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Motivation χ-Sim improved Experiments Conclusion & Perspectives

The text mining context

Document#1:
A contruction found in villages
and in the suburbs of bigger
town, used to house a family.

Document#2:
A building which main purpose
is to provide accomodation to
human beings.

With a classical approach:
No shared terms between the two documents
→ Similarity(Document#1, Document#2) = 0

Using a co-similarity approach:
Clustering of the terms

→ Similarity(Document#1, Document#2) > 0
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Model

We used the classical Vector Space Model of Salton (1971):
M: documents/words matrix of r rows and c columns

I mi: = [mi1 . . .mic]: row vector describing document i

I m:j = [m1j . . .mrj ]: column vector describing word j

We want to compute:

I SR: square similarity matrix (documents) of size r, with srij ∈ [0, 1]

I SC: square similarity matrix (words) of size c, with scij ∈ [0, 1]

Basic Idea

I Two documents are similar if they contain similar words.

I Two words are similar if they appear in similar documents.

Joint construction of the two similarity matrices SR and SC.
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Motivation χ-Sim improved Experiments Conclusion & Perspectives

Similarity between two documents

I Classical approach: similarity = f(shared words)

Sim(mi:,mj:) = Fs(mi1,mj1) + · · ·+ Fs(mic,mjc)

with Fs a similarity function (absolute difference, product, etc.).

I Using SC (usually, scii = 1):

Sim(mi:,mj:) =

c∑
l=1

Fs(mil,mjl)× scll

I Now comparing every pair of words:

Sim(mi:,mj:) =
c∑
l=1

c∑
n=1

Fs (mil,mjn)× scln
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New approach - Pseudo-norm k

I If Fs(mij ,mkl) = mij ×mkl:

Sim(mi:,mj:) = mi: × SC×mT
j:

I We introduce a pseudo-norm k (see [Aggarwal et al.(2001)]):

Simk(mi:,mj:) =
k
√
(mi:)

k × SC×
(
mT
j:

)k
= 〈mi:,mj:〉kSC

→ we have ‖mi:‖kSC =
√
〈mi:,mi:〉kSC

I Then we need to normalize this similarity:

srij =

k
√
(mi:)

k × SC×
(
mT
j:

)k
N (mi:,mj:)

∈ [0, 1]
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Generic form

I Now:

srij =

k
√
(mi:)

k × SC×
(
mT
j:

)k
N (mi:,mj:)

=
〈mi:,mj:〉kSC

N (mi:,mj:)

I With special values for k, SC and N , we have:
I Jaccard: SC = I, k = 1, N = ‖mi:‖1 + ‖mj:‖1 −mi:m

T
j:

I Dice: SC = 2I, k = 1, N = ‖mi:‖1 + ‖mj:‖1

I “Classical” χ-Sim: k = 1, N = |mi:| × |mj:|

I Generalized Cosine: SC > 0, k = 1, N = ‖mi:‖SC × ‖mj:‖SC

I χ-Simk : N = ‖mi:‖kSC × ‖mj:‖kSC
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Pruning parameter p

In such a corpus...

Many words are not specific enough, and creates a lot of irrelevant similarities.
These similarities can be considered as noise.

Example: Astronomy / Mythology
The word Hercules can appear once in an astronomy document, and “link” it to
all mythology documents dealing with greek heroes...

How to deal with it?

Hypothetis: these irrelevant similarities are small.
→ At each iteration, we remove the smallest p% of the similarity matrices.
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Algorithm for χ-Simk
p

1. SR(0) and SC(0) are initialized with the identity matrix.

2. At each iteration t, we update both similarity matrices :

3. Update SR(t) using SC(t−1)

4. Prune SR(t)

5. Update SC(t) using SR(t−1)

6. Prune SC(t)

Usually, t = 4 is enough.
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Meaning of an iteration

Bi-partite graph representing a simple corpus
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Meaning of an iteration

First iteration: sr12 > 0 and sr24 > 0, but sr14 = 0
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Meaning of an iteration

Second part of the first iteration: sc24 > 0
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Meaning of an iteration

Second iteration: through sc24, now sr14 > 0
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Methods

