# An Improved Co-Similarity Measure for Document Clustering

#### Syed Fawad Hussain, Clément Grimal and Gilles Bisson

December  $12^{\rm th},\ 2010$ 



UNIVERSITÉ DE GRENOBLE

# The text mining context

Document#1: A contruction found in villages and in the suburbs of bigger town, used to house a family. Document#2: A building which main purpose is to provide accomodation to human beings.

# The text mining context

Document#1: A contruction found in villages and in the suburbs of bigger town, used to house a family. Document#2: A building which main purpose is to provide accomodation to human beings.

#### With a classical approach:

# No shared terms between the two documents $\rightarrow$ Similarity(*Document*#1, *Document*#2) = 0

# The text mining context

Document#1: A contruction found in villages and in the suburbs of bigger town, used to house a family. Document#2: A building which main purpose is to provide accomodation to human beings.

#### With a classical approach:

No shared terms between the two documents  $\rightarrow$  Similarity(*Document*#1, *Document*#2) = 0

#### Using a co-similarity approach:

# Clustering of the terms $\rightarrow$ Similarity(Document#1, Document#2) > 0

| Model |                                                    |           |    |
|-------|----------------------------------------------------|-----------|----|
|       | classical Vector Space Mats/words matrix of $r$ ro | · · · · · | ): |
|       | ,                                                  |           |    |

- $\mathbf{m}_{i:} = [m_{i1} \dots m_{ic}]$ : row vector describing document i
- $\mathbf{m}_{:j} = [m_{1j} \dots m_{rj}]$ : column vector describing word j

| ssical Vector Space N<br>words matrix of $r$ ro | Model of Salton (1971 ws and $c$ columns | ): |
|-------------------------------------------------|------------------------------------------|----|

- $\mathbf{m}_{i:} = [m_{i1} \dots m_{ic}]$ : row vector describing document i
- $\mathbf{m}_{:j} = [m_{1j} \dots m_{rj}]$ : column vector describing word j

We want to compute:

- SR: square similarity matrix (documents) of size r, with  $sr_{ij} \in [0, 1]$
- ▶ SC: square similarity matrix (words) of size c, with  $sc_{ij} \in [0, 1]$

| Model |                                                  |     |     |
|-------|--------------------------------------------------|-----|-----|
|       | lassical Vector Space I s/words matrix of $r$ ro | ``` | .): |
|       |                                                  |     |     |

- $\mathbf{m}_{i:} = [m_{i1} \dots m_{ic}]$ : row vector describing document i
- $\mathbf{m}_{:j} = [m_{1j} \dots m_{rj}]$ : column vector describing word j

We want to compute:

- ▶ SR: square similarity matrix (documents) of size r, with  $sr_{ij} \in [0, 1]$
- ▶ SC: square similarity matrix (words) of size c, with  $sc_{ij} \in [0, 1]$

#### Basic Idea

- Two documents are similar if they contain similar words.
- ► Two words are similar if they appear in similar documents.

| Model                       |                        |                      |     |
|-----------------------------|------------------------|----------------------|-----|
| We used the classi          | cal Vector Space N     | lodel of Salton (197 | 1): |
| $\mathbf{M}$ : documents/wo | ords matrix of $r$ rov | vs and $c$ columns   |     |
| . г                         | 1                      |                      |     |

- $\mathbf{m}_{i:} = [m_{i1} \dots m_{ic}]$ : row vector describing document *i*
- $\mathbf{m}_{:j} = [m_{1j} \dots m_{rj}]$ : column vector describing word j

We want to compute:

- SR: square similarity matrix (documents) of size r, with  $sr_{ij} \in [0, 1]$
- ▶ SC: square similarity matrix (words) of size c, with  $sc_{ij} \in [0, 1]$

### Basic Idea

- Two documents are similar if they contain similar words.
- Two words are similar if they appear in similar documents.

