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Introduction

La notion d'abstrait est comprise comme ce qui est flou, pas clair,  
pas ou peu compréhensible, peu ou pas accessible.  

En fait, l'abstrait est ce qui est virtuel, conceptualisé.  
C'est l'univers mental, les pensées, les idées, les productions  

de cette aptitude à faire des concepts à partir  
de mes sensations, de mes émotions, ou de mes intuitions. 

L. Martinez 

Preamble

M y research works are dedicated to the integration of two well known paradigms:
Formal Methods (FM) and Model-Driven Engineering (MDE). This integration is
called Formal MDE (FMDE) all along the current document. In fact, several works

have been already done in order to strengthen the MDE paradigm with formal reasoning, and
therefore make it more viable as far as safety and security concerns have to be addressed. When
taken separately, these works provide a partial coverage of MDE, but when combined they can
address a wide range of models and languages. During the last decade, I investigated two di-
rections in which the FMDE paradigm proved its value: (i) Model-Driven Security (MDS),
and (ii) Domain-Specific Languages (DSLs). Under the MDE umbrella, both the MDS and
DSL communities advocate for the use of models throughout the development process, provid-
ing solutions to the validation problem (‘do the right system’). Nonetheless, the verification
problem (‘do the system right’) is still a major challenge, perhaps because formal reasoning
(i.e. model-checking and/or theorem proving) was not apart of the MDE initiative. To be prag-
matic my contributions build on well-established notations: mainly UML and B, and � at a
smaller scale � BPMN, CSP, Z and Petri-Nets. Besides, the obtained results can be inspiring
and, in my opinion, should be extended with other approved (semi-)formal languages, which
would confer to FMDE a broader spectrum. The next two sections (A. and B.) summarize for
every research direction (respectively MDS and DSLs) the challenges that guided my works,
and give an overview of my contributions and publications in the field.
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A. Model-Driven Security

A.1. Challenges
Computer security often refers to hackers or intruders, who are persons with high technical
skills and whose intention is to exploit security breaches in order to get an illegal access to a
system. However, in reality the greatest threats come from inside the system, i.e. from trusted
users who are already granted a legal access. This kind of threat is called “insider attack” in
cyber-security and it is known to be difficult to tackle (Probst et al., 2010). Studies done by IBM
X-Force Research in the cyber-security landscape state that: “In 2015, 60 percent of all attacks
were carried out by insiders [. . .] and they resulted in substantial financial and reputational
losses”. The problem is beyond the access control frontier since it includes unpredictable human
behaviours. To deal with these threats, existing industrial, academic and government studies
(Kont et al., 2018, Greitzer, 2019, Homoliak et al., 2019) elaborate human profiles and advocate
for the use of surveillance systems. Without being exhaustive, some of these profiles are:

• Curious persons who, without a malicious intention but without self-control too, get ac-
cess to sensitive data or do some actions that are in contradiction with the company rules.

• Super-heroes who, in order to fix a problem or help someone, bypass the company policies
believing that it may be useful or simply be approved.

• Audacious persons who, in order to prove their strength (most of the time to them-selves),
secretly get access to private information available in the company network.

Other profiles are established in the literature, like machiavellian, greedy, disgruntled, op-
portunistic, etc. Unfortunately, the eventuality of a breach of trust is difficult to predict in
advance based on human-centric factors. On the one hand there is no certainty about a possi-
ble acting out, and on the other hand people surveillance must comply with privacy legislation,
which makes it almost ineffective. Nonetheless, Information Systems (IS) together with their
business logic and processes, provide useful knowledge allowing one to deal with the insider
threat problem. In fact, based on the aforementioned studies it can be observed that insiders
often do not have high computer skills (contrary to intruders), but they have a fine-grained
knowledge about the IS procedures. The latter are mostly well-established and already pro-
tected via access control mechanisms. Hence, by being able to answer the question “who has
access to sensitive data and what kind of access is given?”, one cannot claim that the system
is secure enough. The good question should be: “is the user able to run a sequence of actions
that may bring him from a prohibition to an authorization?”. The first question refers to static
concerns, and it is widely addressed in Model-Driven Security (MDS) thanks to several ac-
cess control models (SecureUML, UMLSec, etc). However, the second question remains open
in MDS because it refers to behavioural features and the reachability of unwanted situations
granting to the user misappropriated privileges.

2
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A.2. Contributions
I contributed toward MDS through a FMDE approach covering structural and behavioural fea-
tures of secure IS, and addressing their validation against insider threats. The proposed security-
by-design technique builds on the strengths of UML, SecureUML (a UML profile for access
control) and formal languages (B (Abrial, 1996) and Z). The aim is to combine graphical views
and automated reasoning during the IS development. This research began in 2008 in the con-
text of the ANR-Selkis project1 and has been the subject of several PhD and master projects
that I (co-)supervised. To summarize, my contributions can be separated in two major axes:
Modeling, and Analysis.

A.2.1 Axis 1: Modeling

Separation of concerns is a core technique in MDS (Basin et al., 2011), since MDS means “ap-
plying the concepts behind model-driven software development to security”. It has been pro-
posed to master the complexity of the IS by distinguishing its functional concerns (data model
and the associated business logic) from high-level ACIT properties (Availability, Confidential-
ity, Integrity, Traceability). In order to guarantee a security-by-design approach in which the
MDS benefits from an automated formal support, my works first apply UML and SecureUML
to represent both functional and security concerns, and then suggest their translation into B and
Z. I co-supervised two PhD students on this topic: M.-A. Labiadh and N. Qamar. The research
work of M.-A. Labiadh was built on the B method, and proposed configurable transformations
allowing one to mix several transformation approaches. Regarding the work of N. Qamar, it
applied a direct translation using RoZ, a tool by Ledru (2006) whose aim is to extract Z speci-
fications from UML class diagrams. Both techniques are complementary and provide together
a good coverage of MDS. In the remainder I will focus on the usage of the B method, mainly
because it is a backbone of my current and further works in FMDE.

Functional models. The extraction of B specifications from UML models is not a new topic;
it was widely investigated between 2002 and 2006 resulting in a rich state of the art. However,
an exhaustive analysis of the existing approaches shows that each kind of UML-to-B mapping
has its specific objectives and characteristics and, except iUML-B by Snook and Butler (2006a),
a major issue is that tools are either obsolete or not publicly available. Thus, to be applied in
MDS efforts have been done to polish, adapt, extend and combine those works in a usable
framework. The proposal done in the work of M.-A. Labiadh is to make the UML-to-B map-
pings as parametric as possible, such that the user can easily manage the transformation rules
and experiment various solutions.

Security models. Regarding the translation of SecureUML, it has been built on formal defi-
nitions of the Role-Based Access Control model (RBAC). RBAC is supported by several soft-
ware products like popular commercial database management systems (e.g. Oracle, Sybase) or
1 ANR-08-SEGI-018, 20012–2018.

3

http://lacl.u-pec.fr/selkis/lacl.u-pec.fr/selkis/index.html


Introduction Model-Driven Security

webservers (e.g. JBoss). The available implementations of this model act like a filter which
intercepts a user request to a resource in order to permit or deny the access to associated func-
tional actions (e.g. transactions on databases, file operations, etc). The thesis of M.-A. Labiadh
followed a similar principle, but at a modeling stage, leading to the extraction of RBAC filters
written in B, and in which permissions/prohibitions are defined as security guards.

