LoRa

Martin Heusse LIG / Drakkar

Lora in the ISM bands channel spacing : 200kHz

- 433MHz Band
 - ✓ Max Tx power 10dBm
- EU 863-870MHz Band
 - ✓ Max Tx power : 20dBm, by default 14dBm
 - Rx channels for the gateways

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	868.10 868.30 868.50	DR0 to DR5 / 0.3-5 kbps	3	<1%

- Juty cycle is computed per sub band
- [LoRaWAN] All gateways listen to (up too) 8 channels in parallel (Sx1302).

Specified to the devices when they associate

Lora in the ISM bands channel spacing : 200kHz (cont.)

DataRate	Configuration	Indicative physical bit rate [bit/s]		TXPower	Configuration
0	LoRa: SF12 / 125 kHz	250	Γ	0	20 dBm (if
					supported)
1	LoRa: SF11 / 125 kHz	440		1	14 dBm
2	LoRa: SF10 / 125 kHz	980		2	11 dBm
3	LoRa: SF9 / 125 kHz	1760		3	8 dBm
4	LoRa: SF8 / 125 kHz	3125		4	5 dBm
5	LoRa: SF7 / 125 kHz	5470		5	2 dBm
6	LoRa: SF7 / 250 kHz	11000		615	RFU
7	FSK: 50 kbps	50000			
815	RFU				

- Real world range : a few km NLOS, \approx 20 km with LOS
- Sensitivity = -140dBm (at SF12), \Rightarrow link budget : \approx 150 dB (same as for e.g. GSM)
- Payload max size : from 51 (@SF12) to 242 B (from datarate 4 and higher)

ISM 868MHz band

https://www.arcep.fr/uploads/tx_gsavis/19-0300.pdf

https://www.anfr.fr/fileadmin/mediatheque/documents/tnrbf/

TNRBF_2020-03-16.pdf

Duty cycle	other uses
0,1 %	Cordless microphones
1%	RFID – ??
1%	(802.15.4 Sub-GHz)
1%	Alarms
0.1%	
0.1%	Alarms
10% (GWs), 2.5%	500 mW! Sensing
10%	
1%	
	Duty cycle 0,1 % 1% 1% 0.1% 0.1% 10% (GWs), 2.5% 10% 1%

ERC Recommendation 70-03

https://docdb.cept.org/download/25c41779-cd6e/Rec7003e.pdf

Sub band	Freq. (MHz)	Power	Duty cycle	BW (MHz)
h1.4	865-868	14 dBm	1%	3
h1.5	868-868.6	14 dBm	1%	0.6
hl.6	868.7-869.2	14 dBm	0.1%	0.5
hl.7	869.4-869.65	27 dBm	10%	0.25
h1.8	869.7-870	7 dBm	100%	0.3
hl.9	869.7-870	14 dBm	Ι%	0.3

Duty cycles are computed per sub-band : a device may consume 1% in h1.5, 10% in h1.7, 1% in h1.4, during the same hour for instance

h1.5 encompasses the 3 defaults LoRaWAN channels,h1.7 is used by the GW to respond to the devices (cf. RX2)

What is a chirp ? CSS : Chirp Spread Spectrum

• A linear frequency sweep/ramp $-\frac{BW}{2} < f < \frac{BW}{2}$

• Used by radars, bats, dolphins...

Coding information on a chirp

• It is the start freq. offset that codes the information (line labeled 514 below)

LoRa — 7

Examples

• Example with upchirps: SF = 2, 4 symbols: 0, 1, 2, 3

Fig. 6. Four CSS symbols when spreading factor is 2.

(LoRa Backscatter: Enabling The Vision of Ubiquitous Connectivity, V. Talla et al.)

Reception

• Multiplication of rx signal with a complex conjugate chirp (down chirp)

$$\mathbf{e}^{2\pi j \mathbf{t} [\mathbf{f}_0 + (\mathbf{at} + \mathbf{b}) \mod \mathbf{BW}]} \times \mathbf{e}^{-2\pi j \mathbf{t} [\mathbf{f}_0 + (\mathbf{at}) \mod \mathbf{BW}]}$$
$$= \mathbf{e}^{2\pi j \mathbf{t} [\mathbf{b} \mod \mathbf{BW}]}$$
N.B.: $\mathbf{a} = \frac{\mathbf{BW}^2}{2^{\mathbf{SF}}} \rightarrow \mathbf{so}$ it takes a time $\frac{2^{\mathbf{SF}}}{\mathbf{BW}}$ to sweep \mathbf{BW}

Reception (cont.)

• if both chirps are in sync, we get a constant, otherwise:

FFT-based reception

- FFT after sampling at rate BW The signal occupies a band BW, it would be pointless to sample faster than this...
- The symbol duration is $\frac{2^{\rm SF}}{\rm BW} \rightarrow 2^{\rm SF}$ samples
- By frequency aliasing, a single frequency appears in the FFT !