### Joint construction of the two similarity matrices ${\bf SR}$ and ${\bf SC}.$

Clément Grimal

#### 1 Motivation

### **2** $\chi$ -SIM improved

3 Experiments

4 Conclusion & Perspectives

## Similarity between two documents

Classical approach: similarity = f(shared words)

$$\operatorname{Sim}(\mathbf{m}_{i:},\mathbf{m}_{j:}) = \operatorname{F}_{\mathrm{s}}(m_{i1},m_{j1}) + \dots + \operatorname{F}_{\mathrm{s}}(m_{ic},m_{jc})$$

with  $F_s$  a similarity function (absolute difference, product, etc.).

| $\chi$ -SIM improved |  |
|----------------------|--|
|                      |  |

### Similarity between two documents

Classical approach: similarity = f(shared words)

$$\operatorname{Sim}(\mathbf{m}_{i:},\mathbf{m}_{j:}) = \operatorname{F}_{\mathrm{s}}(m_{i1},m_{j1}) + \dots + \operatorname{F}_{\mathrm{s}}(m_{ic},m_{jc})$$

with  $\mathrm{F}_{\mathrm{s}}$  a similarity function (absolute difference, product, etc.).

• Using SC (usually, 
$$sc_{ii} = 1$$
):

$$\operatorname{Sim}(\mathbf{m}_{i:}, \mathbf{m}_{j:}) = \sum_{l=1}^{c} \operatorname{F}_{s}(m_{il}, m_{jl}) \times sc_{ll}$$

| $\chi$ -SIM improved |  |
|----------------------|--|
|                      |  |

# Similarity between two documents

Classical approach: similarity = f(shared words)

$$\operatorname{Sim}(\mathbf{m}_{i:},\mathbf{m}_{j:}) = \operatorname{F}_{\mathrm{s}}(m_{i1},m_{j1}) + \dots + \operatorname{F}_{\mathrm{s}}(m_{ic},m_{jc})$$

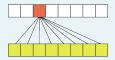
with  $\mathrm{F}_{\mathrm{s}}$  a similarity function (absolute difference, product, etc.).

• Using SC (usually, 
$$sc_{ii} = 1$$
):

$$\operatorname{Sim}(\mathbf{m}_{i:}, \mathbf{m}_{j:}) = \sum_{l=1}^{c} \operatorname{F}_{s}(m_{il}, m_{jl}) \times sc_{ll}$$

Now comparing every pair of words:

$$\operatorname{Sim}(\mathbf{m}_{i:}, \mathbf{m}_{j:}) = \sum_{l=1}^{c} \sum_{n=1}^{c} \operatorname{F}_{s}(m_{il}, m_{jn}) \times sc_{ln}$$



| $\chi$ -SIM improved |  |
|----------------------|--|
|                      |  |

## New approach – Pseudo-norm k

• If  $F_s(m_{ij}, m_{kl}) = m_{ij} \times m_{kl}$ :

 $\operatorname{Sim}(\mathbf{m}_{i:},\mathbf{m}_{j:}) = \mathbf{m}_{i:} \times \mathbf{SC} \times \mathbf{m}_{j:}^{\mathrm{T}}$ 

# New approach - Pseudo-norm k

► If 
$$\mathbf{F}_{\mathbf{s}}(m_{ij}, m_{kl}) = m_{ij} \times m_{kl}$$
:  
 $\operatorname{Sim}(\mathbf{m}_{i:}, \mathbf{m}_{j:}) = \mathbf{m}_{i:} \times \mathbf{SC} \times \mathbf{m}_{j:}^{\mathrm{T}}$ 

▶ We introduce a pseudo-norm k (see [Aggarwal et al.(2001)]):

$$\begin{split} \operatorname{Sim}^{k}(\mathbf{m}_{i:},\mathbf{m}_{j:}) &= \sqrt[k]{(\mathbf{m}_{i:})^{k} \times \mathbf{SC} \times \left(\mathbf{m}_{j:}^{\mathrm{T}}\right)^{k}} = \langle \mathbf{m}_{i:},\mathbf{m}_{j:} \rangle_{\mathbf{SC}}^{k} \\ \end{aligned}$$

$$\forall \text{ we have } \|\mathbf{m}_{i:}\|_{\mathbf{SC}}^{k} &= \sqrt{\langle \mathbf{m}_{i:},\mathbf{m}_{i:} \rangle_{\mathbf{SC}}^{k}} \end{split}$$

## New approach – Pseudo-norm k

• If 
$$\mathbf{F}_{\mathbf{s}}(m_{ij}, m_{kl}) = m_{ij} \times m_{kl}$$
:  
 $\operatorname{Sim}(\mathbf{m}_{i:}, \mathbf{m}_{j:}) = \mathbf{m}_{i:} \times \mathbf{SC} \times \mathbf{m}_{j:}^{\mathrm{T}}$ 