Business process models. Another important pillar of an IS, in addition to its functional and
security concerns, is to perform established processes that are followed by the stakeholders
during their working activities. A business process model represents a set of steps undertaken
for a specific purpose in which intrinsically operations concerning the IS data (like reading,
modification, etc.) and responsibilities for performing tasks are defined. The three concerns
(functional models, security policies and business processes) are important; their alignment
is useful to address several inconsistencies, such as when the access control policy gives more
permissions than the actions required by the business process. In this case following the process
may hide several authorizations giving the impression that some bad actions are not possible
while they can still be done from outside the process, which is a typical example of insider
attacks. This topic was addressed in the PhD of S. Chehida, and by two master 2 students
during their trainees. It also led to an established collaboration with the SIGMA team from the
LIG lab, with local fundings. The objective is to align the three models and provide a technique
to verify the correctness of this alignment using B.

A.2.2 Axis 2: Analysis

A direct consequence of the separation of concerns principle is that functional and security
models are often validated separately. Existing works in MDS are therefore stateless and they
mostly validate security policies statically without taking into account the dynamic evolution of
the IS. Nonetheless, authorized actions often lead to evolutions of the functional state, which
may influence the security behaviour and favour insider threats. A well known insider attack
which was possible due to evolutions of the functional state is that of ’Société Générale’, per-
petrated by Jérôme Kerviel. This attack resulted in a net loss of $7.2 billion to the bank2. The
insider circumvented internal security mechanisms to place more than $70 billion in secret,
unauthorized derivatives trades. Through authorized actions, he was able to cover up opera-
tions he has made on the market by introducing into the functional system fictive offsetting
inverse operations, so that the unauthorized trades were not detected. Dynamic analysis based
on reachability properties is therefore crucial because it would establish that a system evolves
as expected and that unwanted situations are not possible.

By using B and its composition mechanism, my works provide a way to take into account
the intertwining of security policies and functional concerns of the IS. The underlying analysis
techniques are intended to verify whether a given targeted functional state is reachable, and
eliminate threats by proving that a given unwanted state is unreachable. Since an (un)wanted

2 The New York Times. French Bank Says Rogue Trader Lost $7 Billion. January 2008.
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state can be formally characterized with a predicate P , then one can assume that insider threats
start from an initial normal situation where P is false, and may occur if it is possible to exhibit a
sequence of B operations, whose security guards are true, and leading to a state where P holds.
The solutions I investigated build on two strategies: forward search and backward search.

Forward search. Forward search is a classical approach that is often done thanks to model-
checking techniques, but it is more efficient for relatively small applications. As this is not
always possible in the case of IS, a model-checker may require some guidance. To this purpose
I investigated, on the one hand, process-based search applying CSP||B (Butler and Leuschel,
2005); and on the other hand, an original optimisation technique built on a variant of the ant
colony algorithm (Merkle and Middendorf, 2006). This part of the work was developed in
collaboration with students from the master 2 MoSIG, and two ENSIMAG students during the
teaching unit “Initiation à la recherche en laboratoire”.

Backward search. Backward search starts from the unwanted state and tries to go back to
a normal situation. In other words it starts by qualifying the attack (P ) and then looks at the
authorized operations, called critical, that reach P from ¬P . Hence, rather than looking for
one unwanted state (like in forward search), the technique considers that every precondition of
every critical operation is itself an unwanted state. This topic was addressed during the thesis of
A. Radhouani, leading to the development of the GenISIS tool (Generator of Insider Scenarios
in Information Systems). The tool provides a symbolic backward search applying both theorem
proving and constraint solving approaches.

A.3. Main publications

Akram Idani and Mario Cortes Cornax. Towards a model driven formal approach for merg-
ing data, access control and business processes. In 2nd International Workshop on Security
for and by Model-Driven Engineering (SecureMDE). MODELS’20 Companion Proceedings,
pages 57:1–57:5. ACM, 2020. doi: 10.1145/3417990.3420046.

Yves Ledru, Akram Idani, Rahma Ben Ayed, Abderrahim Ait Wakrime, and Philippe Bon.
A separation of concerns approach for the verified modelling of railway signalling rules.
In Third International Conference on Reliability, Safety, and Security of Railway Systems -
Modelling, Analysis, Verification, and Certification (RSSRail), volume 11495 of LNCS, pages
173–190. Springer, 2019. doi: 10.1007/978-3-030-18744-6\_11.

Akram Idani. Model driven secure web applications: the SeWAT platform. In 5th European
Conference on the Engineering of Computer-Based Systems, ECBS 2017, pages 3:1–3:9.
ACM, 2017. doi: 10.1145/3123779.3123800.

Salim Chehida, Akram Idani, Yves Ledru, and Mustapha Kamel Rahmouni. Combining UML
and B for the specification and validation of RBAC policies in business process activities. In
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10th IEEE International Conference on Research Challenges in Information Science, RCIS,
pages 1–12. IEEE, 2016. doi: 10.1109/RCIS.2016.7549284.

Amira Radhouani, Akram Idani, Yves Ledru, and Narjes Ben Rajeb. Symbolic Search of
Insider Attack Scenarios from a Formal Information System Modeling. LNCS Transac-
tions on Petri Nets and Other Models of Concurrency, 10:131–152, 2015. doi: 10.1007/
978-3-662-48650-4\_7.

Yves Ledru, Akram Idani, Jérémy Milhau, Nafees Qamar, Régine Laleau, Jean-Luc Richier,
and Mohamed-Amine Labiadh. Validation of IS security policies featuring authorisation
constraints. International Journal of Information System Modeling and Design (IJISMD), 6
(1), 2015a.

Akram Idani and Yves Ledru. B for Modeling Secure Information Systems - The B4MSecure
Platform. In 17th International Conference on Formal Engineering Methods, ICFEM, vol-
ume 9407 of LNCS, pages 312–318. Springer, 2015. doi: 10.1007/978-3-319-25423-4\_20.

Yves Ledru, Akram Idani, and Jean-Luc Richier. Validation of a security policy by the test of its
formal B specification - A case study. In 3rd IEEE/ACM FME Workshop on Formal Methods
in Software Engineering, FormaliSE’15, pages 6–12. IEEE Computer Society, 2015b. doi:
10.1109/FormaliSE.2015.9.

Amira Radhouani, Akram Idani, Yves Ledru, and Narjes Ben Rajeb. Extraction of insider
attack scenarios from a formal Information System Modeling. In 5th International Workshop
on Formal Methods for Security (FMS), 2014.

Jérémy Milhau, Akram Idani, Régine Laleau, Mohamed-Amine Labiadh, Yves Ledru, and Marc
Frappier. Combining UML, ASTD and B for the formal specification of an access control
filter. International Journal on Innovations in Systems and Software Engineering (ISSE), 7
(4):303–313, 2011. doi: 10.1007/s11334-011-0166-z.

