Meca: A Tool for Access Control Models

Amal Haddad

LSR-IMAG, Grenoble, France
Amal .Haddad@imag.fr

1 Introduction of Meca

Access Control is a technique which insures security by preserving confidentiality
and integrity of information. Meca (Models for access control) is a tool which
generates, in a B machine, operational conditions that should be verified by an
application to insure security.

The inputs of Meca are a B machine offering a format for presenting a security
model and a functional model containing the presentation of an application with
its sensitive entities like variables and operations. The format of a security model
provides a declarative representation of the access distribution in the system at
a given moment. It is done according to various models related to three branches
policies: discretionary policies model (DAC)[4], Bell and LaPadula model (BLP)
[1], Biba model (Biba) [2] and role based access control model (RBAC) [3]. Meca
generates access rules in a B machine called security kernel. Security kernel
offers secure services under witch sensitive entities of functional model can be
manipulated. The format of the security kernel varies depending of the security
policy model type.

In access control scope, Objects are passive entities that represent system
resources and should be protected. Subjects are active entities accessing to ob-
jects and possessing rights to manipulate them. Figure 1 presents Meca with his
inputs and outputs components.

We illustrate our approach and Meca with a small part of a bank card
example.

Format
for DAC

Policies format: Security

Specification and kernel:

Format instanciation of a
for BLP security policy

Format
for Biba

Format

Operations
that
manipulate
security
targets with
conditions to
verify the
security
policy

for RBAC

Fig.1. MECA schema

J. Julliand and O. Kouchnarenko (Eds.): B 2006, LNCS 4355, pp. 281-[284] 2006.
© Springer-Verlag Berlin Heidelberg 2006

282 A. Haddad

2 Use Case and the Functional Model

The bank card is a smart card with an electronic purse. As the other smart
cards [5], the purse can be debited from a terminal in a shop to pay a purchase
and credited at an ATM from a cash or by withdrawing from a bank account.
There are three different hierarchical levels to operate the purse: debiting the
purse, crediting the purse from cash or from a bank account and performing
administrative operations. With these three access levels correspond three kind
of terminals from which the purse can be manipulated: a terminal in a shop for
debiting the purse, a bank terminal for crediting the purse and an administration
terminal for updating configuration parameters. We note that any operation
allowed on a specific level is allowed on lower levels.

During its life cycle, the card passes through different operating modes load,
use or invalid. When the card is in the load mode, its issuer (the bank) records
the holder pin code (hpc). We present the specification of SetHPC operation in
the functional model:

MACHINE BankCard
SETS
MODE={load,invalid,use}
CONSTANTS
HPC
PROPERTIES
HPC = 0000 .. 9999 /*pin has four digits*/
ABSTRACT_VARIABLES
mode,hpc
INVARIANT
mode € MODE A hpc € HPC /*variable hpc is typed in the invariant®/
INITTIALISATION
hpe :=1000 || mode:= load
OPERATIONS
setHPC(pin) =
PRE
pin € INT A pin € HPC A mode=load
THEN
hpc := pin
END
END

Thereafter, we present the second entry component for Meca, it is the format
for the security model.

3 Policies Format

As a part of our work, we deal with three models of security policies: The ac-
cess matrix model (belonging to DAC policies), Bell Lapadula model (BLP), Biba
model (belonging to MAC policies) and Role Based Model (RBAC). We will give

Meca: A Tool for Access Control Models 283

a short definition about each of these policies. In the scope of discretionary poli-
cies (DAC), access control on objects is granted to their creator. Access permis-
sions are read and write [4]. Mandatory policies (MAC) provide a classification for
subjects and objects. According to this classification, read and write operations
are allowed to preserve secrecy (BLP model) [I] or integrity of information (Biba
model) [2]. The originality of role based access control policies (RBAC) is that they
introduce role concept that intercepts permissions, subjects and objects [3]. Per-
missions are granted to roles. Subjects obtain permissions according to roles that
they hold. Permissions are operations that could be executed on objects. Roles
inherit between each others permissions and users [6]. We will give a detailed ac-
count of RBAC instanciated with bank card example. The aim is to safeguard
security when the card is manipulated from various terminals.