▶ We introduce a pseudo-norm k (see [Aggarwal et al.(2001)]):

$$\begin{split} \operatorname{Sim}^{k}(\mathbf{m}_{i:},\mathbf{m}_{j:}) &= \sqrt[k]{\left(\mathbf{m}_{i:}\right)^{k} \times \mathbf{SC} \times \left(\mathbf{m}_{j:}^{\mathrm{T}}\right)^{k}} = \left\langle \mathbf{m}_{i:},\mathbf{m}_{j:}\right\rangle_{\mathbf{SC}}^{k} \\ & \rightarrow \text{ we have } \|\mathbf{m}_{i:}\|_{\mathbf{SC}}^{k} = \sqrt{\left\langle \mathbf{m}_{i:},\mathbf{m}_{i:}\right\rangle_{\mathbf{SC}}^{k}} \end{split}$$

Then we need to normalize this similarity:

$$sr_{ij} = \frac{\sqrt[k]{(\mathbf{m}_{i:})^k \times \mathbf{SC} \times \left(\mathbf{m}_{j:}^{\mathrm{T}}\right)^k}}{\mathcal{N}(\mathbf{m}_{i:},\mathbf{m}_{j:})} \in [0,1]$$

|              | $\chi$ -SIM improved | Conclusion & Perspectives |
|--------------|----------------------|---------------------------|
| Generic form |                      |                           |

► Now:

$$sr_{ij} = \frac{\sqrt[k]{\left(\mathbf{m}_{i:}\right)^{k} \times \mathbf{SC} \times \left(\mathbf{m}_{j:}^{\mathrm{T}}\right)^{k}}}{\mathcal{N}(\mathbf{m}_{i:},\mathbf{m}_{j:})} = \frac{\left\langle \mathbf{m}_{i:},\mathbf{m}_{j:}\right\rangle_{\mathbf{SC}}^{k}}{\mathcal{N}(\mathbf{m}_{i:},\mathbf{m}_{j:})}$$

|              | $\chi$ -SIM improved | Conclusion & Perspectives |
|--------------|----------------------|---------------------------|
| Generic form |                      |                           |

Now:

$$sr_{ij} = \frac{\sqrt[k]{(\mathbf{m}_{i:})^k \times \mathbf{SC} \times (\mathbf{m}_{j:}^{\mathrm{T}})^k}}{\mathcal{N}(\mathbf{m}_{i:}, \mathbf{m}_{j:})} = \frac{\langle \mathbf{m}_{i:}, \mathbf{m}_{j:} \rangle_{\mathbf{SC}}^k}{\mathcal{N}(\mathbf{m}_{i:}, \mathbf{m}_{j:})}$$

• With special values for k, **SC** and  $\mathcal{N}$ , we have:

- ► Jaccard: **SC** = **I**, k = 1,  $\mathcal{N} = \|\mathbf{m}_{i:}\|_1 + \|\mathbf{m}_{j:}\|_1 \mathbf{m}_{i:}\mathbf{m}_{j:}^{\mathrm{T}}$
- Dice: **SC** = 2**I**, k = 1,  $\mathcal{N} = \|\mathbf{m}_{i:}\|_1 + \|\mathbf{m}_{j:}\|_1$
- "Classical"  $\chi$ -SIM: k = 1,  $\mathcal{N} = |\mathbf{m}_{i:}| \times |\mathbf{m}_{j:}|$
- Generalized Cosine:  $\mathbf{SC} > 0$ , k = 1,  $\mathcal{N} = \|\mathbf{m}_{i:}\|_{\mathbf{SC}} \times \|\mathbf{m}_{j:}\|_{\mathbf{SC}}$

|              | $\chi$ -SIM improved | Conclusion & Perspectives |
|--------------|----------------------|---------------------------|
| Generic form |                      |                           |

Now:

$$sr_{ij} = \frac{\sqrt[k]{(\mathbf{m}_{i:})^k \times \mathbf{SC} \times (\mathbf{m}_{j:}^{\mathrm{T}})^k}}{\mathcal{N}(\mathbf{m}_{i:}, \mathbf{m}_{j:})} = \frac{\langle \mathbf{m}_{i:}, \mathbf{m}_{j:} \rangle_{\mathbf{SC}}^k}{\mathcal{N}(\mathbf{m}_{i:}, \mathbf{m}_{j:})}$$

• With special values for k, **SC** and  $\mathcal{N}$ , we have:

- ► Jaccard: **SC** = **I**, k = 1,  $\mathcal{N} = \|\mathbf{m}_{i:}\|_1 + \|\mathbf{m}_{j:}\|_1 \mathbf{m}_{i:}\mathbf{m}_{j:}^{\mathrm{T}}$
- Dice: **SC** = 2**I**, k = 1,  $\mathcal{N} = \|\mathbf{m}_{i:}\|_1 + \|\mathbf{m}_{j:}\|_1$
- "Classical"  $\chi$ -SIM: k = 1,  $\mathcal{N} = |\mathbf{m}_{i:}| \times |\mathbf{m}_{j:}|$
- Generalized Cosine:  $\mathbf{SC} > 0$ , k = 1,  $\mathcal{N} = \|\mathbf{m}_{i:}\|_{\mathbf{SC}} \times \|\mathbf{m}_{j:}\|_{\mathbf{SC}}$

• 
$$\chi$$
-SIM<sup>k</sup> :  $\mathcal{N} = \|\mathbf{m}_{i:}\|_{\mathbf{SC}}^k \times \|\mathbf{m}_{j:}\|_{\mathbf{SC}}^k$ 

Clément Grimal

| $\chi$ -SIM improved | Conclusion & Perspectives<br>□ |
|----------------------|--------------------------------|
|                      |                                |

# Pruning parameter p

#### In such a corpus...

Many words are not specific enough, and creates a lot of irrelevant similarities. These similarities can be considered as noise.

### Example: Astronomy / Mythology

The word *Hercules* can appear once in an astronomy document, and "link" it to all mythology documents dealing with greek heroes...

| $\chi$ -SIM improved | Conclusion & Perspectives |
|----------------------|---------------------------|
|                      |                           |

# Pruning parameter p

#### In such a corpus...

Many words are not specific enough, and creates a lot of irrelevant similarities. These similarities can be considered as noise.

### Example: Astronomy / Mythology

The word *Hercules* can appear once in an astronomy document, and "link" it to all mythology documents dealing with greek heroes...

#### How to deal with it?

Hypothetis: these irrelevant similarities are small.

 $\rightarrow$  At each iteration, we remove the smallest p% of the similarity matrices.

|              | $\chi$ -SIM improved            | Conclusion & Perspectives |
|--------------|---------------------------------|---------------------------|
| Algorithm fo | r $\chi	ext{-}\mathrm{SIM}_p^k$ |                           |

# 1. ${\bf SR}^{(0)}$ and ${\bf SC}^{(0)}$ are initialized with the identity matrix.



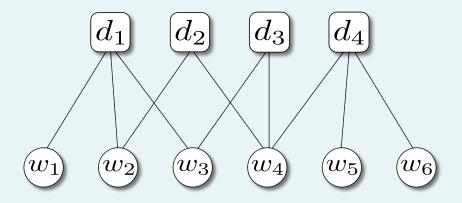
- 1.  ${\bf SR}^{(0)}$  and  ${\bf SC}^{(0)}$  are initialized with the identity matrix.
- 2. At each iteration t, we update both similarity matrices :
  - 3. Update  $\mathbf{SR}^{(t)}$  using  $\mathbf{SC}^{(t-1)}$
  - 4. Prune  $\mathbf{SR}^{(t)}$
  - 5. Update  $\mathbf{SC}^{(t)}$  using  $\mathbf{SR}^{(t-1)}$
  - 6. Prune  $\mathbf{SC}^{(t)}$



- 1.  $\mathbf{SR}^{(0)}$  and  $\mathbf{SC}^{(0)}$  are initialized with the identity matrix.
- 2. At each iteration t, we update both similarity matrices :
  - 3. Update  $\mathbf{SR}^{(t)}$  using  $\mathbf{SC}^{(t-1)}$
  - 4. Prune  $\mathbf{SR}^{(t)}$
  - 5. Update  $\mathbf{SC}^{(t)}$  using  $\mathbf{SR}^{(t-1)}$
  - 6. Prune  $\mathbf{SC}^{(t)}$

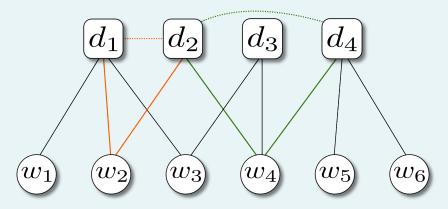
Usually, t = 4 is enough.