Yves Ledru, Nafees Qamar, Akram Idani, Jean-Luc Richier, and Mohamed-Amine Labiadh.
Validation of Security Policies by the Animation of Z Specifications. In Proceedings of the
16th ACM Symposium on Access Control Models and Technologies, SACMAT’11, New York,
NY, USA, 2011a. ACM.

Nafees Qamar, Yves Ledru, and Akram Idani. Evaluating RBAC supported techniques and their
validation and verification. In 6th International Conference on Availability, Reliability and
Security, ARES’11, pages 734–739. IEEE Computer Society, 2011a. doi: 10.1109/ARES.
2011.112.

Nafees Qamar, Yves Ledru, and Akram Idani. Validation of security-design models using Z. In
13th International Conference on Formal Engineering Methods, ICFEM’11, volume 6991 of
LNCS, pages 259–274. Springer, 2011b. doi: 10.1007/978-3-642-24559-6\_19.
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Yves Ledru, Akram Idani, Jérémy Milhau, Nafees Qamar, Régine Laleau, Jean-Luc Richier,
and Mohamed-Amine Labiadh. Taking into account functional models in the validation of IS
security policies. In CAiSE Workshops, volume 83 of LNBIP. Springer, 2011b.

B. Domain Specific Languages

B.1. Challenges
Domain-Specific Languages (DSLs) have gained significant attention in industry and academy
with an increasing number of tools. Their advantage is their ability to offer substantial gains in
expressiveness and ease of use compared with general purpose languages. Tools for handling
DSLs can be classified in two major currents: (i) meta-compilers (Mandell and Estrin, 1966)
(named also compiler-compiler) dedicated to the construction of compilers, translators, and in-
terpreters, and (ii) language workbenches (Fowler, 2005), designed to build software through
a rich environment of multiple, but integrated, domain-centric notations. The latter have re-
ceived a lot of interest by the MDE community leading to a plethora of approaches with several
perspectives: design, execution, debugging, code generation, etc. One can refer to Kosar et al.
(2016) for a survey about tools that are referenced from 2006 to 2012, and to Iung et al. (2020)
for the period between 2012 and 2019. These studies can help engineers to choose the best DSL
option for a specific context and select the ones that fulfill their requirements.

The aforementioned surveys show that DSL tools have reached a good level of maturity, but
they also show a major limitation of these tools, the lack of formal reasoning. Kosar et al. (2016)
observed that only 5.7% of primary studies applied a formal analysis approach, and mentions
that “there is an urgent need in DSL research for identifying the reasons for lack of using formal
methods within domain analysis and possible solutions for improvement”. One possible reason,
as discussed in (Bryant et al., 2011), could be that the syntactical description of DSLs is often
straightforward, but specifying the semantics is much more harder. This would explain why the
semantics are often left toward “other less than desirable means”. Obviously, for large scale
projects formal methods are not as widespread, because of the overhead they may create during
the development activities; nonetheless, several specialized conferences have presented a lot
of approaches over the years where formal methods found their way in MDE techniques, and
vice-versa. One can refer to the MoDeVVa Workshop (Model Driven Engineering, Verification
and Validation) collocated with the Models conference, and also to the international conference
on integrated formal methods (IFM), etc.

Unfortunately, in spite of the existence of the required material in order to provide a valu-
able formal approach for DSLs, not only the integration attempts remain poor, but also the
applications of existing approaches remain limited to illustrative examples without going fur-
ther towards realistic safety-critical requirements. This statement is based on the recent study
of Iung et al. (2020) because it does not report on a better situation even several years after
(Bryant et al., 2011) and (Kosar et al., 2016). In fact, Iung et al. (2020) refer to testing as ‘the’
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verification feature of language workbenches. Not only the formal dimension is completely
absent, but also the mapping shows that among the fifty-nine discussed tools only nine (15%)
provide supports for testing. This important shortcoming of existing language workbenches
weakens their applicability, especially for safety-critical systems. In these systems correctness
is a strong requirement and it is often addressed by the application of formal methods.

B.2. Contributions
The aim of my research works in the context of DSLs is to circumvent the lack of formal reason-
ing in language workbenches. During the last three years I devoted a great deal of effort-through
this topic, leading to several publications and novel research directions. The achieved work is
materialized by the Meeduse tool (Idani, A., 2020b, Idani, A. et al., 2020), which is today the
only available language workbench that allows one to build and execute proved DSLs. The tool
won three awards: “best verification” and “audience award” at the Transformation Tool Con-
test (Idani, A. et al., 2019c) and “best presentation” at the 2nd ACM Symposium on Software
Engineering (Idani, A., 2021). The tool was also demonstrated during an invited keynote at
the MoDeVVa’21 workshop (collocated with the Models’21 conference). Furthermore, several
realistic applications have been done with Meeduse, showing how useful is a FMDE approach
in the field of DSLs, and meaning also that the approach should be investigated further in the
future.

B.2.1. Applications

Railway systems. Most modeling tools (e.g. SafeCap, RailAid, etc) are not built on a formally
defined DSL; and most formal solutions are not often supported by domain-specific modeling
tools. The application of Meeduse to the railway field showed its strength to mix both aspects in
the same tool. This work was funded by the NExTRegio project of IRT Railenium and supported
by SNCF Réseau. The intention was to deal with the analysis of railway signalling systems
based on emergent train automation solutions, especially the European Rail Traffic Management
System (ERTMS) and the underlying Train Control System (called ETCS). There are three
levels of ERTMS/ETCS which differ by the used equipments and the operating mode. The
first two levels are already operational, and the third one is still in design and experimentation
phases: it aims at replacing signalling systems with a global European GPS-based solution for
the acquisition of train positions. This collaboration led to a graphical DSL (Idani, A. et al.,
2019b,a) equipped with formal semantics, which safely assists domain experts while defining
the domain models and simulating the underlying operating rules. This work provided several
perspectives that are currently under study in the PhD thesis of A. Yar.

Model transformations. Model transformation is a core concept in MDE. It is aiming at
automating the extraction of platform specific representations and/or executable artifacts from
high level models. Despite the advances in this field, the Verification & Validation (V&V) of
model transformations still remains scattered, and perspectives on the subject are still open. An
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FMDE approach for model transformations makes sense as soon as critical concerns have to
be taken into account. Meeduse was used to participate to the 2019 edition of the transforma-
tion tool contest (TTC’19). The call for solutions was about a case study that is well-known in
safety-critical systems (even if it is an academic one): the transformation of Truth Tables (TT)
into Binary Decision Diagrams (BDD). The proposed solution (Idani, A. et al., 2019c) was car-
ried out in a collaboration with M. Leuschel from the University of Düsseldorf and G. Vega
from the LIG lab. My major observation during the contest is that among the seven participants,
Meeduse was the only attempt that addressed V&V; the other solutions addressed flexibility,
performance and optimality. Meeduse was not only used to verify the model transformation,
but also to execute it, which is its novelty in comparison with the discussed approaches. How-
ever, the downside is its low performance when executing the transformation of huge models
(millions of entries). Nonetheless, as the transformation is written in B, proved and attested for
middle size models, it can therefore be used as a reference specification from which one can
build a low-code model transformation solution.