MACHINE rbac_format_BankCard
SETS
SUJET ={shop_terminal,bank_terminal,admin_terminal};
ROLE ={debit,credit,admin };
PERMISSION ={OP_ checkHPC,OP_setHPC ,OP_ debitPurse,
OP_creditPurse}
CONSTANTS
sujet_role, role_permission, herite_de
PROPERTIES
sujet_role € SUJET — ROLE
A role_permission € ROLE «— PERMISSION
A herite_de € ROLE — ROLE
A closurel (herite_de) N id (ROLE) =
A sujet_role = {(shop_terminal — debit),
(bank_terminal — credit),(admin_terminal — admin)}
A role_permission = {(admin — OP_setHPC),
(credit — OP_creditPurse),(debit — OP_debitPurse),
(debit — OP_checkHPC)}
A herite_de = {(admin — credit),(credit — debit)}
END

The entities represented in bold are fixed by Meca format while those in simple
depend on the application. A commentary introduced in the header component
announces for Meca the security model used.

The set PERMISSION refers to operations of the application. Subjects are
terminals. Roles are various levels that exist. The relation sujet_role is the associ-
ation between a subject and a role. In this example we suppose that a subject can
have only one role. Role_permission is the association between a role and one or
several permissions. The hierarchy is presented by the relation called herite_de.
We use constants to present these sets since we don "t deal with updating access
distribution. The prefix OP_ is used for operations in order to avoid names clash
with functional component.

284 A. Haddad

4 The Generated Security Kernel

The security kernel is the component that contains conditions that should be
verified to insure the respect of security. This kernel is produced according to
access rules that govern each model type of security policy. Thereafter, we present
security kernel for RBAC format.
Meca generates for every operation, that belongs to set PERMISSION of
RBAC format, a new predicate to control access. SetHPC operation becomes:
setHPC (pin,su)=
PRE
pin € INT A pin € HPC A mode=invalid
A su € SUJET
A (sujet_role(su), OP_setHPC):(closure(herite_de);
role_permission)
THEN
hpc := pin
END
This mechanism reinforces the precondition of each operation that should be
performed by a specific role. The generated component should be used instead
of the old functional model. Hence, whenever SetHPC is called its precondition
should be satisfied.

5 Contribution and Future Works

Our contribution is materialised by the approach to introduce security in the de-
velopment of certified products. The security kernel could be used in the scope
of a static verification (by B proofs) to reason about the security of an applica-
tion. In a sooner future work, we will exploit the use of the security kernel for a
validation with tests. In the scope of Meca, we formalize also model for security
policies. We are now interested to develop object oriented security models and
to formalize it in the B method. This is done in the scope of POSE project
(http:/wwwrntl-pose.info/).

References

1. D. E. Bell and L. J. Lapadula. Secure computer systems: A mathematical model.
Technical report esd-tr-278, vol. 2, The Mitre Corporation, Bedford, 1973.

2. K. J. Biba. Integrity considerations for secure computer systems. Technical report
tr-3153, The Mitre Corporation, Bedford, 1997.

3. D. F. Ferraiolo and D. R. Kuhn. Role based access control. In 15th National
Computer Security Conference, 1992.

4. Butler W. Lampson. Protection. In 5th Princeton Symposium on Information
Science and Systems, pages 437—443, 1971.

5. Renaud Marlet and Cédric Mesnil. A demonstrative electronic purse -Card
specification-. pages 1-53, 2002.

6. R.S. Sandhu. Role hierarchies and constraints for lattice-bases access controls. Lec-
ture Notes in Computer Science, 1146:65-79, 1996.

	Introduction of Meca
	Use Case and the Functional Model
	Policies Format
	The Generated Security Kernel
	Contribution and Future Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

