
Using a co-similarity approach on a large scale
text categorization task

Clément Grimal — Gilles Bisson

Université Joseph Fourier / Grenoble 1 / CNRS
Laboratoire LIG
Bat. CE4 – Allée de la Palestine
38610 GIERES
{Clement.Grimal, Gilles.Bisson}@imag.fr

ABSTRACT. This paper presents a framework we developed for the second Large Scale Hierarchi-
cal Text Categorization challenge LSHTC2. The main idea is to propose a method allowing to
deal with the terms variability among the categories in order to be able to find similarities be-
tween collections of documents belonging to the same category but having few common terms.
Thus, we used a co-similarity based approach, named χ-Sim, that we introduced in previous
work. Nevertheless, as this co-similarity methods are not highly scalable, we need to implement
a “divide and conquer” approach to split the categories into a set of clusters containing seman-
tically related documents. This lead to a two-stage strategy for the document categorization:
first, we decide in which cluster the test document belongs, and then inside the elected cluster,
we perform the final categorization that is based on our co-similarity approach.

RÉSUMÉ. Ce papier présente une architecture développée pour participer au second défi LSHTC
de classification de textes à grande échelle. L’idée est de proposer une méthode permettant
de traiter la variabilité terminologique des documents afin de trouver des similarités entre des
collections appartenant à la même catégorie sémantique, mais n’ayant que peu de termes en
communs. Nous avons utilisé une approche basée sur la co-similarité, nommé χ-Sim, présen-
tée dans de précédents travaux. Néanmoins, cette méthode de calcul de co-similarité passant
difficilement à l’échelle, nous avons défini une approche de type « diviser pour régner » pour dé-
couper les catégories en groupes (clusters) contenant des documents sémantiquement proches.
Ceci nous conduit à une stratégie à deux étapes pour la tâche de classification des documents :
premièrement, nous affectons chaque document à un cluster, puis à l’intérieur de celui-ci, nous
réalisons la classification finale basée sur notre approche de calcul de co-similarité.

KEYWORDS: Categorization, text mining, large-scale database

MOTS-CLÉS : Classification, fouille de texte, masse de données

2 MARAMI 2011.

1. Introduction

With the development of the web, and the high availability of the storage spaces,
more and more documents become accessible. The downside is that one can feel
overwhelmed by the great amount of information available, and being able to navigate
within such network of documents is a great challenge. One classical way to organize
such information is to associate one or several category to a set of related documents,
these categories being organized into a hierarchy or more generally a directed graph.
In many popular databases such as DMOZ or Wikipedia, the choice of the category
labels is done by the users. Not only this task is very time consuming, but also it leads
inevitably to major variability and many inconsistencies in the labelling. Here, the
main problem to tackle is to deal with the huge number of categories in the databases:
for instance, the International Patent Classification (IPC) contains about 70,000 cat-
egories and in Wikipedia there exist more than 20,000 categories linked together by
different kinds of relations. Thus, category labelling of large databases is a great chal-
lenge for the machine learning and for the information retrieval communities, and we
need to develop new algorithms able to scale up well for large Category Systems.

The use of pre-existing taxonomies of categories (related to documents) is a very
natural way to bring a priori information to help the categorization of new documents,
but this information is not always used. Indeed, one can split the main categorization
methods into three categories:

– Big bang approaches (or knowledge poor) try to solve directly the problem by
using a single classifier working on all categories at the same time. However, tests
reported in [MAD 07] show that in this paradigm the processing time, both in learning
and in test, is huge. That said, the learning method recently developed in [BOT 08]
allows to improve this kind of approach.

– Top-down approaches (or knowledge intensive), divide the initial problem into
simpler problems by using the hierarchy of categories. Although more efficient than
big-bang methods from a computational point of view, the top-down approach faces a
major problem which is the propagation of the labelling errors from the most general
clusters (top of the hierarchy) to the most specific ones (final categories). One can
note that it is also possible to automatically infer relations between the categories, by
a clustering method for instance, in order to be able to divide the problem afterwards.