XML standards. XML is used across a lot of domains because it favours readability (thanks
to its structuring features) and interoperability between platforms (thanks to the availability
of parsers). Several communities have developed XML-based exchange standards to structure
domain concepts and improve the interoperability of the growing number of computer applica-
tions that use these domain concepts. In the railway field for example, one can refer to RailML
(Railway Markup Language, an open XML based data exchange format for data interoperabil-
ity of railway applications). An XML file is a DSL, whose static semantics (well-formedness
rules) are established via an XML schema, which is itself a meta-model in the MDE jargon.
Dealing with XML documents opens a broad spectrum of possibilities to FMDE, since a formal
approach can be applied to any domain standard approved by experts. Having this argument, I
applied Meeduse to PNML (Petri-Net Markup Language), the international standard ISO/IEC
15909 for Petri-nets. PNML provides an agreed-on interchange format that is compliant with a
formal definition of Petri-nets and is managed by EMF-based platforms such as PNML Frame-
work and The ePNK. This application led to a new tool called MeeNET (Idani, A., 2022, 2020a)
in which a PNML file can be executed, debugged, verified and translated into an implementa-
tion.

B.3. Research directions

The current applications of Meeduse and its underlying FMDE approach show the practical side
of my contributions to the field of DSLs. Notwithstanding, several research directions are still
under investigation.

Reusing specifications. Several companies, such as Siemens Transport (Essamé, 2004) and
Clearsy (Pouzancre, 2003), have an established software development process that follows the
B method: B specifications are written from a requirements document, and then refined until
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the production of executable programs. However, one of the major difficulties with formal
specifications is their poor readability, which prevents user involvement during the validation
activities. In (The Standish Group, 2008) it is clearly mentioned that “lack of user involvement
traditionally has been the number one reason for project failure”. Furthermore, as stated by
Bjørner (2010) “before we can formulate requirements, we must understand the [application]
domain”, meaning that domain specific representations are required before starting to think
about formal models. In a pragmatic approach, these representations should be provided by
the domain expert who has a greater knowledge of the application domain than the formal
methods engineer. For these reasons I advocate for the use of DSLs as a way to validate B
specifications. Since Meeduse defines the semantics of a given DSL using B, the proposal is
to establish a proved linkage, also defined in B, between the provided B specifications and
the DSL semantics. This question motivates the ongoing thesis of A. Yar, that is dedicated to
the verification and validation of ERTMS/ETCS. On the one hand, one can find many existing
formal models of ERTMS/ETCS. For example, the ABZ’2018 conference published several
papers and artifacts that provide proved B specifications of ERTMS/ETCS. On the other hand,
standard notations such as RailML (RailML, 2018) and Rail Topo Model (International Union
of Railways (UIC), 2016), for the design of railway infrastructures are not formally defined.
RailML is an XML-based language, and Rail Topo Model is defined via a UML meta-model;
and hence, both standards can be seen as DSLs. The question is therefore: “how to make the
bridge between the existing B artifacts, that are already proved correct, and a formal definition
of standardized railway notations?”.

DSL Refinements and Models@Runtime. Meeduse links two technological spaces: that of
the B method and that of MDE. Technically it connects ProB (Leuschel and Butler, 2008), a
powerful animator and model-checker, to EMF3 (Steinberg et al., 2009), one of the most pop-
ular frameworks for building DSLs. This connection allows one to take benefit of the cross
contributions of these technological spaces in order to address several interesting challenges
for both DSLs and the B method. In this context I investigated two directions: incremental
development of DSLs through refinements and the usage of the corresponding formal models at
run-time. The first direction builds on the refinement principle of the B method, so that one can
incrementally create a DSL, or provide several versions of the same DSL without breaking the
global safety properties of the application domain. Regarding the usage of models at run-time,
it exploits the pre-established notification mechanism of EMF. This mechanism is responsible
for a great deal of the power offered to applications running EMF run-time (Steinberg et al.,
2008). This second direction is inspired by (Körner et al., 2019) where the authors proposed
to embed a model checker and animator into applications in order to use the formal models
themselves at run-time. The approach assumes that a tool like an animator or model checker is
able to compute all state transitions and proposes to implement the software system on top of
programs that execute in background the formal model by choosing traversing transitions. The
Meeduse approach goes a step further by reducing the effort required for writing the aforemen-
3 EMF: Eclipse Modeling Framework

10



Domain Specific Languages Introduction

tioned programs that interact with the animator. This topic has been the subject of a master’s
project (M2 Génie Industriel) and was supported by DomoSûr, a local project funded by the
LIG lab. The project applies Meeduse to instrument an executable smart-home solution that is
proved correct. Furthermore, this approach has been applied as a proof of concept in the smart-
buildings field to provide a lightweight development of outbreak prevention strategies (Idani,
A., 2021).

A pragmatic embedding of B within modelling languages. There exists a plethora of ap-
proaches (including our works in MDS) that extract B specifications from modeling languages
(UML, BPMN, Petri-Nets, etc). Overall, they share common motivations: (i) give a precise
definition to the input formalism, and (ii) apply the B tools to address the verification tasks.
Nevertheless, they also share a common limitation: the extraction process and the underlying
transformation rules are not claimed correct in the literature. A lot of these approaches apply
MDE tools (e.g. EMF (Steinberg et al., 2008), Acceleo (Eclipse, 2012), ATL (Jouault et al.,
2006), etc) to ensure the transformation into B, which do not favour formal verification espe-
cially as the latter are not supported by provers and/or model-checkers. Obviously Meeduse can
be applied to rethink transformational approaches using the B language so that the correctness
of the transformation can be ensured. In my opinion this observation is reasonable considering
that mostly these approaches are done by persons who have good skills in B. Furthermore, not
only Meeduse has showed its strength in the field of model transformation, but it is itself built
on an MDE architecture that can interoperate with the aforementioned tools; and given that it
embeds ProB, it therefore includes the required verification features. The challenge of (cor-
rectly) embedding B within modelling languages is addressed in the xOWL project (executable
OWL4), that I have undertaken recently with the LIMICS5 unit of INSERM6. The project is
about domain ontologies and health-care applications. Among its objectives, the xOWL project
proposes to revisit, via Meeduse, the two kinds of embeddings (Aït-Ameur et al., 2017): shallow
embedding and deep embedding. In a shallow embedding, the ontology is directly translated
into B without keeping trace of its semantics, and in a deep embedding, the ontology together
with its underlying semantic domain are mapped to a formal B model. The contribution of
Meeduse is the usage of B in order to rigorously define the transformation rules, prove their
correctness and execute them as well to produce the expected formal models.

