

I ρ (application of a rule)
I s; s (sequential composition of strategies)
I s ⊕ s (non-deterministic choice between two strategies)
I s∗ (iteration as long as possible of a strategy)
I . . .

Example: Strategy strat = s0; s∗1; s2 performs once the
sub-strategy s0, iterates as much as possible sub-strategy s1,
before performing once sub-strategy s2.
A derivation G→ρ0 G1 →ρ1 ...→ρn G′ is controlled by a strategy
strat iff the word ρ0ρ1 . . . ρn belongs to the language defined by
strategy strat .

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 135 / 158

Specification and Correctness

A specification spec is a triple (Pre, strat ,Post) where:

Pre is a DL formula called the precondition
strat is a strategy with respect to a graph transformation
system R
Post is a DL formula called the postcondition.

A specification spec = (Pre, strat ,Post) is said to be correct iff:
for all graphs G,
for all graphs G′ such that G→strat G′

if G |= Pre then G′ |= Post

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 136 / 158

Floyd-Hoare Logics

Let R be a graph transformation system
Let strat be a strategy and ρ0 . . . ρn−1ρn an element of strat
Let Pre and Post be two DL formulas
Aim: Prove that specification spec = (Pre, strat ,Post) is correct

Pre
ρ0;
...

ρn−1;

ρn;
Post

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 137 / 158

Floyd-Hoare Logics

Let R be a graph transformation system
Let strat be a strategy and ρ0 . . . ρn−1ρn an element of strat
Let Pre and Post be two DL formulas
Aim: Prove that specification spec = (Pre, strat ,Post) is correct

Pre
a0;
...

am−1;

am;
Post

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 138 / 158

Floyd-Hoare Logics

Let R be a graph transformation system
Let strat be a strategy and ρ0 . . . ρn−1ρn an element of strat
Let Pre and Post be two DL formulas
Aim: Prove that specification spec = (Pre, strat ,Post) is correct

Pre
a0;
...

am−1;
Post [am]
am;
Post

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 139 / 158

Floyd-Hoare Logics

Let R be a graph transformation system
Let strat be a strategy and ρ0 . . . ρn−1ρn an element of strat
Let Pre and Post be two DL formulas
Aim: Prove that specification spec = (Pre, strat ,Post) is correct

Pre
a0;
...
Post [am][am−1]
am−1;
Post [am]
am;
Post

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 140 / 158

Floyd-Hoare Logics

Let R be a graph transformation system
Let strat be a strategy and ρ0 . . . ρn−1ρn an element of strat
Let Pre and Post be two DL formulas
Aim: Prove that specification spec = (Pre, strat ,Post) is correct

Pre⇒ Post [am][am−1]...[a0]
a0;
...
Post [am][am−1]
am−1;
Post [am]
am;
Post

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 141 / 158

Substitutions

Definition: Substitution
A substitution, written [a], is associated to each elementary action
a, such that for all graphs G and DL formulas φ,
(G |= φ[a])⇔ (G′ |= φ) where G’ is obtained from G after
application of action a,i.e., G a G′.

G a G′

φ[a] φ

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 142 / 158

Generating Weakest Preconditions

We define wp(a,Q) the weakest precondition for an elementary action
a and a formula Q.

¡wp(a, Q) = Q[a]

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 143 / 158

Generating Weakest Preconditions

We define wp(a,Q) the weakest precondition for an elementary action
a and a formula Q.

wp(a, Q) = Q[a] How to handle substitutions?

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 144 / 158

Floyd-Hoare Logics: a classical example
The assignment instruction (action)

Weakest precondition: wp(x := X + 1,Post) ≡ x > 5[x := X + 1]

Action: x := x + 1;

Post: Post ≡ x > 5

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 145 / 158

Floyd-Hoare Logics: a classical example
The assignment instruction (action)

wp(x := X + 1,Post) ≡ x > 5[x := X + 1] ≡ x > 4

Action: x := x + 1;

Post: Post ≡ x > 5

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 146 / 158

Floyd-Hoare Logics: a basic case

wp(AddE (e,a,b,R),Post) ≡ ∃U.(a ∧ (> 5R.>))[AddE (e,a,b,R)]

Action: AddE (e,a,b,R);

Post: ∃U.(a ∧ (> 5R.>))

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 147 / 158

Floyd-Hoare Logics: a basic case

wp(AddE (e,a,b,R),Post) ≡ ∃U.(a ∧ (> 5R.>))[AddE (e,a,b,R)] ≡
(∃U.(a ∧ ∃R.b) => ∃U.(a ∧ (> 5R.>))) ∧
(∃U.(a ∧ ∀R.¬b) => ∃U.(a ∧ (> 4R.>)))

Action: AddE (e,a,b,R);

Post: ∃U.(a ∧ (> 5R.>))

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 148 / 158

Closure Under Substitutions

A logic L is said to be closed under substitution iff for every formula
φ ∈ L, every substitution [a], φ[a] ∈ L.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 149 / 158

DLs and Closure Under Substitutions

Theorem: The description logics
ALCUO,ALCUOI,ALCQUOI,ALCUOSelf ,ALCUOISelf , and
ALCQUOISelf are closed under substitutions.