Spread spectrum

- Spreading factors from 7 to 12 \Leftrightarrow N goes from 2^7 to 2^{12} , 7 to 12 bits per symbol, 0.05 to 0.002 b/s/Hz
- The bigger the SF the longer the chirp 33 ms @ SF12.
 For LoRa, the preamble is also proportional to the SF

The actual range of spread spectrum is ≈ 20 $R_b = SF \times \frac{BW}{2^{SF}}$

- Error correcting codes $R = \frac{4}{5}$ at SF12, PER is still low at an SNR of -20 dB
- The actual max. SF is \approx 340 (2¹²/12), so a transmission may survive a collision with a node closer by a ratio of $\approx\sqrt{340}$

LoRa operating SNR

Table: LoRa physical layer parameters for 125 kHz bandwidth.

SF	DRj	Data rate	PL _{max}	Airtime	SNR limit
		[b/s]	[B]	$ au_j$ [ms]	<i>q</i> j [dB]
7	DR5:	5469	230	102.7	-7.5
8	DR4:	3125	230	184.8	-10
9	DR3:	1758	123	328.7	-12.5
10	DR2:	977	59	616.5	-15
	DRI:	537	59	1315	-17.5
12	DR0:	293	59	2466	-20

Initial Synchronisation

- Default preamble: 8 up-chirps + 2 up-chirps (Sync word) + 2.25 down-chirps (preamble overhead of 147 bits @SF12!; 86 bits @SF7...)(Sync word=0x34 for public networks)
- The inverted chirps in the preamble allow to find the two unknown variables: the transmitter **frequency** and the relative time **reference**
- Preamble detection takes only a couple of chirps \rightarrow short rx1 and rx2 windows for DL class A transmissions

LoRa wireless channel

• A LoRa channel is narrower than a GSM channel (125kHz vs. 200+kHz)

Channel width is the same order of magnitude as coherence band —maybe **narrower**— for a range of several km

 \rightarrow changing channel changes the gain and may help, regardless of interference matters

• The chirp slope is inverted between uplink and downlink (ipol parameter of the GW)

LoRa wireless channel (cont.)

Typical gain distribution between a device and a GW It varies a lot! (Rayleigh channel)(measures by T. Attia)

LoRaWAN network

LoRaWAN network (cont.)

Figure 8: Frame header structure

LoRaWAN network (cont.)

- The frames only carry a single address, the source (or destination) *device* address
- Application demultiplexing : "FPort" (0: pure MAC command)
- Piggybacking of MAC commands (power, data rate, channels, device state, rx delay $^{\rm I}$...)
- The network server will typically get several copies of the same frame, received by different GWs (de-duplicated thanks to the frame seq. number)

The net. server selects the best GW for a reply (if applicable)

• In the core network, frames are forwarded with quite a bit of ancillary data (reception power, timestamp...)

LoRaWAN Transmissions

- Class A (All devices)
 - ✓ Exchange always initiated by the device

Aloha access

 \checkmark 2 rx windows follow the transmission at +1 s (same channel as TX) and +2 s (channel and SF fixed in

advance)

By default : RX2 at 869.525 MHz (center of h1.7), DR0 (SF12, 125 kHz)

- Each frame carries the Confirmed bit: (expecting and ACK) or unconfirmed
- Class B : **B**eacons The devices listen periodically to beacons. Regular downlink slots are defined relative to the beacon
- class C : Continuous reception

LoRa — 20

Localization

- The observed times of arrival at several GWs allow to compute the differences between them (Time Difference of Arrival TDoA)
- The node is at the intersection of as many ellipses as there are pairs of receivers (4 GWs \rightarrow 6 ellipses)
- Common time reference from GPS at the GWs
- The raw time resolution is 1/BW... With spread spectrum, spatial resolution is $\# \frac{c}{BW 2^{SF}} = 19 \text{ m}$ (9 m @ 250 kHz)
- Precision grows with the number of GWs

A few remarks

- A GW can receive several SF simultaneously ($\approx 30 \, dB$ rejection)².
- It needs as many reception circuits as there are SFxFreq pairs
 - \checkmark 64 packet detectors in parallel (SF5-12 \times 8 channels)
 - ✓ 16 packet receivers
- But no reception while transmitting! (Half duplex)
- Localization is a by product of PHY initial sync.
- Cell breathing
 - $\checkmark\,$ Having more GWs allows to:
 - ► Lower the SF for closer devices
 - lower the transmission power

²C. Goursaud & J.M. Gorce : "Dedicated networks for IoT : PHY / MAC state of the art and challenges"

-8 to -25 dB according to Croce et al.:

'Impact of LoRa Imperfect Orthogonality..."

