Learning with a collection of matrices, and tensors

Clément Grimal (LIG PhD student)

7th January, 2010

Supervisors: Éric Gaussier and Gilles Bisson

Outline

The clustering problem Existing solutions Proposed solutions for multi-type co-clustering

The clustering problem

- Dyadic co-clustering
- Multi-way co-clustering
 - Multi-type co-clustering
 - High-order co-clustering

2 Existing solutions

- Solutions for multi-type co-clustering
- Solutions for high-order co-clustering

Opposed solutions for multi-type co-clustering

- Chain
- Alternate
- Merge
- Few results

Dyadic co-clustering Multi-way co-clustering

Dyadic co-clustering

Classical problem

2 types of objects linked by a simple relationship:

Classical representation

A co-occurrences matrix:

Dyadic co-clustering Multi-way co-clustering

Multiple interrelated types of objects

How can we co-cluster multiple types of data objects?

- How are they linked to each others?
- How can we build a model to represent their relationships?

Dyadic co-clustering Multi-way co-clustering

Multi-type co-clustering

Example

3 types of objects linked by pairwise relationships:

Dyadic co-clustering Multi-way co-clustering

Multi-type co-clustering

Representations

A set of co-occurrences matrices (one for each relationship)

or a *n*-partite graph

Dyadic co-clustering Multi-way co-clustering

High-order co-clustering

Going further...

What if the 3 types of objects are linked by a triadic relationship?

Example

Viewers are giving feedback on the performance of actors in different movies.

Dyadic co-clustering Multi-way co-clustering

High-order co-clustering

Representations

A n-way tensor

or an hyper-graph.

Solutions for multi-type co-clustering Solutions for high-order co-clustering

Solutions for multi-type co-clustering

List of solutions

- Multi-Latent Semantic Analysis (MLSA)
- Relational Summary Network (RSN)
- Multi-way Distributional Clustering (MDC)
- Linked Matrix Factorization (LMF)
- Spectral clustering on Multi-type relational data
- Multi-way Relation Graph Clustering (MRGC)

Solutions for multi-type co-clustering Solutions for high-order co-clustering

Linked Matrix Factorization

From...

W. Tang, Z. Lu, and I. S. Dhillon, Clustering with Multiple Graphs, to appear in Proceedings of the IEEE International Conference on Data Mining (ICDM), December 2009.

Problem

How to combine information coming from different sources?

Solutions for multi-type co-clustering Solutions for high-order co-clustering

Linked Matrix Factorization

Model

 $A \approx P \Lambda P^T$ where P is an $N \times d$ matrix and Λ is a $d \times d$ symmetric matrix.

$$\mathcal{G} = \frac{1}{2} \sum_{m=1}^{M} \| \mathcal{A}^{(m)} - \mathcal{P} \Lambda^{(m)} \mathcal{P}^{\mathsf{T}} \|_{\mathsf{F}}^{2} + \dots$$

Finally find the clusters with P.

Solutions for multi-type co-clustering Solutions for high-order co-clustering

Solutions for high-order co-clustering

List of solutions

- Tensorial Probabilistic Latent Semantic Analysis (T-PLSA)
- Non-negative tensor factorization
- Hyper-graph partitioning
- Multi-way clustering using Bregman divergence

Chain Alternate Merge Few results

χ -Sim algorithm

Principle

From a co-occurrences matrix, computes the rows and the columns similarities. Then, perform a clustering algorithm on both similarity matrices.

How can we use for multi-type (or high-order) co-clustering?

Outline	Chain
The clustering problem	Alternate
Existing solutions	Merge
Proposed solutions for multi-type co-clustering	Few results

Chain

Principle

Compute the similarity matrix from a first data matrix, and use it to initialize the algorithm with a second matrix.

Problems

- How do we choose the order of the matrices?
- How many matrices do we use?
- How many iterations do we perform for each matrix?

Clément Grimal (LIG PhD student) Learning with a collection of matrices, and tensors

Chain Alternate Merge Few results

Alternate

Principle

Similar to the previous one, but performing only one iteration on a matrix.

Few results

Merge

Principle

Compute the similarity matrices from several data matrices, and merge them before performing the clustering algorithm on it.

How do we merge? (average, min, max...)

Outline	Chain
The clustering problem	Alternate
Existing solutions	Merge
Proposed solutions for multi-type co-clustering	Few results

Few results

Using only one matrix

	M_1	M_2
1 iteration	31,6 %	26,8 %
2 iterations	31,2 %	40,9 %

Chain

	$M_1 ightarrow M_2$
1 iteration - 1 iteration	37,6 %
1 iteration - 2 iterations	40,5 %

Merge

	$min_merge(M_1, M_2)$	$max_merge(M_1, M_2)$
1 iteration - 1 iteration	50,2 %	31,2 %