Bi-partite graph representing a simple corpus

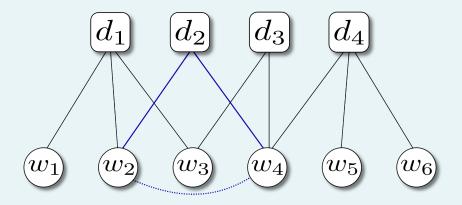


| $\chi$ -SIM improved |  |
|----------------------|--|
|                      |  |

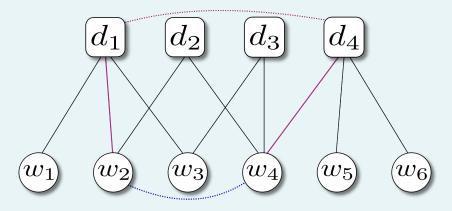
First iteration:  $sr_{12} > 0$  and  $sr_{24} > 0$ , but  $sr_{14} = 0$ 



Second part of the first iteration:  $sc_{24} > 0$ 



Second iteration: through  $sc_{24}$ , now  $sr_{14} > 0$ 







#### 3 Experiments

4 Conclusion & Perspectives

|         | Experiments | Conclusion & Perspectives |
|---------|-------------|---------------------------|
| Methods |             |                           |

#### Five similarity measures

- Cosine
- $\chi$ -SIM (with or without k and p) [Hussain et al.(2010)]
- LSA (Latent Semantic Analysis) [Deerwester et al.(1990)]
- SNOS (Similarity in Non-Orthogonal Space) [Liu et al.(2004)]
- CTK (Commute Time Kernel) [Yen et al.(2009)]
- + Ascendant Hierarchical Clustering, with Ward's index

#### Three co-clustering methods

- ITCC (Information Theoric Co-Clustering) [Dhillon et al.(2003)]
- BVD (Block Value Decomposition) [Long et al.(2005)]
- RSN (k-partite graph partioning algorithm) [Long et al.(2006)]

|  | Experiments |  |
|--|-------------|--|
|  |             |  |

# Methodology and Data

### Methodology

- ▶ We randomly select subsets of documents already labeled
- ▶ We measure the quality of the clusters using the micro-averaged precision

#### The subsets:

| Name | Newsgroups included                                                                                                                                    | #clusters. | #docs. |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|
| M2   | talk.politics.mideast, talk.politics.misc                                                                                                              | 2          | 500    |
| M5   | comp.graphics, rec.motorcycles, rec.sport.baseball, sci.space, talk.politics.mideast                                                                   | 5          | 500    |
| M10  | alt.atheism, comp.sys.mac.hardware, misc.forsale, rec.autos,<br>rec.sport.hockey, sci.crypt, sci.electronics, sci.med, sci.space,<br>talk.politics.gun | 10         | 500    |
| NG1  | rec.sports.baseball, rec.sports.hockey                                                                                                                 | 2          | 400    |
| NG2  | comp.os.ms-windows.misc, comp.windows.x, rec.motorcycles,<br>sci.crypt, sci.space                                                                      | 5          | 1000   |
| NG3  | comp.os.ms-windows.misc, comp.windows.x, misc.forsale,<br>rec.motorcycles, sci.crypt, sci.space, talk.politics.mideast,<br>talk.religion.misc          | 8          | 1600   |

|         | Experiments | Conclusion & Perspectives |
|---------|-------------|---------------------------|
| Results |             |                           |

|        | M2            | M5            | M10           | NG1           | NG2           | NG3           |
|--------|---------------|---------------|---------------|---------------|---------------|---------------|
| Cosine | $0.61\pm0.04$ | $0.54\pm0.08$ | $0.39\pm0.03$ | $0.52\pm0.01$ | $0.60\pm0.05$ | $0.49\pm0.02$ |
| LSA    | $0.79\pm0.09$ | $0.66\pm0.05$ | $0.44\pm0.04$ | $0.56\pm0.05$ | $0.61\pm0.06$ | $0.52\pm0.03$ |
| ITCC   | $0.70\pm0.05$ | $0.54\pm0.05$ | $0.29\pm0.05$ | $0.61\pm0.06$ | $0.44\pm0.08$ | $0.49\pm0.07$ |
| SNOS   | $0.51\pm0.01$ | $0.26\pm0.04$ | $0.20\pm0.02$ | $0.51\pm0.00$ | $0.24\pm0.01$ | $0.22\pm0.02$ |
| СТК    | $0.75\pm0.10$ | $0.78\pm0.04$ | $0.54\pm0.05$ | $0.72\pm0.14$ | $0.66\pm0.06$ | $0.58\pm0.02$ |

|  | Experiments | Conclusion & Perspectives |
|--|-------------|---------------------------|
|  |             |                           |