Theorem: The description logics ALCQUO and ALCQUOSelf are not
closed under substitutions.

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 150 / 158

Generating Weakest Preconditions (continued)

We define wp(strat ,Q) the weakest precondition for a strategy strat
and a formula Q.

wp(s0; s1, Q) = wp(s0,wp(s1, Q))

wp(s0 ⊕ s1, Q) = wp(s0,Q) ∧ wp(s1,Q)

wp(ρ, Q) = App(ρ)⇒ Q[an]...[a0] where ρ’s right-hand side is
a0; ...; an

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 151 / 158

Generating Weakest Preconditions

We define wp(strat ,Q) the weakest precondition for a strategy strat
and a formula Q.

wp(ρ, Q) = App(ρ)⇒ Q[an]...[a0]

Definition: Application Condition
Given a rule ρ, the application condition App(ρ) is a formula such
that a graph G |= App(ρ) iff there exists a match between the
left-hand side of ρ and G

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 152 / 158

Generating Weakest Preconditions

We define wp(strat ,Q) the weakest precondition for a strategy strat
and a formula Q.

wp(a, Q) = Q[a]

wp(ε, Q) = Q
wp(a;α, Q) = wp(a,wp(α,Q))

wp(s0; s1, Q) = wp(s0,wp(s1, Q))

wp(s0 ⊕ s1, Q) = wp(s0,Q) ∧ wp(s1,Q)

wp(ρ, Q) = App(ρ)⇒ Q[an]...[a0]

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 153 / 158

Generating Weakest Preconditions

wp(strat ,Q) computes the weakest precondition for a strategy strat
and a formula Q.

wp(a, Q) = Q[a]

wp(ε, Q) = Q
wp(a;α, Q) = wp(a,wp(α,Q))

wp(s0; s1, Q) = wp(s0,wp(s1, Q))

wp(s0 ⊕ s1, Q) = wp(s0,Q) ∧ wp(s1,Q)

wp(ρ, Q) = App(ρ)⇒ Q[an]...[a0]

wp(s∗, Q) = invs

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 154 / 158

Verification Conditions

vc(ρ, Q) = >
vc(s0; s1, Q) = vc(s0,wp(s1, Q)) ∧ vc(s1,Q)

vc(s0 ⊕ s1, Q) = vc(s0,Q) ∧ vc(s1,Q)

vc(s∗, Q) =
(invs ∧ ¬App(s)⇒ Q)∧ (invs ∧ App(s)⇒ wp(s, invs))∧ vc(s, invs)

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 155 / 158

Soundness of the verification

Let spec = (Pre, strat ,Post) be a specification. We call
correctness formula the formula
correct(spec) = (Pre⇒ wp(strat ,Post)) ∧ vc(strat ,Post).

Theorem:
If correct(spec) is valid, then for all graphs G, G′ such that
G→strat G′, G |= Pre implies G′ |= Post .

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 156 / 158

Decidability of the verification

Theorem:
Let spec = (Pre, strat ,Post) be a specification using one of the
following DL logics ALCUO, ALCUOI, ALCQUOI, ALCUOSelf ,
ALCUOISelf , and ALCQUOISelf . Then, the correctness of spec
is decidable.

Other considered decidable logics

Extension of the dynamic logic PDL: C2PDL
First-order Logic : fragments ∃∗∀∗ and C2

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 157 / 158

Conclusion

Conferences and workshops: ICGT, ICMT, GCM, etc.
Various Algebraic Approaches: DPO, SPO, SqPO,AGREE, PBPO,
etc.
Various Implementations: AGG, GROOVE, GP, PORGY,
PROGRES, etc.
General Framework: (Weak) Adhesive (HLR) Categories
Other issues: Parallelism, Verification Techniques, Termination...

ISR2019 (Paris) R. Echahed July 1 and 2, 2019 158 / 158

	Introduction
	Preliminary Definitions
	Graph Rewriting: Elementary Actions
	Some Algebraic Approaches to Graph Rewriting
	Attributed Graph Transformation and PBPO rules
	Termgraph Rewriting: An Algorithmic Approach
	Verification of Graph Transfomation