I Five similarity measures
I Cosine
I χ-Sim (with or without k and p) [Hussain et al.(2010)]
I LSA (Latent Semantic Analysis) [Deerwester et al.(1990)]
I SNOS (Similarity in Non-Orthogonal Space) [Liu et al.(2004)]
I CTK (Commute Time Kernel) [Yen et al.(2009)]

+ Ascendant Hierarchical Clustering, with Ward’s index

I Three co-clustering methods
I ITCC (Information Theoric Co-Clustering) [Dhillon et al.(2003)]
I BVD (Block Value Decomposition) [Long et al.(2005)]
I RSN (k-partite graph partioning algorithm) [Long et al.(2006)]
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Methodology and Data

Methodology

I We randomly select subsets of documents already labeled

I We measure the quality of the clusters using the micro-averaged precision

The subsets:
Name Newsgroups included #clusters. #docs.

M2 talk.politics.mideast, talk.politics.misc 2 500
M5 comp.graphics, rec.motorcycles, rec.sport.baseball, sci.space,

talk.politics.mideast
5 500

M10 alt.atheism, comp.sys.mac.hardware, misc.forsale, rec.autos,
rec.sport.hockey, sci.crypt, sci.electronics, sci.med, sci.space,
talk.politics.gun

10 500

NG1 rec.sports.baseball, rec.sports.hockey 2 400
NG2 comp.os.ms-windows.misc, comp.windows.x, rec.motorcycles,

sci.crypt, sci.space
5 1000

NG3 comp.os.ms-windows.misc, comp.windows.x, misc.forsale,
rec.motorcycles, sci.crypt, sci.space, talk.politics.mideast,
talk.religion.misc

8 1600
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Results

M2 M5 M10 NG1 NG2 NG3

Cosine 0.61 ± 0.04 0.54 ± 0.08 0.39 ± 0.03 0.52 ± 0.01 0.60 ± 0.05 0.49 ± 0.02

LSA 0.79 ± 0.09 0.66 ± 0.05 0.44 ± 0.04 0.56 ± 0.05 0.61 ± 0.06 0.52 ± 0.03

ITCC 0.70 ± 0.05 0.54 ± 0.05 0.29 ± 0.05 0.61 ± 0.06 0.44 ± 0.08 0.49 ± 0.07

SNOS 0.51 ± 0.01 0.26 ± 0.04 0.20 ± 0.02 0.51 ± 0.00 0.24 ± 0.01 0.22 ± 0.02

CTK 0.75 ± 0.10 0.78 ± 0.04 0.54 ± 0.05 0.72 ± 0.14 0.66 ± 0.06 0.58 ± 0.02
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χ-Sim 0.58 ± 0.07 0.62 ± 0.12 0.43 ± 0.04 0.54 ± 0.03 0.60 ± 0.12 0.47 ± 0.05

χ-Simp 0.65 ± 0.09 0.68 ± 0.06 0.47 ± 0.04 0.62 ± 0.12 0.63 ± 0.14 0.57 ± 0.04
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χ-Simp 0.65 ± 0.09 0.68 ± 0.06 0.47 ± 0.04 0.62 ± 0.12 0.63 ± 0.14 0.57 ± 0.04

χ-Sim0.8
p 0.81±0.10 0.79±0.05 0.55±0.04 0.81±0.02 0.72±0.02 0.64±0.04

More results in the paper...
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Influence of k

Tests on NG1, displaying the standard deviation over the 10 folds as error bars.

See [Aggarwal et al.(2001)].
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Conclusion & Perspectives

Improvements of χ-Sim

I Exploration of different normed spaces (k)

I Pruning of the similarity matrices (p)

I Very good experimental results

Perspectives

I Use a damping factor to decrease the weight of higher order co-occurences

I Automatically find the best values for k and p

I Results are good, but a better theoritical understanding is needed

I Use the χ-Sim similarity matrices as input for the kernel-based algorithms
used with CTK
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Any questions?
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Parameter k

The generalized χ-Sim

∀i, j ∈ 1..r, srij =
Simk(mi:,mj:)√

Simk(mi:,mi:)×
√
Simk(mj:,mj:)

∀i, j ∈ 1..c, scij =
Simk(m:i,m:j)√

Simk(m:i,m:i)×
√
Simk(m:j ,m:j)

For k = 1, SR and SC are not positive semi-definite...
We are not defining an inner product so it is not a generalized cosine measure...
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