Assisted animation of xDSLs via machine learning and ProB. Under the MDE umbrella,
executable DSLs (xDSLs) are seen as an efficient way for building a model of the system, be-
cause of their ability to simulate the system’s behaviour, before jumping to its implementation.
Most of the tools dedicated to xDSLs provide interactive animation features (also called debug-
ging) allowing domain experts to understand a behaviour, find the origin of errors or simply
play with normal execution scenarios. This feature in Meeduse benefits from the various capa-
bilities of ProB, especially animation, model-checking and constraint solving. However, even
4 OWL: Web Ontology Language.
5 LIMICS: Laboratoire d’Informatique Médicale et d’Ingénierie des Connaissances en e-Santé.
6 INSERM: Institut national de la santé et de la recherche médicale
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if Meeduse is built on a well-established formal approach, debugging a model remains a cyclic
process, during which, after the model is created or refined, the modeler executes it and navi-
gates through its state space to check if the requirements are satisfied, and if not, the steps are
repeated. Practically, “satisfying the requirements” means that, starting possibly from any state,
for reaching some target states, the sequence of needed actions to be performed on the model
is the desired one. Significant drawbacks of such an approach is that in the debugging loop, it
is very likely that the state space will change, thus, the same sequence of actions is no longer
valid, or the state space could be considerably large, therefore, a manual exploration could be
impractical. A brute force inspection of all the possible paths is out of discussion, thus there
is a need for an “intelligent” recommendation of which actions to perform for specific states.
With this in mind, machine learning techniques appear as a promising approach to assist inter-
active animation, by identifying the good actions to execute, towards a specific goal defined by
the domain expert. This topic has been investigated in a master’s project (M2 MoSIG) that I
co-supervised with D. Vaufreydaz from the M-PSI7 team of the LIG lab. After investigating the
state of the art, we realized that assisting the interactive animation of xDSLs via AI techniques
were not explored at all; and thus this project is a first attempt in this field. Our work resulted
in the development of a reinforcement learning approach that is integrated within Meeduse and
whose objective is to provide guidance during the animation (and the debugging) of an xDSL.

B.3. Main publications
Akram Idani. The B Method meets MDE: Survey, progress and future. In 16th International

Conference on Research Challenges in Information Science (RCIS), volume 446 of LNBIP.
Springer, 2022a. URL https://doi.org/10.1007/978-3-031-05760-1_29.

Akram Idani. A Lightweight Development of Outbreak Prevention Strategies Built on Formal
Methods and xDSLs. In ACM European Symposium on Software Engineering (ESSE). ACM,
2021. URL https://doi.org/10.1145/3501774.3501787.

Akram Idani. Formal model-driven executable DSLs: Application to Petri-nets. International
Journal on Innovations in Systems and Software Engineering (ISSE), 18(4), 2022b. doi:
10.1007/s11334-021-00408-4.

Akram Idani, Yves Ledru, and German Vega. Alliance of Model Driven Engineering with a
Proof-based Formal Approach. International Journal on Innovations in Systems and Software
Engineering (ISSE), 16(3):289–307, 2020. doi: 10.1007/s11334-020-00366-3.

Akram Idani. Meeduse: A tool to build and run proved DSLs. In Brijesh Dongol and Elena
Troubitsyna, editors, 16th International Conference on Integrated Formal Methods (IFM),
volume 12546 of LNCS, pages 349–367. Springer, 2020a. URL https://doi.org/10.
1007/978-3-030-63461-2_19.

7 M-PSI: Multimodal Perception and sociable Interaction
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Akram Idani. Dependability of Model-Driven Executable DSLs, Critical Review and Solutions.
In 14th European Conference on Software Architecture, Companion Proceedings, volume
1269 of CCIS, pages 358–373. Springer, 2020b. URL https://doi.org/10.1007/
s11334-021-00408-4.

Akram Idani, Germán Vega, and Michael Leuschel. Applying Formal Reasoning to Model
Transformation: The Meeduse solution. In Proceedings of the 12th Transformation Tool
Contest, co-located with STAF’2019, Software Technologies: Applications and Foundations,
volume 2550 of CEUR Workshop Proceedings, pages 33–44, 2019a.

Akram Idani, Yves Ledru, Abderrahim Ait-Wakrime, Rahma Ben-Ayed, and Simon Collart-
Dutilleul. Incremental Development of a Safety Critical System Combining formal Methods
and DSMLs�Application to a Railway System. In 24th International Conference on Formal
Methods for Industrial Critical Systems (FMICS’2019), volume 11687 of LNCS, pages 93–
109. Springer, 2019b.

Akram Idani, Yves Ledru, Abderrahim Ait-Wakrime, Rahma Ben-Ayed, and Philippe Bon.
Towards a Tool-Based Domain Specific Approach for Railway Systems Modeling and Val-
idation. In Third International Conference onReliability, Safety, and Security of Railway
Systems (RSSRail’2019), volume 11495 of LNCS, pages 23–40. Springer, 2019c.

C. How to read this document?
The objective of a HDR is:

“ L’Habilitation à Diriger des Recherches sanctionne la reconnaissance du haut niveau
scientifique du candidat, du caractère original de sa démarche dans un domaine de la sci-
ence, de son aptitude à maîtriser une stratégie de recherche dans un domaine scientifique
ou technologique suffisamment large et de sa capacité à encadrer de jeunes chercheurs.”
(Arrêté du 23 nov. 1988 - art. 1).

Considering this objective, there are several ways to write a HDR; ranging from detailed
presentation to a general overview of the major research contributions. The doctoral school
ED-MSTII, advocates for two possibilities8:

“ Le mémoire d’habilitation peut correspondre à un document de type « thèse » (mono-
graphie) ou être une compilation d’articles de recherche significatifs accompagné d’une
synthèse de quelques dizaines de pages.”

8 https://edmstii.univ-grenoble-alpes.fr/MSTII-formulaires/
Procedures-HDR-MathsAppli-Info.pdf, Section 3, Page 3.
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This document is a mixture of the two possibilities. Some chapters refer to already published
papers, and some other chapters present a self-contained technical contribution. In all cases,
most of the work presented in this document has been published. The preamble of every chapter
provides a list of papers to which the reader may refer in order to get more details about the
discussed results. As stated in this introduction, I worked in two fields: MDS and MDE; hence,
the remainder is structured in two parts:

• Part I (Formal Modeling of Secure IS) presents my contributions in MDS

• Part II (Building correct DSLs) presents my contributions in MDE and DSLs.
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A Model-Driven Architecture for
UML-to-B
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M ethod integration has been a challenge since several years. The objective is to link
formal and graphical paradigms in order to guarantee the quality of specifications.
Indeed, on the one hand, graphical languages (such as UML) have been widely

used for specifying, visualizing, understanding and documenting software systems, but they
suffer from the lack of precise semantical basis. Hence, these languages are more convenient
for large-scale software than for industrial applications which address safety challenges. On the
other hand, formal methods (such as B (Abrial, 1996)) are specifically used for safety critical
systems in order to rigorously check their correctness but they lead to complex models which
may be difficult to read and understand. These complementarities between formal and graphical
languages motivate a lot of research teams to develop tools which combine both languages. In-
deed, disadvantages of semi-formal languages can be avoided thanks to contributions of formal
languages and vice versa. In my works I focused my interest on tools dedicated to produce B
models from UML diagrams.

The disparity between these two paradigms provides several transformation strategies from
UML models to the B language and explains the existence of various UML to B translation
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approaches (Laleau and Polack, 2002, Lano et al., 2004, Ledang, 2001, Meyer, 2001, Snook
and Butler, 2006b). Each approach proposed its own transformation rules and encoded them in
a dedicated tool. Despite the difference between the resulting B specifications, their transfor-
mation rules are overlapping and can be mixed and customized for a better coverage of UML
concepts. For a more flexible application of model transformation tools, the works of M.-
A. Labiadh (supervised by Y. Ledru and myself, and supported by the ANR-SELKIS project)
proposed a unifying MDE platform in which one can enhance and customize the existing UML-
to-B approaches. This chapter provides the general ideas behind the platform.

