
Computer Networks – Practical session #4
Transport protocols: UDP and TCP

M1 MOSIG

April 2022

In this practical session, you will learn in details about layer 4 of the Internet pro-
tocol stack, namely transport. The two most common transport protocols are UDP and
TCP, which we will study thanks to the socklab software. The focus will be on the
programming interface that allows applications to use UDP and TCP, called the sockets
interface.

Don’t forget to send your report to your teacher at the end of the
practical session! You can send one report for each group. Don’t
forget to mention the name of the other person in the group.

1 Introduction
In this lab, you will work in groups of two persons, each with a FreeBSD computer.

The computers can simply stay attached to the ENSIMAG network (i.e. there is no need
to manually connect them together with a switch).

You will need the socklab program to open UDP/TCP connections and send data,
and Wireshark to analyse the network traffic. Both are pre-installed on your FreeBSD
computers.

2 First steps with socklab

2.1 About socklab and the sockets API
The sockets API is a standard interface that allows programs to make use of a com-

munication network. It originates from the BSD systems, and has been designed so that
network communication looks like reading and writing to a file.

More precisely, programs use the sockets API to interact with the transport layer of a
network. Two types of services are defined: connection-oriented (often implemented with
TCP) and datagram-oriented (often implemented with UDP). You will see the difference
in details during this practical session.

1

socklab is an interactive program that allows to manipulate this API without having
to write C code. That is, using a shell-like interface, you can interactively create com-
munication endpoints (sockets), connect them to a remote host, send and receive data,
and so on.

2.2 socklab tutorial
All manipulations must be done between a pair of computers.
First, you will learn how to use socklab with a simple case based on UDP.

+ On each computer, launch socklab in UDP mode:

socklab udp

+ Create an UDP socket on each computer:

socklab-UDP> socket

These two sockets will be used to exchange data between two computers.

+ Write down the port port number returned by the socket creation: together with the
IP address of your computer, it uniquely identifies the communication socket you
just created.

+ On one of the computers, send a packet of data to the other computer. You must
specify the host name and port number of the destination computer. Here, the
hostname can simply be the DNS name of the remote machine (ensipcXXX), but you
could also specify an IP address directly.

socklab-UDP> sendto 3 <hostname> <port number>

You must then type a string that will be transmitted to the destination.

Note: all socklab commands like sendto can be used without any arguments. In this
case, you will be prompted for the necessary arguments. This can be helpful if you don’t
remember how to use a command!

+ Send another UDP message by just calling sendto without arguments. For the “Id.
socket”, keep the default value by just pressing Enter.

You will now receive the messages on the other computer, using the recvfrom com-
mand.

+ On the other computer, use the help command to understand about the usage of
the recvfrom command.

2

Note: you can also use the help command without argument to list all available com-
mands.

+ Use recvfrom to receive data from the UDP socket.

+ Use the status command (shorthand: =) to display the state of your sockets.

Q 1 — What is the value of the column RWX for your UDP socket on each computer?

This column indicates whether the socket is ready for Reading and/or Writing. The
X column indicates an exception and is rarely used.

Q 2 — What is the value of the column RWX after you have received all pending messages?

3 Analysis of the UDP protocol
Reminder: UDP is a datagram-oriented protocol, without any guarantee about suc-
cessful delivery and ordering of datagrams.

+ Start a packet capture with Wireshark. You can filter on the IP address of the remote
computer so that you will only see the network packets generated by socklab.

+ Send a UDP message from one computer, and then read it on the other computer.

Q 3 — When is the message actually transmitted over the network: when you call sendto
on the transmitting computer, or when you call recvfrom on the receiving computer?
What can you deduce about message buffering, i.e. where are messages stored if they are
not read immediately?

+ Perform transmission and reception of messages in various situations to understand
how UDP works. Note that the same socket can be used both for transmission and
for reception. You can experiment with the following variants:

• try to receive data on a socket before sending a message towards it;

• transmit several messages before trying to receive them on the remote socket; also
try with mrecvfrom;

• transmit simultaneously from both sockets to the other, and then try to receive
from both sockets;

• observe what happens when you try to read less/more bytes than what was trans-
mitted;

• send a message to a computer that is physically unplugged from the network (or
whose network interface has been brought down with ifconfig);

• send several large messages before trying to receive them on the remote socket
(for instance, send several messages of 9000 bytes each, using the syntax described
below).

3

Note: to send large messages, you can use the following syntax for the message content:
#42 (this will send a message with 42 bytes).

Q 4 — Based on your observations, write a summary of the behavior of UDP. In par-
ticular, give details:

1. on which functions can “block” (i.e. not return immediately) and in which condi-
tions;

2. on the reliability of message delivery;

3. on error reporting between sender and receiver;

4. on the buffering mechanism.

4 The TCP protocol
Reminder: TCP is a connection-oriented protocol, that guarantees reliable communi-
cation as a byte flow between two networked programs.

4.1 TCP basics

+ Run socklab in TCP mode on both computers:

socklab tcp

+ On the first computer, use the passive command to create a socket that will accept
connections (“server” mode). Write down the port number.