– Hybrid approaches [XUE 08] try to combine the strengths of the two previous
strategies: first, the hierarchy of categories is used to divide the database into collec-
tion of homogeneous sub-problems then, a different classifier is learned on each of
these sub-problems.

The Pascal Challenge on Large Scale Hierarchical Text Classification (second edi-
tion, the first one was in 2010) offers several categorization tasks, involving different
documents and category hierarchies. We must notice that in such large collections of
text documents, it is very likely to observe a huge vocabulary variability as 1) numer-
ous authors participated to the writing of the documents, and 2) across long periods of
time. Therefore, without terminological knowledge, in many cases, it can be difficult
to find a link between a test document and a training document, even if both deal with

Co-similarity based text categorization 3

the same topic and belong to the same categories, if their authors have chosen different
vocabulary. Facing this problem, it seems necessary to set up a method allowing to
determine if two words are similar (maybe synonyms) or not. Unfortunately, in this
challenge, all terms have been replaced by unique numerical identifiers, thus linguistic
approaches are not helpful.

In previous work [HUS 10b], we developed in the frame of the co-clustering, a
statistical algorithm allowing to compute a co-similarity, named χ-Sim, between doc-
uments and terms of a corpus. We make use of the duality between words and docu-
ments (each one can be seen as a descriptor for the other), as well as their respective
higher-order co-occurrences. For example, let us consider a training corpus belonging
to the category oceanography in which a subset of documents contains a significant
number of co-occurrences between the words sea and waves and another subset in
which the words ocean and waves co-occur. So, we can infer that the worlds ocean
and sea are conceptually related even if they do not directly co-occur in any docu-
ment. Such a relationship between waves and ocean (or sea and waves) is termed
as a first-order co-occurrence and the conceptual association between sea and ocean
is called a second-order relationship. This concept can be generalized to higher-order
(3rd, 4th, 5th, etc) co-occurrences. By using this approach, we will be able to find
some similarities between two documents of the same category even if they are using
a different terminology. Hence, we (hope to) solve the vocabulary variability problem.

However, the time and space complexities of our co-similarity approach are re-
spectively in O(n3) or O(n2), preventing any direct use of our method on a huge
collection of documents. For instance, for the DMOZ dataset it is impossible to store
a terms similarity matrix for the complete vocabulary (almost 600K) since this kind
of matrices are not sparse. Consequently, to learn the classifier, we use an Hybrid
approach as described previously. In a first step, using the information provided by
the categories hierarchy, we group together the documents that are semantically re-
lated, into a smaller collection of so called clusters. Thus, in a second step, we use our
co-similarity approach for every cluster of documents, as their vocabulary becomes
tractable. Moreover, we add two word selection stages in order to only work with the
terms that offer the best discrimination among categories. Finally, the categorization
process takes place in two steps: first, assigning the test document to one (or more)
cluster of training documents, then find the most similar documents with the help of
the local term similarity matrix computed during the training process. Then, every of
these training documents votes for its own categories.

The rest of this paper is organized as follows. In Section 2, the word selection
steps, along with the gathering of the documents into clusters, are described. Section 3
presents the co-similarity approach we used in order to learn the local term similarity
matrices. In Section 4, we describe the categorization process. Finally, we discuss the
(very preliminary) experiments in Section 5.

4 MARAMI 2011.

2. The pre-processing phase

Here we describe the overall architecture (Figure 1) of the preprocessing step
needed to create the learning sets that will be used by χ-Sim. First, after having
selected a subset of the most discriminant words for each category Lk, we split the
initial set of documents into a collection of clusters {C1, ..., Cp} containing seman-
tically related documents; this stage is describe in section 2.1. Secondly, for each
cluster Ci, we build two vectors of relevant words: the inter-cluster words WCi

and
the intra-cluster WSi . The vector WSi contains a selection of the terms of Ci that
are discriminant (for a given criteria) with respect to the other clusters Cj 6=i, and the
vector WSi

contains a selection of terms of Ci allowing to discriminate between the
categories occurring in Ci. This two stage are described in sections 2.2 and 2.3.