Related publications
Akram Idani, Mohamed-Amine Labiadh, and Yves Ledru. Infrastructure dirigée par les mod-

èles pour une intégration adaptable et évolutive de UML et B. Ingénierie des Systèmes
d’Information, 15(3):87–112, 2010. URL https://doi.org/10.3166/isi.15.3.
87-112. Extended version.

Akram Idani, Yves Ledru, and Mohamed-Amine Labiadh. Ingénierie dirigée par les modèles
pour une intégration efficace de UML et B. In Actes du XXVIIème Congrès INFORSID, pages
261–276, 2009.

Mohamed-Amine Labiadh, Akram Idani, and Yves Ledru. Approche transformationnelle à base
de méta-modèles pour l’intégration de UML et de notations formelles. In Actes de la Con-
férence AFADL’10: Approches Formelles dans l’Assistance au Développement de Logiciels,
pages 197–212, Poitiers, June 2010.

Structure
This chapter is structured as follows:

• Section 1.1 gives a quick overview about the B method and its underlying tools.

• Section 1.2 is a survey about existing UML-to-B techniques for class diagrams.

• Section 1.3 discusses a model-driven architecture that we developed to gather in a unify-
ing framework, the various approaches.

• Section 1.4 shows how multi-transformations are defined and executed within our plat-
form.

• Section 1.5 draws the conclusions of this chapter.
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1.1 Brief overview of the B method
This section gives a brief overview of the B method focusing on the notions that are useful
for the readability of this document. The reader can refer to the B-Book (Abrial, 1996) for
more details about the B theory. Roughly speaking, B is a formal method based on mathe-
matical foundations (set theory and first order logic) and where the system state is modeled
via predefined abstract data types. It covers both static and dynamic aspects of a system. The
static aspects are characterized by a set of variables and constants (called data) and the dynamic
aspects are performed by a set of operations built on the generalized substitution theory.

1.1.1 Abstract machines
The notion of abstract machine is fundamental in B. It provides a structured development com-
posed of three parts: header, declarations and operations. Abrial (1996) compares abstract
machines to a pocket calculator with an invisible memory and a number of keys:

“The memory (or better the values stored in it) forms the state of this
machine, whereas the various keys are the operations that a user is able
to activate in order to modify the state.” Abrial (1996).

Structural features of abstract B machines

MACHINE

HEADER PART

Name of the machine
Parameters
Constraints

STATIC PART (DECLARATIVE)
Sets
Constants
Properties of the constants
Variables (state)
Invariant (properties of the state)

DYNAMIC PART (OPERATIONAL)
Initialization of the variables
Operations

END

1. The header part: introduces the name of the machine, its parameters and the constraints
of these parameters;

2. The static (declarative) part: includes sets, constants and variables. It also lists the prop-
erties of the constants and a characterization of the machine state using invariants. The
latter are expressed in the first order predicate logic;
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3. The dynamic (behavioural) part: includes the initialization of the variables and the var-
ious operations. The task of an operation is to modify the state of the machine without
violating its invariant properties.

1.1.2 Structured developments
The B method masters the complexity of the formal development process using structured spec-
ifications. There are two kinds of structures: refinement and composition. Refinement is used
to transform an abstract model into a more concrete one, and composition makes possible to
construct an abstract machine from smaller, already defined and proved, ones.

1.1.2.1 Refinements

Starting from a high-level abstract specification, and following a refinement process until the
production of an executable program, the B method, is a well-established development process.
It has the ability to cover all the stages of a software life cycle. Indeed, B formal documents
(Figure 1.1) may define several abstraction levels ranging from preliminary design to coding.
The transition from one level to another is called refinement, and is guided by proof obliga-
tions whose purpose is to establish a correct relationship between the abstraction levels. This
decomposition into successive proved refinements allows modular and safe developments.

Requirements

Informal specifications

Coding

Implementation

Detailed design

Refinement 1

Refinement n

Preliminary design

Abstract specification

Refinement

Successive

refinements

Refinement

(B Method)

Formal Documents

Proofs

Proofs

Proofs

Proofs
Proofs

Proofs

Figure 1.1: Formal development process

In B, there are two kinds of refinements: behaviour refinement and data refinement. The
behaviour refinement means that the operation body is changed by an other one but without
violating neither the conditions under which the initial operation is defined nor its possible
executions. Data refinement applies a new set of data in the refined model, that is some data
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can be replaced and some data can be added. When data are being replaced, a linkage invariant
must be defined to specify a conformity relationship between the old data and the new ones.

1.1.2.2 Composition

The B method provides an assembly mechanism aiming at the creation of structured and interde-
pendent components. The objective, as stated in (Abrial, 1996), is to compose the specifications
of two (or more) abstract machines and thus, eventually, construct abstract machines in an in-
cremental way. The composition mechanism in B, establishes the rules under which an abstract
machine can access (read, write) data and operations issued from other machines. There are
five clauses that ensure this composition: INCLUDES, SEES, USES, EXTENDS, PROMOTES and
IMPORTS.

The mostly used composition construct in the current document is the inclusion (clause
INCLUDES). The latter is illustrated in Figure 1.2 where two abstract machines M and N

are presented, and such that N includes M . The visibility rules are then as follows: (i) the
parameters of M are not accessible outside M , (ii) the variables of M can be read by N but
their modification is only possible via operation call, (iii) the properties of N can refer to sets
and constants from M , and (iv) the invariants of N can refer to sets, constants and also variables
from M .

...

...

PROPERTIES

...

INVARIANT

OPERATIONS

MACHINE N

SETS

CONSTANTS

...

VARIABLES

...

OPERATIONS

MACHINE M

Parameters

INCLUDES

call

read

Figure 1.2: Clause INCLUDES.

1.1.3 Generalized substitutions

1.1.3.1 General concepts

A B machine behaves like a state/transition model whose states are represented by the various
variables of the machine and the transitions are ensured by its operations. To this aim, B applies
the generalized substitution theory, inspired by the Hoare logic (Hoare, 1969) and semantically
built on the weakest precondition (Wp) calculus of Dijkstra (1975). Tables 1.1 and 1.2 give
some major substitutions of the B language. Formula [S]R determines the Wp that ensures the
termination of substitution S and such that assertion R is true after the termination of S. For
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example, in the definition of the “becomes equal” substitution, [x := e]R denotes the formula
obtained after replacing all free occurrences of x in R by expression e. This is defined as R[e/x]

(Cf. the B-Book Abrial (1996), § 1.3.3).

Substitution Formal definition B notation Semantics (Wp)
Becomes equal x := e x := e [x := e]R, R[e/x]

Sequencing S;T S;T [S;T ]R, [S][T ]R

No effect skip skip [skip]R, R

Preconditioned P |S PRE P THEN S END [P |S]R, P ^ [S]R

Bounded choice T []S CHOICE T OR S END [T []S]R, [T ]R ^ [S]R

Guarded P =) S SELECT P THEN S END [P =) S]R, (P ) [S]R)

Unbounded choice @z · S VAR z IN S END [@z · S]R, 8z · [S]R

Where : x is a variable; e is an expression; S and T are substitutions; P et R are predicates.

