
TCP
Transport Control Protocol

Martin Heusse



MoSIG — 2

TCP is for transferring files

Application Application

Buffer 
(output) Buffer 

(input)

Buffer 
(input) Buffer 

(output)

Window

Socket (think “file”) Socket

Buffer 
(requests)

Passive 
Socket

No messages, 
only bytes

➀ ➁



MoSIG — 3

TCP is a reliable transport protocol

Source Port Dest. Port
Multiplexing

Sequence number

ACK seq. number
Reliability

Data 
offset

syn, ack, fin, 
rst, psh, urg

TCP header 
length
(4 bits)

Window Flow control

Checksum (header + data) Urgent pointer

Option Padding

Used only if 
URG flag is set

For example : MSS (only in SYN packets)
Or : RTTM : timestamp for RTT estimation

Flags



MoSIG — 4

Connection establishment/tear-down

• 3 way handshake (connect)
✓ On server side, a passive socket waits for a connection
✓ SYN – SYN-ACK –ACK
✓ On server side, an active socket is created

• Connection tear-down
✓ Fin – ACK / Fin – ACK
✓ Reading from a closed connection: first receive 0 byte, then

error



MoSIG — 5

Connection establishment/tear-down

socket

connect(sockaddr)

write

read

socket

bind(sockaddr)

listen

read

write

accept

Connection establishment

Data exchange

close

Connection close

close

Non blocking calls

Blocking calls (potientialy)

client

serveur

bind(sockaddr)

optional

New socket



MoSIG — 6

Connection establishment/tear-down
(cont.)

SYN, seq=x
syn_sent

SYN seq=y, ack=x+1

ack=y+1established
established

snc_rcvd

listen

FIN, seq=u

ack=v+1

ack=u+1

FIN seq=v
fin_wait_2

time_wait

close_wait

last_ack

closed

application 
active open

passive open

application close:

active close
fin_wait_1



MoSIG — 7

Side note: UDP communication

• Compare with previous slides…

socket

sendto(sockaddr)

recvfrom(sockaddr)

socket

bind(sockaddr)

recvfrom(sockaddr)

sendto(sockaddr)

Data exchange

close

Socket close

close

Non blocking calls

Blocking calls (potientialy)

client serveur

bind(sockaddr)



MoSIG — 8

TCP acks

• The ACK tells the next expected seq number

• ACKs are cumulative
• Timeout triggers loss recovery

✓ Or duplicate ACKS (see fast retransmit below)
✓ Need to use a proper timeout value

• Delayed ACK mechanism (up to 500ms!)
✓ Leave time to the application to answer
✓ At least one ACK every other received segment

• Nagle Algorithm
✓ No more than one unacknowledged short packet
✓ ⇒ More efficient network usage

…might be a problem
 Can be turned on/off with the NO_DELAY socket option.



MoSIG — 9

TCP Retransmission Timeout RTO

• Too short→ spurious retransmissions

• Too long is not good either

• each time a new measurement is available:
EstimatedRTT← (1− x)× EstimatedRTT+ x× measuredRTT
x = 1/8
 (+ similar formula for estimating standard deviation)�� ��RTO← EstimatedRTT+ 4× EstimatedStdDev

or 200ms (or 1s on some systems) if RTO is below this!!!



MoSIG — 10

TCP sliding window

• TCP allows to send cwnd (congestion window) unacknowledged
bytes

• cwnd always smaller than WIN field (buffer size at receiver)(flow
control)

• cwnd changes over the connection life : slow start, then
congestion avoidance



MoSIG — 11

Silly window syndrome

• If the data consumer reads byte by byte in the reception buffer 
  This (would) cause(s) sending of ACKs with WIN=1
→ small segments…

• Solutions:
✓ At the receiver: advertise a non-null window only if an entire

MSS would fit
✓ At the sender: delay sending small packets.



MoSIG — 12

TCP congestion control

• Avoids receiver buffer saturation (WIN)

• Adapt sending rate to network capacity
Segment losses signal that a saturation occured

• Fair resource sharing

• 2 (3) states:
1. Slow start
2. Congestion avoidance
3. (Fast recovery)



MoSIG — 13

slow start

• Double cwnd each RTT

• Increase cwnd by one MSS upon ACK reception

1 2 3 4  5 6 7 8cwnd :

1 1
2
3

2
3

4

5



MoSIG — 14

Congestion avoidance
• When cwnd reaches ssthresh (twnd on figure below), linear
increase of cwnd in time (instead of exponential)

• The update still takes place upon reception of an ACK:

cwnd← cwnd+
MSS×MSS

cwnd

 The sender sends ≈ cwnd
MSS segments per RTT, so that the cwnd

will grow by ≈ 1 MSS/RTT

Tahoe example: (slow start after each loss; ssthresh = 1
2 inflight)



MoSIG — 15

TCP Reno – Fast recovery

S1S2 S3 S4 S5

A1

S6

Fast retransmit

S2 S8
4 5

5/2+3
3 5,5 6,5

S7
2,5

A6

A1 A1 A1 A1 A6 A7

cwnd : 2,5+x
S9

• No slow start phase!

• The window is halved + 3 MSS to account for the received dup
acks; For each new duplicate: cwnd+=MSS (window inflate)

• New Reno: deals better with multiple losses in same congestion
period…



MoSIG — 16

Why is TCP fair??

Two connections share the same buffer,
  their throughputs are x1 and x2

1. Additive	increase
2. Multiplicative	decrease
3. Additive	increase
4. Multiplicative	decrease

x1

x2 x1 = x2

1

C

2
3

4