Training
collection

Inter clusters
word selection

Intra cluster
word selection

Clusters
generation

Word selection
for each

category Lk

Hierarchy
of

categories

Clusters
{Ci}

{WSi}

{WCi}

Hierarchy
 +

Words

Figure 1. The pre-processing phase.

2.1. Creation of the clusters

In order to evaluate the relevant co-similarities between words of a given collec-
tion of documents, we need to ensure that these documents contain a large subset of
semantically related words; in other terms, these documents must concern similar top-
ics. The simplest way to achieve that is to trust the hierarchy of categories of each
database, and to consider that documents belonging to the same subtree are semanti-
cally related. Of course, the closer we are from a bottom category (i.e. a leaf), the
higher similarity the documents will (probably) have.

However, a question arise: what is the size of the subtree we have to consider to
create the clusters? To use χ-Sim, the number of documents in each cluster must be
large enough (about 100 documents) to be able to capture some interesting statistical
similarities between the words, and at the same time it must be small enough to reduce
the time and space complexity of the calculus. The best ratio is about one thousand
documents per clusters. Unfortunately, the distribution of the documents within the
categories is highly uneven in all the databases of the challenge. For instance, in
DMOZ (edition 2011 of the challenge) the biggest category contains more than 5K
documents and almost 20% of the categories just contain one or two documents. So,
we need to define a strategy to deal with these two extreme situations:

– When a category is too large we used a sampling approach to reduce the number
of documents to 800. Currently, this selection is done randomly, but we could use

Co-similarity based text categorization 5

a better method: for instance, to run the Partitioning Around Medoids algorithm and
keep the medoids as cluster representatives.

– When a category is too small, we merge the documents of this category with
those of the closest neighbours. Here, the fusion process is guided by the hierarchy
of categories and, at each step, we only merge the sibling categories. Finally, each
cluster is characterized by the highest common parent of the categories it contains.

More generally, if we don’t have a hierarchy of categories, the merging step can
be done by using any clustering algorithm. Besides, building automatically such hier-
archy can be also helpful if one decides to use a multi-level categorization process as
we do, but with more than two levels.

However, in all cases, we need a criteria to decide when a set of sibling categories
must be clustered together. The idea is to use an iterative, bottom-up, approach in
which we merge the most similar categories first. However, in order to avoid comput-
ing a similarity matrix between all the sibling documents of each category, we built
up an intermediate representation of the data, the idea being:

– For each inner category, to build a vector of the words offering the best discrim-
ination rate with respect to its sibling categories.

– To base the evaluation of the sibling similarity on the similarities between the
documents and their direct parent category (one if the hierarchy of categories is strict,
several if we have a DAG structure).

2.1.1. Characterization of the categories

Thus, in order to efficiently compare two nodes of the categories hierarchy, we
had to build a vector of the representative words for every node Lk, only select-
ing the terms that offer the best discrimination among all the nodes. Numerous
work [YAN 97, FOR 08] compare different ways to compute a score between a feature
t and a category Lk. Here are three classical approaches among many others:

– the Mutual Information: I(t, Lk) = log P (t∧Lk)
P (t)P (Lk)

– the Bi-Normal Separation: BNS(t, Lk) =∣∣∣F−1 (P (t∧Lk)
P (Lk)

)
− F−1

(
P (t∧¬Lk)
P (¬Lk)

)∣∣∣ where F−1 is the inverse Normal cumu-
lative distribution function, as commonly available from statistical tables.

– the double conditional probabilities: CP(t, Lk) = P (t|Lk)P (Lk|t)

In the experiments we conducted, we elected the double conditional probabilities as
for the DMOZ dataset of the challenge of 2010, it provided the best prediction results.
For a given category, after having computed the score for every single word, there is
two main different approach [NOV 04]:

– selecting the best individual features, i.e. considering that the features are inde-
pendent the one from the others;

– or using a sequential selection approach that take note of the dependencies be-
tween words, e.g. we start by selecting the best individual feature, and then we update
the scores of the others, in order to avoid taking two highly correlated features.

6 MARAMI 2011.

However, the computation required to perform such a sequential selection is pro-
hibitive with a large vocabulary and we had to use a best individual features method,
however the second approach is clearly more accurate.