Table 1.1: Primitive substitutions

B Notation Formal definition
IF P THEN S ELSE T END P =) S[]¬P =) T

CHOICE S OR T OR . . . OR U END S [] T [] . . . [] U

ANY z WHERE P THEN S END @z · (P =) S)

x :2 E @z · (z 2 E =) x := z)

ASSERT P THEN S END P |(P =) S)

Where x a variable; E a set ; S, T and U substitutions; and P a predicate.

Table 1.2: Other substitutions

1.1.3.2 Correctness

One major advantage of B is theorem proving, which refers to the demonstration of logical
formulas (called proof obligations, POs) to ensure a correctness claim for a given property
(such as an invariant property). Proof obligations are defined by means of Wp formulas that are
generated from the various constructs of the B machine.

POs of the initialisation. Having the predicates I , R and C, which denote respectively the
invariants, the constants and the constraints of a machine, and S the substitution of the initialisa-
tion; then the latter is proved correct, if and only if formula R ^C =) [S]I holds. This proof
claims that starting of any state s where both the properties of the constants and the constraints
over the parameters of the machine are true, then the execution of S from s terminates in a state
such that the invariant I is true.

POs of the operations. The correctness of an operation guarantees that the invariant remains
true after the execution of the operation. The invariant must be also true before. Considering
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that the general form of an operation is r  � op_name(p) = PRE P THEN A END (where
P is a precondition and A a substitution), then the underlying PO is: I ^R^C ^P =) [A]I .

1.1.4 Illustration

1.1.4.1 A simple example

To illustrate the notions discussed in the previous subsections, let’s consider the simple example
of Figure 1.3. This B model is composed of two abstract machines that are related to each other
via the inclusion mechanism. The left side of the figure (machine COUNTER) defines a simple
counter (an integer) with three basic operations: setValue, increase, and decrease. The right
side is a high level model (machine RESERVATION) of a place reservation system providing
two services: book and cancel.

MACHINE
COUNTER

VARIABLES
count

INVARIANT
count 2 INTEGER

INITIALISATION
count := 0

OPERATIONS
setValue(val) =

PRE val 2 INTEGER THEN
count := val

END ;
increase =

PRE count < MAXINT THEN
count := count + 1

END ;
decrease =

PRE count > MININT THEN
count := count - 1

END
END

MACHINE
RESERVATION(Max)

INCLUDES
COUNTER

CONSTRAINTS
Max 2 NAT

INVARIANT
count 2 0 .. Max

INITIALISATION
setValue(Max)

OPERATIONS
book =

PRE count > 0 THEN
decrease

END;
cancel =

PRE count < Max THEN
increase

END
END

Figure 1.3: A simple example.

The invariant of machine COUNTER is a simple typing invariant. However, to guarantee its
correctness operations increase and decrease must respect the limits MININT and MAXINT,
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which justifies their respective preconditions. The invariant property of machine RESERVA-
TION restricts the counter values in the interval 0..Max, where Max is a parameter of the ma-
chine. The dynamic part (initialisation and operations) of machine RESERVATION applies the
basic operations provided by machine COUNTER. This is done via the inclusion mechanism,
which provides a read access the the variables of the included machine and gives the possibility
to call its operations.

1.1.4.2 Verification

The B method is assisted by several verification tools such as provers, animators and model-
checkers. Butler et al. (2020) give an overview about these tools, together with their history,
evolution and industrial usage. In my works I mainly used AtelierB for theorem proving and
ProB (Leuschel and Butler, 2003) for animation and model-checking. Figure 1.4 is a screenshot
of the interactive prover of AtelierB showing the POs of machine RESERVATION. The “Pre-

condition predicate” refers to the claim that an operation preserves the preconditions under
which it can call other operations and the “Invariant is preversed” refers to the Wp calculus
as discussed above. From machine RESERVATION, AtelierB generated 6 proof obligations and
it was able to prove all of them automatically.

Figure 1.4: Screenshot of the AtelierB interactive prover

Regarding model-checking, its aim is to exhaustively explore of the state space of a B ma-
chine, which requires bounded data structures (e.g. given sets rather than abstract sets, etc).
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Figure 1.5 shows the Java-FX interface of ProB (Leuschel and Butler, 2003) while checking the
invariant preservation of machine RESERVATION. In this specification, parameter Max is set
at three. In addition to the numerous verification and visualisation features of ProB, an open-
source Java-based API (Körner et al., 2020) of the tool is also available, which offers convenient
access to the core features of ProB via external programs.

Figure 1.5: Screenshot of ProB

1.2 A quick survey of UML-to-B techniques

1.2.1 Existing approaches
The translation of UML diagrams into B specifications has been addressed since several years.
The aim is to strengthen the semantics of UML using a mathematical language and to apply
tools of the B method during the verification and validation activities. Several research works
have been devoted to this topic and have defined various mappings from UML to B: UML2B
(Hazem et al., 2004), UML2SQL (Laleau and Mammar, 2000), U2B (Snook and Butler, 2004)
and ArgoUML+B (Meyer, 2001). Every approach has its own objectives and characteristics:

• UML2SQL (Laleau and Mammar, 2000, Laleau and Polack, 2002): this work provides
a formal framework for the development of database applications. The B specifications
are extracted from UML class diagrams, state-transition diagrams and activity diagrams.
Refinement tactics are proposed in order to incrementally generate, from the various B
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specifications, a correct implementation of a relational database and a set of safe SQL
transactions and queries (such as insertion, deletion, etc).

• U2B (Snook and Butler, 2004, 2006b): this work proposes to produce a B specification,
called “natural”, so that the proof obligations are as simple as possible. For example,
instead of generating a B machine from each UML class (of a class diagram), the authors
generate a unique B machine that gathers the B constructs of the whole package. In-
tegrity constraints are expressed in a new formalism (µB) that is built on the B language.
Furthermore, C. Snook and his co-authors in (Snook and Butler, 2006b) bring a touch
of originality to this technique by specializing UML concepts using stereotypes. These
stereotypes provide some guidance to the translation process. In this work both UML
class diagrams and state/transition diagrams are addressed.

• ArgoUML+B (Ledang, 2001, Meyer, 2001): this work tried to take into account com-
plex UML features. It proposed, on the one hand, various solutions for the transla-
tion of the UML inheritance mechanism, and on the other hand, a new formalization
of state/transition diagrams. The starting point is a UML specification (so-called “com-
plete”) describing both structural and behavioral aspects of a system. The authors as-
sociate to each UML-to-B translation rule a derivation schema showing how the UML
constructs are mapped to the B model. Other contributions of this work include the cov-
erage of use-case diagrams and transitions with multiple sequenced actions.

