

Computer Networks Principles

Prof. Martin Heusse Martin.Heusse@imag.fr

(Slides -mostly- by A. Duda)

Contents

- Introduction
 - Protocols and layered architecture
 - Encapsulation
 - Interconnection structures

The transition to an all-IP network

Protocols

Protocol stack

Internet protocol stack

- Application: supporting network applications
 - HTTP, FTP, SMTP, IMAP, NTP, SSH
- Transport: end-to-end data transfer
 - TCP, UDP
- Network: routing of datagrams from source to destination
 - IP
- Link: data transfer between neighboring network elements
 - PPP, Ethernet
- Physical: bits "on the wire"

Application
Transport
Network
Link
Physical

Layering: physical communication

Layering: logical communication

- E.g.: transport
- take data from app
- add addressing, reliability check info to form a "stream"
- send data to peer
- wait for peer to ack receipt
- analogy: post
 office (for datagrams)

TCP/IP Architecture

Network Layer

- Set of functions required to transfer packets end-toend (from host to host)
 - hosts (== "end hosts") are not directly connected need for intermediate systems
 - examples: IP, Appletalk, IPX
- Intermediate systems
 - routers: forward packets to the final destination

Physical Layer Data Link Layer

hosts

- Physical transmission = Physical function
 - bits <-> electrical / optical signals
 - transmit individual bits over the cable: modulation, encoding
- Frame transmission = Data Link function
 - bit error detection
 - packet boundaries
 - in some cases: link layer addresses (Ethernet)
 - in some cases: error correction by retransmission (802.11)
- Modems, xDSL, LANs

Encapsulation

Protocol layering and data

Each layer takes data (and metadata, if needed) from above

- adds header information to create new data unit
- passes new data unit to layer below

Packet capture

Frame 1 (1514 on wire, 1514 captured)

Ethernet II Destination: 00:03:93:a3:83:3a (Apple a3:83:3a) Source: 00:10:83:35:34:04 (HEWLETT- 35:34:04) Type: IP (0x0800)Internet Protocol, Src Addr: 129.88.38.94 (129.88.38.94), Dst Addr: 129.88.38.241 (129.88.38.241)Version: 4 Header length: 20 bytes Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00) Total Length: 1500 Identification: 0x624d Flags: 0x04 Fragment offset: 0 Time to live: 64 Protocol: TCP (0x06) Header checksum: 0x82cf (correct) Source: 129.88.38.94 (129.88.38.94) Destination: 129.88.38.241 (129.88.38.241)

Ethereal

Transmission Control Protocol, Src Port: 34303 (34303), Dst Port: 6000 (6000), Seq: 4292988915, Ack: 3654747642, Len: 1448 Source port: 34303 (34303) Destination port: 6000 (6000) Sequence number: 4292988915 Next sequence number: 4292990363 Acknowledgement number: 3654747642 Header length: 32 bytes Flags: 0x0010 (ACK) Window size: 41992 Checksum: 0x9abe (correct) Options: (12 bytes)

Interconnection

Interconnection structure - layer 2

Interconnection at layer 2

- Switches (bridges)
 - interconnect hosts
 - logically separate groups of hosts (VLANs)
 - managed by one entity
- Type of the network
 - **Broadcast** (One packet may reach several end points)
- Forwarding based on MAC address
 - flat address space
 - forwarding tables: one entry per host
 - works if no loops
 - careful management
 - Spanning Tree protocol
 - not scalable

Interconnection structure - layer 3

Interconnection at layer 3

• Routers

- interconnect subnetworks
- logically separate groups of hosts
- managed by one entity
- Forwarding based on IP address
 - structured address space
 - routing tables: aggregation of entries
 - works if no loops routing protocols (IGP Internal Routing Protocols)
 - scalable inside one administrative domain

Protocol architecture

- Routers are layer 3 intermediate systems
- Explicit forwarding
 - host has to know the address of the first router
- Management protocols (control, routing, configuration)

Autonomous systems

Internet

Interconnection of AS

- Border routers
 - interconnect AS
- (NAP or GIX, or) IXP
 - exchange of traffic peering
- Route construction
 - based on the path through a series of AS
 - based on administrative policies
 - routing tables: aggregation of entries
 - works if no loops and at least one route routing protocols (BGP- Border Gateway Protocols)