To decide the number of words to keep to characterize a category, we used a thresh-
old based on the ratio of the sum of the score of the already selected words, over the
sum of the scores of all the words. For instance, if the criteria is the Mutual Infor-
mation, this corresponds to selecting enough words to have 80% of the total Mutual
Information. Using this simple idea, we allow the selection algorithm to keep very
few words, as soon as they offer a high discrimination ratio. Thus we reduce both
space and time complexity for the following steps of our process.

After having selected the “best” words for all the leaves categories, we pass them
on to their parents, and perform the same step on these nodes, doing so until every
node of the hierarchy has been processed, in order to be able to compare any pair of
nodes of the hierarchy.

2.1.2. Merging of the categories

Now, having built the representative words for every category (corresponding to
the node of the hierarchy), we can run the clusters creation algorithm described by the
pseudo-code algorithm 1.

Algorithm 1 Clusters creation
Require: MAXC, categories hierarchy
Ensure: clusters

clusters← [leaves categories]
candidates← [parents of categories]
while |clusters|>MAXC do

winner← argmax
c∈candidates

∑
c′∈children(c)

size(c′)×Cosine(c,c′)∑
c′∈children(c) size(c′)

append winner to cluster and remove it from candidates
append parents of winner to candidates and remove them from clusters

end while

We begin the algorithm by initializing the set of clusters Ci by creating one cluster
for each leaf category of the hierarchy. We start with about 28,000 clusters for the
DMOZ dataset. We also initialize the set of candidate categories, which are all the
direct parent nodes of the leaves categories. As we want to build clusters of documents
that are as semantically related as possible, at each step of the algorithm, we compute
a score for all the categories that are candidate to become a new cluster (see Fig. 2).

For a given candidate node, this score is the weighted mean of the Cosine simi-
larity between itself and its children nodes. The weights are the size of the children
nodes and the Cosine is computed by using the vectors of representative words built
in the previous step. Finally, when the number of clusters is smaller than the MAXC
parameter (user-defined), the aggregation process is over and the last step consists in
sampling the documents of the clusters that contains too many documents (the thresh-
old for sampling is also a user-defined parameter). Indeed, as we said earlier, to use

Co-similarity based text categorization 7

a b c

n1 n2 Candidate node

Cluster selected

n1 n2

t t+1

Figure 2. The main step of the clusters creation algorithm. Here the node n1 is more
similar to its children than node n2, so it becomes a new cluster and the previous ones
a, b, c are removed.

χ-Sim, the number of documents must be small enough to reduce the time and space
complexity of the computation.

For the two datasets extracted from Wikipedia, the hierarchies are no longer sim-
ple tree structures, since the categories can have more than one parent. This can be
problematic when a node n with more than one parent must be remove from the list
of clusters. We made the choice to remove n from the cluster list only if all its parents
are already contained in clusters. In a nutshell, the parent categories have the “shared
custody” of their children.

2.2. Finding the inter-clusters words

During the final categorization process, in order to predict to which cluster belongs
a test document, we need to compute the similarity between this test document and all
the clusters. Again, we will use a cosine measure between the vector of terms of the
document and a vector of terms characterizing each cluster. Thus, we need to perform
another word selection step on all the words occurring in a cluster. More precisely,
for every cluster Ci, we perform this word selection step to obtain the set of words
WCi

that will be used to represent it. It is worth noticing that we cannot re-use the
previously selected terms as described in Sec. 2.1. Indeed, in the previous step the goal
was to find words that offer the best discrimination among all the different categories,
whereas now, we want to base the similarity measure on the terms providing the best
discrimination rate among the different selected clusters.

As described in Sec. 2.1 (Characterization of the categories), again we use a thresh-
old for dynamically selecting the number of words. Figure 3 plots, for the DMOZ
dataset (2010 edition), the average number of words selected and the variation of Ac-
curacy (The ratio of the number of documents assigned to the cluster they effectively
belong to, over the total number of training documents) against the threshold. By
varying this threshold from 10% to 100%, we observe that the gain in precision is
not very huge when the threshold is larger than 50%. Hence, using this threshold can
further reduce the number of terms to keep, allowing to decrease the complexity of the
similarity calculus.