# Results

|                  | M2            | M5            | M10           | NG1           | NG2           | NG3           |
|------------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Cosine           | $0.61\pm0.04$ | $0.54\pm0.08$ | $0.39\pm0.03$ | $0.52\pm0.01$ | $0.60\pm0.05$ | $0.49\pm0.02$ |
| LSA              | $0.79\pm0.09$ | $0.66\pm0.05$ | $0.44\pm0.04$ | $0.56\pm0.05$ | $0.61\pm0.06$ | $0.52\pm0.03$ |
| ITCC             | $0.70\pm0.05$ | $0.54\pm0.05$ | $0.29\pm0.05$ | $0.61\pm0.06$ | $0.44\pm0.08$ | $0.49\pm0.07$ |
| SNOS             | $0.51\pm0.01$ | $0.26\pm0.04$ | $0.20\pm0.02$ | $0.51\pm0.00$ | $0.24\pm0.01$ | $0.22\pm0.02$ |
| СТК              | $0.75\pm0.10$ | $0.78\pm0.04$ | $0.54\pm0.05$ | $0.72\pm0.14$ | $0.66\pm0.06$ | $0.58\pm0.02$ |
| $\chi$ -SIM      | $0.58\pm0.07$ | $0.62\pm0.12$ | $0.43\pm0.04$ | $0.54\pm0.03$ | $0.60\pm0.12$ | $0.47\pm0.05$ |
| $\chi$ -SIM $_p$ | $0.65\pm0.09$ | $0.68\pm0.06$ | $0.47\pm0.04$ | $0.62\pm0.12$ | $0.63\pm0.14$ | $0.57\pm0.04$ |

| Motivation | Experiments | Conclusion & Perspectives<br>□ |
|------------|-------------|--------------------------------|
|            |             |                                |

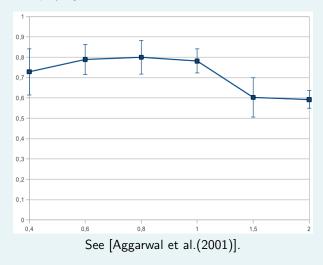
| Results |
|---------|
|---------|

|                        | M2                                  | M5              | M10             | NG1             | NG2             | NG3             |
|------------------------|-------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Cosine                 | $0.61\pm0.04$                       | $0.54\pm0.08$   | $0.39\pm0.03$   | $0.52\pm0.01$   | $0.60\pm0.05$   | $0.49\pm0.02$   |
| LSA                    | $0.79\pm0.09$                       | $0.66\pm0.05$   | $0.44\pm0.04$   | $0.56\pm0.05$   | $0.61\pm0.06$   | $0.52\pm0.03$   |
| ITCC                   | $0.70\pm0.05$                       | $0.54\pm0.05$   | $0.29\pm0.05$   | $0.61\pm0.06$   | $0.44\pm0.08$   | $0.49\pm0.07$   |
| SNOS                   | $0.51\pm0.01$                       | $0.26\pm0.04$   | $0.20\pm0.02$   | $0.51\pm0.00$   | $0.24\pm0.01$   | $0.22\pm0.02$   |
| СТК                    | $0.75\pm0.10$                       | $0.78\pm0.04$   | $0.54\pm0.05$   | $0.72\pm0.14$   | $0.66\pm0.06$   | $0.58\pm0.02$   |
| $\chi$ -SIM            | $0.58\pm0.07$                       | $0.62\pm0.12$   | $0.43\pm0.04$   | $0.54\pm0.03$   | $0.60\pm0.12$   | $0.47\pm0.05$   |
| $\chi$ -SIM $_p$       | $0.65\pm0.09$                       | $0.68\pm0.06$   | $0.47\pm0.04$   | $0.62\pm0.12$   | $0.63\pm0.14$   | $0.57\pm0.04$   |
| $\chi$ -SIM $_p^{0.8}$ | <sup>8</sup> <b>0.81</b> $\pm$ 0.10 | $0.79 \pm 0.05$ | $0.55 \pm 0.04$ | $0.81 \pm 0.02$ | $0.72 \pm 0.02$ | $0.64 \pm 0.04$ |

More results in the paper...

|                  | Experiments |  |
|------------------|-------------|--|
| Influence of $k$ |             |  |

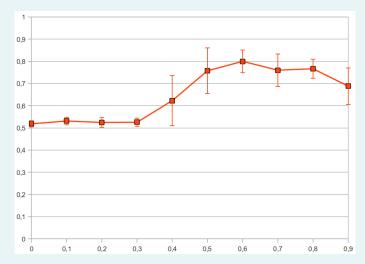
#### Tests on NG1, displaying the standard deviation over the 10 folds as error bars.



