Routing in data networks

Martin Heusse

MoSIG — page I — transp. I

Routing in data networks

- Three sub-tasks
 - ✓ Switching
 - ✓ Path establishment
 - ✓ Topology discovery
- The IP case
 - ✓ No path establishment/call setup
- The ATM case
 - ✓ Cell switching
 - ✓ Virtual circuit setup
 - ✓ Routing: "hand made" or PNNI

MoSIG — page 2 — transp. 2

Routing in LANs

- Tree topology
- Diffusion based routing, started from destination
 - \checkmark Only one path to the destination
 - ✓ The path to a node starts on the interface from which its packets emerge!

Layer 3 routing

• Routing table

destination	interface towards			
I				
2	2			
4	4			
3	I			

Example (BSD \rightarrow IP + ARP) :

Destination	Gateway	Flags	Refs	Use	Netif	Expire
default	129.88.38.254	UGSc	21	1119	en0	
127.0.0.1	127.0.0.1	UH	9	9326	100	
129.88.38/24	link#2	UC	0	0	en0	
129.88.38.1	0:3:ba:0:d5:f	UHLW	4	7589	en0	1183
129.88.38.153	127.0.0.1	UHS	0	2	100	

Layer 3 routing (cont.)

- Hop by hop routing
- Topology discovery
 - $\checkmark \ \ \, Hand\ made$
 - ✓ Automatic (dynamic): routing daemons

IP: one has to avoid to form routing loops or "black holes"

- The packets TTL is a only a worst case, partial solution
- (Almost) single field that routers modify along the packet's trip through the net (if no fragmentation)

Dynamic routing

- Shortest path routing
 - ✓ Based on a static link metric(s)
 - \rightarrow Loop free paths
 - ightarrow Independent of the load
- Benefits
 - \checkmark Resilience to link breaks
 - ightarrow The network heals
- Attention :
 - ✓ Transient loops
 - ✓ Constant background traffic
- Shortest path computation: distributed Bellman-Ford; Dijkstra if the entire topology is known

Distance Vector

- Examples : RIPv1; RIPv2 (CIDR)
- Data structure : destination / next hop / distance
- Update example: send (destination, distance) pairs

DV (2)

- Used on the original ARPANET
- Periodical emission of DV (RIP: every 30s) or when a topology change is detected (link comes up, update received...)
- **Time stamping** of all entries: outdated information eventually vanishes

Entries only last 3 minutes (5 missed updates)

MoSIG — page 8 — transp. 8

DV limitations

This process stops only when it reaches the upper limit (16) "Split horizon" partially solves the problem

Graceful failure: send ∞ to neighbors

MoSIG — page 9 — transp. 9

Link States routing protocols

- Examples : OSPF; IS-IS ; PNNI
- The protocol maintains a database that represents the network (or at least a part of it)
- Principle:

MoSIG — page 10 — transp. 10

OSPF

- OSPF is the recommended routing protocol for within an autonomous system
- LSA (Link State Advertisement): topology information unit
- Hello process: neighbor discovery and check
- Reliable flooding of LSAs
- Local shortest path computation
- LSAs are time stamped and bear a serial number. The routers are responsible for refreshing the LSAs they inject

Flooding

- The easiest way of spreading information through a network!
- No topological information is required!
- Principle of flooding

Routing-less routing

- ARP proxy
 - ✓ Why? :
 - Layer 2 network \neq Layer 3 network
 - Behind PPP link (see example)
 - Behind IP tunnel
 - ✓ Principe :
 - The access router answers ARP requests directed to the remote host
- ICMP redirect
 - $\checkmark~$ ICMP is the IP signaling protocol TTL issues ($\rightarrow \texttt{traceroute}$); packet size problem (ICMP frag. needed)
 - ✓ ICMP REDIRECT... (example)

MoSIG — page 13 — transp. 13

External routing

• Each operator is an "Autonomous System"

```
AS exchange route updates using BGP
```

- Each route update carry
 - I. A prefix
 - 2. The AS path (and a few other things...)
- \Rightarrow \checkmark Loop free path computation (path vector algorithm)
 - \checkmark Keeps track of several paths at the same time
 - $\checkmark\,$ Insensitive to effective path length (The external path length is the number of ASs)
 - ✓ Route filtering (avoid using given networks)
 - \checkmark Not totally immune to some kind of count to infinity

MoSIG — page 14 — transp. 14

External routing (cont.)

MoSIG — page 15 — transp. 15

Bellman-Ford Algorithm

We want to discover the distance to s from all vertices in (V, E).

- Data structure : distance to s from any vertex (d(i)); predecessor node (p(i)).
- Initialization : d(s) = 0; $d(j) = d_{sj}$ for all $j \in N(s)$.
- Iteration : repeat N times (N is the graph diameter) for all edges (jk) de E :

$$\begin{array}{l} \text{if } d(k) > d(j) + d_{jk}) \\ d(k) \leftarrow d(j) + d_{jk} \text{; } p(k) \leftarrow j \end{array}$$

Dijkstra Algorithm

We want to discover the distance to s from all vertices in (V, E).

- data structure : Set of marked vertices : M;
 For each vertex *i*: distance to s d(*i*); predecessor node p(*i*).
- Initialization :

 $\begin{aligned} \mathsf{M} &= \{\mathsf{s}\}; \, \mathsf{d}(\mathsf{s}) = 0; \, \mathsf{d}(j) = \mathsf{d}_{\mathsf{s}j} \text{ for all } j \in \mathsf{N}(\mathsf{s}), \, \infty \text{ otherwise;} \\ \mathsf{p}(j) &= \mathsf{s} \; \forall j \in \mathsf{N}(\mathsf{s}). \end{aligned}$

- Step 1: find next node to consider find i ∉ M such that d(i) = min_{j∉M}(d(j)); M ← M ∪ {i}.
 if M = V then stop.
- Step 2 : Update distances $\forall j \in N(i) \text{ s.t. } j \notin M$: If $d(j) > \min_{k \in N(j)} (d(k) + d_{kj})$ then:

$$p(j) \leftarrow \inf_{k \in N(j)} (d(k) + d_{kj}); d(j) \leftarrow \min_{k \in N(j)} (d(k) + d_{kj});$$

end if

Go back to step I.

MoSIG — page 17 — transp. 17