8 MARAMI 2011.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

@
1

0

100

200

300

400

500

600

700

800

Av
er

ag
e

nu
m

be
r o

f w
or

ds

Figure 3. For the DMOZ dataset (2010 edition), average number of words selected by
cluster (diamond) and Accuracy@1 (circle) against the threshold for the inter-clusters
words selection step.

2.3. Finding the intra-clusters words

Finally, in order to be able to efficiently perform our learning process based on
the χ-Sim co-similarity measure, at the intra-cluster level, we first need to perform
a very last word selection step. Here, we want to select the terms offering the best
discrimination rate among the different categories within a cluster, with respect to
the double conditional probabilities criteria. This selection is performed by using the
same ideas as described in Sec. 2.1.

Again, we cannot re-use the terms previously selected, as for now, the goal is not
to find the words that offers the best discrimination among all the other categories
(see Sec. 2.1), neither among the other clusters (see Sec. 2.2), but among the other
categories contained within the cluster. Thus, for a given cluster Ci, we select the
“best” words for every category it contains, and then build the union of all these terms
to obtain WSi

, the local vocabulary of the cluster that will be used both in the learning
phase and in the categorization phase.

3. The learning phase

The goal of our learning phase is to compute, for every cluster Ci, the similarity
between all the pairs of the intra-cluster words WSi

, that have been selected inside a
cluster as described in Sec. 2.3. Learning such similarities will enable us to find links
between documents written by different authors that use different vocabularies. This
section presents the χ-Sim algorithm, that was originally developed for text clustering,
and that has been successfully extended for text categorization [HUS 10a].

We will use the following classical notations: matrices (in capital letters) and vec-
tors (in small letters) are in bold and all variables are in italic:

– Data matrix: let M be the matrix representing a cluster having r documents
(rows) and c words (columns); mij corresponds to the ‘intensity’ of the link between

Co-similarity based text categorization 9

the ith document and the jth word; mi: = [mi1 · · ·mic] is the row vector representing
the document i and m:j = [m1j · · ·mrj] is the column vector of the word j.

– Similarity matrices: SR and SC represent the square and symmetrical row
similarity and column similarity matrices of size r × r and c × c respectively, with
∀i, j = 1..r, srij ∈ [0, 1] and ∀i, j = 1..c, scij ∈ [0, 1].

– Similarity function: function Fs(·, ·) is a generic function that takes two elements
mil and mjn of M and returns a measure of the similarity Fs(mil,mjn) between
them.

3.1. The χ-Sim measure

Usually, the similarity (or distance) measure between two documents mi: and mj:

is defined as a function – denoted here as Sim(mi:,mj:) – that is more or less the sum
of the similarities between words occurring in both mi: and mj::

Sim(mi:,mj:) = Fs(mi1,mj1) + · · ·+ Fs(mic,mjc) (1)

Now let’s suppose we already know a matrix SC whose entries provide a measure
of similarity between the words of the corpus. In parallel, let’s introduce, by analogy
to the norm Lk (Minkowski distance), the notion of a pseudo-norm k. The main
idea is to generalize (1) in order to take into account all the possible pairs of words
occurring in documents mi: and mj:. In this way, we “capture” not only the similarity
between their common words but also the similarity coming from words that are not
directly shared by the two documents. Of course, for such terms, we weight their
contribution to the document similarity srij by their own similarity scln. Thus, the
overall similarity between documents mi: and mj: is defined in (2):

Simk(mi:,mj:) =
k

√√√√ c∑
l=1

c∑
n=1

(Fs (mil,mjn))
k × scln (2)

Assuming that Fs(mil,mjn) = mil ×mjn, as for the Cosine similarity, we can
rewrite (2) as:

Simk(mi:,mj:) =
k
√
(mi:)

k × SC×
(
mT

j:

)k
where (mi:)

k
=
[
(mij)

k · · · (mic)
k
]

and mT
j: the transpose of mj:.