Clément Grimal

|              |                | Experiments |  |
|--------------|----------------|-------------|--|
| Influence of | $\overline{n}$ |             |  |

Tests on NG1, displaying the standard deviation over the 10 folds as error bars.



# Conclusion & Perspectives

### Improvements of $\chi$ -SIM

- Exploration of different normed spaces (k)
- Pruning of the similarity matrices (p)
- Very good experimental results

# Conclusion & Perspectives

### Improvements of $\chi$ -SIM

- Exploration of different normed spaces (k)
- Pruning of the similarity matrices (p)
- Very good experimental results

### Perspectives

- ► Use a damping factor to decrease the weight of higher order co-occurences
- $\blacktriangleright$  Automatically find the best values for k and p
- Results are good, but a better theoritical understanding is needed
- $\blacktriangleright$  Use the  $\chi\text{-}\mathrm{SIM}$  similarity matrices as input for the kernel-based algorithms used with CTK

# Thank you very much!

Any questions?

### References

- S. Deerwester, S. T. Dumais, G. W. Furnas, Thomas, and R. Harshman. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41:391–407, 1990.
- I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In Proceedings of the 9<sup>th</sup> ACM SIGKDD, pages 89–98, 2003.
  - S. F. Hussain, C. Grimal, and G. Bisson. An improved co-similarity measure for document clustering. In *Proceedings of the 9<sup>th</sup> ICMLA*, 2010.
  - N. Liu, B. Zhang, J. Yan, Q. Yang, S. Yan, Z. Chen, F. Bai, and W. ying Ma. Learning similarity measures in non-orthogonal space. In *Proceedings of the 13<sup>th</sup> ACM CIKM*, pages 334–341. ACM Press, 2004.

- B. Long, Z. M. Zhang, and P. S. Yu. Co-clustering by block value decomposition. In *Proceedings of the* 11<sup>th</sup> ACM SIGKDD, pages 635–640, New York, NY, USA, 2005. ACM.
- B. Long, Z. M. Zhang, X. Wú, and P. S. Yu. Spectral clustering for multi-type relational data. In *Proceedings of the 23<sup>rd</sup> ICML*, pages 585–592, New York, NY, USA, 2006. ACM.
- L. Yen, F. Fouss, C. Decaestecker, P. Francq, and M. Saerens. Graph nodes clustering with the sigmoid commute-time kernel: A comparative study. *Data Knowl. Eng.*, 68(3):338–361, 2009.
- C. C. Aggarwal and A. Hinneburg, and D. A. Keim. On the Surprising Behavior of Distance Metrics in High Dimensional Space. *Lecture Notes in Computer Science*, 420–434, 2001.

|  | Conclusion & Perspectives |
|--|---------------------------|
|  |                           |
|  |                           |

# Parameter k

### The generalized $\chi$ -SIM

$$\forall i, j \in 1..r, \ sr_{ij} = \frac{\operatorname{Sim}^{k}(\mathbf{m}_{i:}, \mathbf{m}_{j:})}{\sqrt{\operatorname{Sim}^{k}(\mathbf{m}_{i:}, \mathbf{m}_{i:})} \times \sqrt{\operatorname{Sim}^{k}(\mathbf{m}_{j:}, \mathbf{m}_{j:})}}$$
$$\forall i, j \in 1..c, \ sc_{ij} = \frac{\operatorname{Sim}^{k}(\mathbf{m}_{:i}, \mathbf{m}_{:j})}{\sqrt{\operatorname{Sim}^{k}(\mathbf{m}_{:i}, \mathbf{m}_{:i})} \times \sqrt{\operatorname{Sim}^{k}(\mathbf{m}_{:j}, \mathbf{m}_{:j})}}$$

For k = 1, **SR** and **SC** are not positive semi-definite...

We are not defining an inner product so it is not a generalized cosine measure...