LoRa — 22

The Things Network frequency bands EU863-870

Uplink:

Downlink:

- Uplink channels |-9 (RXI)
- 869.525 SF9BW125 (RX2 downlink only) h1.7

LoRa — 23

Frame sizes

- Depends on SF : 59B payload at SF12 SF10, 123 at SF9, 250 at SF8 and SF7...
- 51B @ SF12 \rightarrow 1,3 s of continuous transmission! (and 2.8s for the entire frame)(\Rightarrow pause of 4.6 mn before the next transmission in the same band)

Activation

- ABP Activation By Personalization
- OTAA Over-The-Air Activation
 - DevAddr allocation: the DevAddr is composed of 7 bits of Network ID and then a device-specific addr. (The DevAddr is assigned by the guest network. The real / immutable device identifiers are its NetEUI and AppEUI, which are stored in the device)
 - Computation of the session keys: AppSKey, NetSKey, from the AppKey (128 bits) stored in the *device*

OTAA — Over-The-Air Activation (v1.0)

- Device sends Join Request (AppEUI, DevEUI, DevNonce), signed with
 - mac=aes128_cmac(AppKey, MHDR | AppEUI | DevEUI | DevNonce)
 - ✓ MIC = mac[0..3]

(RxI receive delay is 5 s for a join request)

- Network server derives session keys:
 - NwkSKey = aes128_encrypt(AppKey, 0x01 | AppNonce | NetID | DevNonce | pad16)
 - AppSKey = aes128_encrypt(AppKey, 0x02 | AppNonce | NetID | DevNonce | pad16)

OTAA — Over-The-Air Activation (v1.0) (cont.)

- Device authenticates and decrypts Join Accept: AppNonce, NetID, DevAddr
- Device derives (generated at each rejoin):
 - Network Session Key (NwkSKey), Application Session Key (AppSKey)

Example ABP in TTN

• Register my-device

AppEUI=70B3D57EF000002E AppID=hello-world

INFO Generating random DevEUI...

INFO Generating random AppKey...

INFO Registered device

AppEUI=70B3D57EF000002E AppID=hello-world

AppKey=2593946DADA09D86E36E4A4DD3AC632D

DevEUI=00995D884BEBBAB9 DevID=my-device

· Personalize my-device

INFO Generating random NwkSKey... INFO Generating random AppSKey... INFO Requesting DevAddr for device... INFO Personalized device AppID=hello-world AppSKey=48F41F0491B23C804AEB9826162EB9AD DevAddr=160115EB DevID=my-device NwkSKey=D7A883537558946974B8DE31D4671617

OTAA — Over-The-Air Activation (v1.1)

- AppSKey = aes128_encrypt(AppKey, 0x02 | JoinNonce | JoinEUI | DevNonce | pad16)
- FNwkSIntKey = aes128_encrypt(NwkKey, 0x01 | JoinNonce | JoinEUI | DevNonce | pad16)
 SNwkSIntKey = aes128_encrypt(NwkKey, 0x03 | JoinNonce |

. . .

NwkSEncKey = aes128_encrypt(NwkKey, 0x04 | JoinNonce | ...

OTAA — Over-The-Air Activation (v1.1) (cont.)

 MIC value of Join accept: cmac = aes128_cmac(JSIntKey, JoinReqType | JoinEUI | DevNonce | MHDR | JoinNonce | NetID | DevAddr | DLSettings | RxDelay | CFList) MIC = cmac[0..3]

The Network operator has no access to application data

Session keys

- Application session key (AppSKey)
- Forwarding Network session integrity key (FNwkSIntKey) for calculating (part of) MIC of UL frames
- Serving Network session integrity key (SNwkSIntKey) for computing the MIC of DL messages and half of uplink MIC
- Network session encryption key (NwkSEncKey) (en|de)crypt uplink & downlink MAC commands

LoRaWAN Roaming

the forwarding NS only conveys frames between GWs and the serving NS When not roaming, there is only one NS!

LoRa — 32

MAC Commands

- MAC Commands:
 - ✓ LinkCheckReq, LinkCheckAns: connectivity check
 - ✓ LinkADRReq, LinkADRAns: implement ADR (Adaptive Bit Rate)
 - DutyCycleReq, DutyCycleAns: update device DC
 RXParamSetupReq, RXParamSetupAns: change RX window
 - \checkmark DevStatusReq, DevStatusAns: get dev. status like battery
 - ✓ NewChannelReq, NewChannelAns: channel update
 - \checkmark RXTimingSetupReq, RXTimingSetupAns: change RX window
 - ✓ (v1.1) RekeyInd, RekeyConf: Rekey commands
- Set power, SF, data rate, channels, device state, RX delay³
- FPort: kind of Application ID (0: pure MAC command to/from Network Server, otherwise: pass to the application layer)
- Commands sent in a separate data frame in the FRMPayload (FPort field set to 0) or piggybacked in FOpts

ADR

- If ADR bit is set, the network controls data rate through MAC commands
- Network server estimates SNR of last 20 packets (long!), chooses suitable data rate, SF, and TP
- Sends the parameters in LinkADRReq

ADR (cont.)

- After ADR_ACK_LIMIT frames with no downlink response, the devices asks to hear from the network by setting the ADRACKReq bit in the frame header.
- The network then has ADR_ACK_DELAY frames to reply

Connectivity problem? Try to regain connectivity!!

• Each time ADR_ACK_DELAY frames pass with no answer, first increment Tx power. When max power is reached, then increment SF.

LoRa: Aloha access with physical capture

Lora transmissions over a Rayleigh channel, short range: Random gain variations often allow to capture one of the colliding frames

Example of SF allocation vs range