Finally, we want to map the similarity measure to [0, 1], so we need to introduce
a normalization factor to do so. Investigating extensions of the Generalized Cosine
measure, we decided to use the following normalization:

srij =
Simk(mi:,mj:)√

Simk(mi:,mi:)×
√
Simk(mj:,mj:)

(3)

However, this normalization is what we will call a pseudo-normalization since it
guaranties that srii = 1, but it does not satisfy that ∀i, j ∈ 1..r, srij ∈ [0, 1]. A
counter example is given in [HUS 10b], but it is nevertheless interesting to investigate
the results one can obtain from varying k, including values lower than 1, as suggested
by [AGG 01] for the norm Lk, to deal with high dimensional spaces.

10 MARAMI 2011.

3.2. A Generic χ-Sim Algorithm

Equation (3) allows us to compute the similarity between two documents. The
formula to compute the similarity between two words is similar. The extension over all
pair of documents and all pairs of words can be generalized under the form of a simple
matrix multiplication. We need to introduce a new notation here, M◦k =

(
(mij)

k
)
i,j

which is the element-wise exponentiation of M to the power of k. The algorithm
follows:

1) We initialize the similarity matrices SR (documents) and SC (words) with the
identity matrix I, since, at the first iteration, only the similarity between a document
(resp. a word) and itself equals 1 and zero for all other documents (resp. words). We
denote these matrices as SR(0) and SC(0).

2) At iteration t, we calculate the new similarity matrix between documents SR(t)

by using the similarity matrix between words SC(t−1):

SR(t) = M◦k × SC(t−1) × (M◦k)
T and sr(t)ij ←

k
√
sr

(t)
ij

2k
√
sr

(t)
ii × sr

(t)
jj

We do the same thing for the words similarity matrix SC(t):

SC(t) = (M◦k)
T × SR(t−1) ×M◦k and sc(t)ij ←

k
√
sc

(t)
ij

2k
√
sc

(t)
ii × sc

(t)
jj

3) We set to 0 the p% of the lowest similarity values in the similarity matrices
SR and SC. This step is used to efficiently reduce the impact of the noise in the
similarities and is described in [HUS 10b].

4) Steps 2 and 3 are repeated t times (typically 4 iterations are enough) to itera-
tively update SR(t) and SC(t).

It is worth noting here that even though χ-Sim computes the similarity between
each pair of documents using all pairs of words, the overall complexity of the algo-
rithm remains comparable to classical similarity measures like Cosine. Given that –
for a generalized matrix of size n by n – the complexity of matrix multiplication is
in O(n3) and the complexity to compute M◦n is in O(n2), the overall complexity of
χ-Sim is given by O(tn3).

4. The categorization phase

The categorization is based on a two-level strategy. For a given test document,
we first assign it to the k most similar clusters, then for each cluster, to the k′ most
similar documents. At the clusters level, we chose to compute the similarities between
the test document and the clusters Ci with a classical Cosine measure. this measure is
compute between the word vector of the document and the vectorWCi selected during
the pre-processing phase. Then, we decide to keep the k most similar clusters for the
second level of the categorization process. Then, at the intra-clusters level, for each
of the selected k clusters, we evaluate the similarities between the test document and
all the documents of the cluster using the local similarity matrix SC computed during

Co-similarity based text categorization 11

the learning phase, using (3). In each of these k clusters, we keep the k′ most similar
documents, so we have selected a total of k × k′ documents to decide the categories
(a document can belong to several categories) of the test document (Fig. 4). This is
achieved through a classical vote procedure: each of these documents votes for its
own categories and we categorize the test document with the winning categories. The
number of categories to keep is equal to the median number of categories occurring in
the k × k′ documents.

Clusters prediction Documents predictionTest
document

k clusters k.k' documents

Figure 4. The two-stage prediction process.

5. Experiments

The framework has been implemented in Python, and only tested on the dry-run
DMOZ dataset of the 2010 edition of the challenge. This hierarchy of categories for
this dataset contains 2387 nodes, of which 1139 where leaves, i.e. labels for the docu-
ments. The training set contains 4463 documents, whereas the valid set and the test set
respectively contain 1859 and 1857 documents. The organizers of the challenge used
various evaluation measures but we compare our results with the ones published on
the website of the challenge (http://lshtc.iit.demokritos.gr/node/23) using
only the accuracy, which simply is the percentage of correctly labelled documents.