+ Try to accept a new connection on this socket:

socklab-TCP> accept 3

Q 5 — What happens?

+ On the second computer, create a socket and connect it to the passive socket of the
first computer. To do this:

socklab-TCP> connect <hostname> <port number>

Q 6 — What happens on the first computer once the connection is established? How
many sockets are now present on the first computer?

Q 7 — What is the role of the passive socket? By looking at the RWX flags of this passive
socket, do you think you can use this socket to communicate with another computer?

4

4.2 Multiple connections

+ Run accept a second time on the first computer.

+ On the second computer, open a new TCP connection towards the first computer,
on the same TCP port as before.

Q 8 — How many sockets are there on the first computer now? And on the second
computer?

+ Start a packet capture.

+ On the second computer, send a message on one of the sockets.

Q 9 — On the first computer, which socket is now ready to read? Could you have guessed
by just looking at the addresses and ports shown by the status command?

Q 10 — Look at the packet capture: could you have guessed the right socket by just
looking at information contained in the packets? If yes, how?

Q 11 — Based on the previous questions, how would you precisely define a “TCP con-
nection”? That is, what distinguishes two different TCP connections from one another?

Q 12 — Conclude: why would a program need to use several TCP sockets? What is the
difference with UDP?

4.3 Connection establishment

+ Capture and analyse the packets used to open a new TCP connection.

Q 13 — Draw a temporal diagram to explain the different types of message involved in
opening a TCP connection. Make sure to mention the TCP flags present in each message.

Q 14 — What is the role of the syn flag?

Q 15 — What TCP fields are exchanged between the client and the server during the
connection initialisation?

4.4 Connection termination

+ Close one of the connections you have opened:

socklab-TCP> close

Q 16 — Is the connection closed on both computers? What should you do to properly
close the connection?

5

+ Capture and analyse the packets involved in a connection termination.

Q 17 — Describe the steps of the connection termination, in each direction. Make sure
to describe the TCP flags present in each packet. What is the role of the fin flag?

Q 18 — Summary: draw a simple TCP state machine for a passive socket, and for an
active socket. See Figure 1 for an example.

socket
created

Initially

wait for
response

Socket

connect/SYN transmission

SYN-ACK reception

…
…/…

Figure 1: State machine example

4.5 Sequencing and error control

+ Start a packet capture.

+ Establish a TCP connection between the two computers, and exchange some data
using the read and write commands.

Note: don’t forget that you can use #1337 as message to send 1337 bytes without typing
them manually. . .

Q 19 — Do you only see packets going from the sender to the receiver, or are there
packets in both directions? What is the size of each packet?

+ Analyse the details of each packet generated by your exchange. Pay particular at-
tention to the sequence number and ack number fields of the TCP header.

Q 20 — How does the sequence number changes from one TCP packet to the next?
Is there a difference depending on which direction the packet is going? Explain the role
of the sequence number.

Q 21 — Same question for the ack number.

+ Unplug one of the computers from the network and try to send some data. Using
Wireshark, observe what packets are generated in this case.

6

Q 22 — What happens?

+ Connect the computer back to the network.

Q 23 — Can you now read the data that was sent while the computer was disconnected?

Q 24 — Explain in details the mechanism used to ensure reliability in case of packet
loss. In particular, compare with UDP.

4.6 Flow control

+ Open a TCP connection, and send a large amount of data through the connection
(70000 bytes, or more if needed).

Q 25 — What happens? Compare with UDP.

+ Perform several successive read at the receiver (1 byte, then 100 bytes, then 5000
bytes, and so on). Observe the packets exchanged while doing this.

Q 26 — Based in particular on the window field of the TCP header, explain how flow
control works.

5 IP fragmentation
We will now take a look at the IP fragmentation mechanism.
IP fragmentation is used when an IP packet is too large to be transmitted as is through

the link layer (an Ethernet link cannot deal with packets longer than 1518 bytes, Ethernet
header and CRC included). Several small fragments must be created.

When a packet is sent fragmented, it must be reassembled by the receiver (at the IP
layer). If the destination does not support re-assembly, fragmentation must be forbidden
(with the flag df (Don’t Fragment) in the IP header). When this flag is set, fragmentation
is forbidden, and it could thus happen that delivery is impossible if the packet is too large.

+ Start a packet capture, and send a UDP message of 4600 bytes on a UDP socket.

Q 27 — Analyse the packets generated on the network. In particular, look at the IP
headers and explain the role of the fields total length, fragment offset, and the flag
MF (More Fragments).

+ Repeat this manipulation with longer packets (if necessary). Repeat the same oper-
ations with TCP.

Q 28 — What can you conclude?

7

	Introduction
	Communication
	Choosing a computer
	Remote access: VPN
	Remote access: SSH
	Running packet capture remotely

	First steps with socklab
	About socklab and the sockets API
	socklab tutorial

	Analysis of the UDP protocol
	The TCP protocol
	TCP basics
	Multiple connections
	Connection establishment
	Connection termination
	Sequencing and error control
	Flow control

	IP fragmentation

