TCP
Transport Control Protocol

Martin Heusse

TCP is for transferring files

Application Application

ﬁ Socket (think “file™) ®ﬁ Passive 1l @Sockel

Socket

Buffer Window
Buffer
(input)

(output)

No messages,
only bytes

MoSIG —2

TCP is a reliable transport protocol

<« Multiplexing
Source Port Dest. Port

Sequence number

1= Reliability

Flags i ACK seq. number
\ .

TCP head Data syn, ack, fin, . Fl trol
Ien;tah e offset rst, psh, urg Window | ow contro
(4 bits) .

Checksum (header + data) Urgent pointer le— Usedonlyif
URG flag is set
Option Padding

For example : MSS (only in SYN packets)
Or : RTTM : timestamp for RTT estimation

MoSIG — 3

Connection establishment/tear-down

* 3 way handshake (connect)
v On server side, a passive socket waits for a connection
v SYN - SYN-ACK -ACK
v On server side, an active socket is created

* Connection tear-down

v Fin — ACK / Fin — ACK
v Reading from a closed connection: first receive 0 byte, then
error

MoSIG — 4

Connection establishment/tear-down

[C__] Non blocking calls ‘ serveur

[Blocking calls (potientialy)
client

bind (sockaddr)
listen
Sptonal

7777777777777777 Connection establishment - --4-----------

connect (sockaddz) |

accept

MoSIG — 5

Connection establishment/tear-down

application
active open

(cont.)

passive open

established)| |

active close <

in_wait_1|-.

Fh h
|
|

-

SYN, seqg=x
SYN seg=y, ack=x+1l
ack=y+1
_lestablished
FIN, seg=u
[e10se_waid]
ack=u+l
- ap plication close:
last_ack
ack=v+1
[cTosed

MoSIG — 6

Side note: UDP communication

» Compare with previous slides...

[Non blocking calls
[Blocking cals (potientialy)

client serveur

bind (sockaddr) bind (sockaddr)

sendto (sockaddr) | .

*»| recvfrom(sockaddr)
....| sendto (sockaddr)
recvfrom(sockaddr)
————————————————— Socket close

|:|close

MoSIG — 7

TCP acks

The ACK tells the next expected seq number
ACKs are cumulative

Timeout triggers loss recovery
v Or duplicate ACKS (see fast retransmit below)
v Need to use a proper timeout value
Delayed ACK mechanism (up to 500ms!)
v Leave time to the application to answer
v At least one ACK every other received segment
Nagle Algorithm

v No more than one unacknowledged short packet
v = More efficient network usage

...might be a problem
Can be turned on/off with the NO_DELAY socket option.

MoSIG — 8

TCP Retransmission Timeout RTO

* Too short — spurious retransmissions
* Too long is not good either

* each time a new measurement is available:
EstimatedRTT <— (1 — x) x EstimatedRTT + x x measuredRTT
x=1/8
(+ similar formula for estimating standard deviation)

(RTO < EstimatedRTT + 4 x EstimatedStdDev)

or 200ms (or |s on some systems) if RTO is below this!!!

MoSIG — 9

TCP sliding window

* TCP allows to send cwnd (congestion window) unacknowledged
bytes

* cwnd always smaller than WIN field (buffer size at receiver)(flow
control)

* cwnd changes over the connection life : slow start, then
congestion avoidance

MoSIG — 10

Silly window syndrome

* If the data consumer reads byte by byte in the reception buffer
This (would) cause(s) sending of ACKs with WIN=|
— small segments...
* Solutions:

v At the receiver: advertise a non-null window only if an entire
MSS would fit
v At the sender: delay sending small packets.

MoSIG — 11

TCP congestion control

Avoids receiver buffer saturation (WIN)

Adapt sending rate to network capacity

Segment losses signal that a saturation occured

Fair resource sharing

2 (3) states:
I. Slow start
2. Congestion avoidance
3. (Fast recovery)

MoSIG — 12

slow start

* Double cwnd each RTT

* Increase cwnd by one MSS upon ACK reception

cwnd : 1 2 34 5678

/ i X

\
1

I

i

i

Il
2/'

/3
/

i}
i

/

MoSIG — 13

Congestion avoidance

* When cwnd reaches ssthresh (twnd on figure below), linear
increase of cwnd in time (instead of exponential)

* The update still takes place upon reception of an ACK:

MSS x MSS
cwnd

cwnd < cwnd +

The sender sends ~ j\‘;‘l’g'g segments per RTT, so that the cwnd

will grow by &~ | MSS/RTT

Tahoe example: (slow start after each loss; ssthresh = %inflight)

Bytes
Y twnd

60

30

—t—t—t—t

T r

seconds

MoSIG — 14

TCP Reno - Fast recovery

Fast retransmit
5/2+3
cwnd: 3 4 5 5,5 6,5 2,5 2,5+x
S1S2S3 54 S5S6 S2S7 S85S9

Al AT AT A1 AT A6 A7

* No slow start phase!

* The window is halved + 3 MSS to account for the received dup
acks; For each new duplicate: cwnd+=MSS (window inflate)

* New Reno: deals better with multiple losses in same congestion

period...
MoSIG — 15

Why is TCP fair??

Two connections share the same buffer,
their throughputs are x| and x2

X

X1 =X
Additiveincrease
Multiplicative decrease
Additiveincrease
Multiplicative decrease 3

X

MoSIG — 16