Table 1. Results on the dry-run DMOZ dataset of the 2010 edition of the challenge.
For our method, we give the number of clusters obtained, the accuracy obtained on
the first step of our classification process on the training set, the global accuracy for
the training and the validation sets. Final column is the accuracy on the test set of the
best published method and of ours.

#clusters Acc@1 Train Acc. Valid Acc. Test Acc.
Best published 46.8%

Our method 91 66.5% 66.3% 28.3% 28.3%

The training time for our algorithm was 10 minutes and the test time was 3 min-
utes, on an Intel Xeon @ 2.66GHz. Having a closer look at the 66.3% accuracy on
the training set, it appears that most of our errors are due to an error at the clusters
prediction level, as 66.5% of the training are affected to the correct cluster. Thus, this
is an ongoing work and we need to refine the criteria used during the agglomerative
approach to improve the results.

6. Conclusion and future works

We develop a generic framework for large-scale categorization using a co-similarity
approach. Our approach can make use of a hierarchy of the categories if available,

12 MARAMI 2011.

in order to divide the set of training documents in consistent clusters as proposed
in [XUE 08]. Thus, the main contribution of this paper is the integration of a co-
similarity approach at the intra-clusters level that can be very useful to link semanti-
cally related documents written by many authors using different vocabulary, which is
often the case in such large collections of text documents.

In the future, we will run tests on the different tasks of the challenge. We would
like to test other words selection methods as it is required at three different levels of
our process, being able to select better words could significantly increase the precision
of our categorization system. Besides, so far, we only used our co-similarity approach
at the intra-cluster level, but we plan to use it at the inter-cluster level as well, by
computing a words similarity matrix for the inter-cluster terms, thus improving the
performance of the first stage of our categorization phase. It would be also interesting
to generalize our two-level strategy to a multi-level strategy.

Acknowledgements
This work is partially supported by the French ANR project FRAGRANCES under grant

2008-CORD 00801. Many thanks to the PASCAL team for setting up the LSHTC challenge.

7. References

[AGG 01] AGGARWAL C. C., HINNEBURG A., KEIM D. A., “On the Surprising Behavior
of Distance Metrics in High Dimensional Space”, Lecture Notes in Computer Science,
Springer, 2001, p. 420–434.

[BOT 08] BOTTOU L., BOUSQUET O., “Learning using large datasets”, Mining Massive
DataSets for security, , 2008, Citeseer.

[FOR 08] FORMAN G., “BNS feature scaling: an improved representation over tf-idf for svm
text classification”, Proceeding of the 17th ACM conference on Information and knowledge
management, CIKM ’08, New York, NY, USA, 2008, ACM, p. 263–270.

[HUS 10a] HUSSAIN S. F., BISSON G., “A supervised Approach to Text Categorization using
Higher Order Co-Occurrences”, Society for Industrial and Applied Mathematics Interna-
tional Conference on Data Mining (SDM 2010), Columbus, Ohio, April 29-May 1 2010.

[HUS 10b] HUSSAIN S. F., GRIMAL C., BISSON G., “An Improved Co-Similarity Measure
for Document Clustering”, ICMLA, 2010.

[MAD 07] MADANI O., GREINER W., KEMPE D., SALAVATIPOUR M., “Recall systems:
Efficient learning and use of category indices”, Proc. of AISTATS, Citeseer, 2007.

[NOV 04] NOVOVIČOVÁ J., MALÍK A., PUDIL P., “Feature selection using improved mutual
information for text classification”, Structural, Syntactic, and Statistical Pattern Recogni-
tion, , 2004, p. 1010–1017, Springer.

[XUE 08] XUE G., XING D., YANG Q., YU Y., “Deep classification in large-scale text hierar-
chies”, Proceedings of the 31st annual international ACM SIGIR conference on Research
and development in information retrieval, ACM, 2008, p. 619–626.

[YAN 97] YANG Y., PEDERSEN J. O., “A Comparative Study on Feature Selection in Text
Categorization”, ICML, 1997, p. 412-420.