1.2.2 Application
Figure 1.6 applies the three translation tools to a simple UML class with one attribute and
shows the resulting B models. One can observe from this figure that there is a consensus about
the core B data produced from a UML class, however the relation between these data is trans-
lated in different ways. The two first approaches transform a class C into an abstract set A
(clauses SETS of figure 1.6) representing the set of possible instances of the class and a vari-
able v (clauses VARIABLES of figure 1.6) representing the set of existing instances of C. The
invariant (clauses INVARIANT of figure 1.6) produced by the U2B tool (Snook and Butler,
2004) is v 2 P(A) while the invariant produced by the UML2SQL tool (Laleau and Mammar,
2000) is v ✓ A. Although these two invariants are semantically similar, they are structurally
different because they result from two different transformation rules. The ArgoUML+B tool
(Meyer, 2001, Ledang, 2001) produces the same invariant as the UML2SQL tool. However, it
adds the set of all possible objects OBJECTS and considers that A is a constant such that A ✓
OBJECTS. This third translation is structurally and semantically different from the two others.

This example shows that an analyst who is working on the formalization of a UML diagram
may be interested by these three transformations depending on the point of view that he/she
wants to address. Indeed, one may imagine a fourth transformation in which the U2B and
the ArgoUML+B approaches are combined together; meaning that we keep set OBJECTS and
constant A such that A ✓ OBJECTS, but we produce the invariant of the U2B tool: v 2 P(A).
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Similar ideas can be applied to class attributes producing a total function (!) or a relation ($)
depending on the selected approach.

U2B UML2SQL

ArgoUML+B

Figure 1.6: Several translations of a UML Class into B

1.2.3 Discussion
Table 1.3 summarizes the structural features of UML class diagrams that are addressed by the
three major UML-to-B approaches. The table shows that each approach has its advantages
and limitations and that obviously for a better coverage of UML a combination of the various
approaches is needed. The research works of M.-A. Labiadh started from this observation and
proposed a Model-Driven Architecture (MDA) in which various transformations can be applied
and experimented. The MDE paradigm is suitable in this context since MDE widely addressed
languages and techniques to define and execute model transformations. In the MDE literature,
most works were interested by the developer point view: “how to encode the transformation
rules and apply the underlying execution engines”.

In this work, we are also interested by the user point of view. When several transformations
are possible for a given element in the source model, existing tools restrict the transformation
to only one choice in order to make the transformation deterministic. However, the end-user
may be interested by various possible choices depending on his/her point of view about the
good resulting model. This problem is more general than the particular case of UML-to-B.
The extraction of Java programs from UML is a good illustration of this claim. One can get
different Java programs by applying different tools. Modelio1 for example provides a unique
code generation feature, while the IBM RSA tool2 provides a configuration feature that allows

1 Modelio: https://www.modelio.org
2 RSA Designer: https://www.ibm.com/products/rational-software-architect-designer
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the user to personalize the transformation by (un)picking some pre-established options.

UML2SQL ArgoUML+B U2B
Classes (undetermined instances) + + +

Classes (fixed instances) - - +
Class attributes + + +

Distinction between multi/mono-valued attributes + - -
Inheritance + + +

Associations multiplicities + + +
Associations navigation direction - + +

Roles + - +
Associations constraints + + -

Distinction between fixed/non-fixed associations + - -
Association + + -

Associative classes + - -
Parametrized classes - - +

Legend : “+” (considered criterion ) ; “-” (non considered criterion)

Table 1.3: Overview of the supported UML structural features

1.3 Towards a unifying method integration approach

1.3.1 Model driven engineering and method integration
The model driven engineering (MDE) approach OMG (2003) defines the software develop-
ment life-cycle as an iterative process based on model refinement and integration. It makes the
distinction between Platform Independent Models (PIM) and Platform Specific Models (PSM).

PIM: “A platform independent model is a view of a system from the platform indepen-
dent viewpoint. A PIM exhibits a specified degree of platform independence so as to
be suitable for use with a number of different platforms of similar type.” OMG (2003).
PSM: “A platform specific model is a view of a system from the platform specific view-
point. A PSM combines the specifications in the PIM with the details that specify how
that system uses a particular type of platform.” OMG (2003).

A software development process built on MDE is therefore seen as a gradual transforma-
tion of a PIM model, which specifies the solution of a system independently of the program-
ming technologies, to a PSM model that describes how this solution can be implemented in a
given technology. To this purpose, the MDE approach advocates for the use of rules to define
the consistency of models and to gradually transform them during the development process.
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Platforms that support this approach require a precise description of the various models using
meta-models. Hence, a model transformation rule is a possible projection from a source meta-
model to a target meta-model. In the context of method integration (e.g. UML and B), the MDE
approach has several benefits:

(i) Identify the subset of the input model for which the transformations can be applied;

(ii) Have a well-defined and executable catalog of transformation rules;

(iii) Instrument, via several possible tools, the meta-models and the transformation rules.

1.3.2 The proposed model driven architecture
Existing MDE platforms dedicated to model transformation include a transformation engine that
is built on three major elements: (i) the model handler such as EMF3 (Steinberg et al., 2009),
(ii) the transformation language such as QVT4 (Gardner et al., 2003), and (iii) the language
interpreter (or compiler) such as QVTo (Eclipse, 2021). Our MDE architecture for UML-to-B
is developed within the EMF platform, where model transformations can be defined at different
abstraction levels:

• The lowest level, based on the EMF APIs, often applies the Java programming language;

• The highest level applies a high-level transformation language close to QVT, such as ATL
(Jouault et al., 2006) and its virtual machine;

• The intermediate level applies a meta-programming language such as XTend (Efftinge,
2006), which is a dialect of Java that compiles into Java compatible source code.

As our intention is to mix the UML-to-B approaches in one unifying framework, then the un-
derlying transformation rules must fulfil some functional requirements according to the end-user
and the rule-writer (the developer) points of view. From a user point of view, the transformation
environment must be configurable and offers therefore the possibility to adapt the transforma-
tion process by combining rules issued from different approaches. From a rule-writer point of
view, the tool must on the one hand offer an extensibility feature to easily introduce new trans-
formations, and on the other hand, provide a way to execute rules that are encoded at different
abstraction levels.

Figure 1.7 illustrates the proposed MDE architecture. It is composed of three components:
UML, M2M5 and TMF6. Component UML can be any Eclipse based UML editor (e.g. Top-
Cased, Papyrus, etc). Component M2M constitues the originality of this work. It includes a
transformation engine, so-called “UML/B Transformation Engine”, that manages and executes
the UML-to-B transformations at different abstraction levels. The inputs of this engine are:
3 Eclipse Modeling Framework: www.eclipse.org/modeling/emf/
4 Query/View/Transformation: https://www.omg.org/spec/QVT/1.3/PDF
5 M2M: Model to model.
6 TMF: Textual modelling framework.
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(i) the UML and B meta-models (the latter is roughly discussed in the next subsection),

(ii) a catalog of UML-to-B rules that are written in Java (for the lowest level), QVTo (for the
highest level) or XTend (for the intermediary level), and

(ii) a user-defined configuration file giving the transformation process and the sequence of
rules to apply from the catalog (this point is detailed in section 1.4).

Finally, component TMF generates the textual file from a given instance of the B meta-
model (called B model in Figure 1.7). It applies a classical model-to-text transformation.

Figure 1.7: Linking UML and B in an MDE architecture

Besides the possibility to reuse and combine rules issued from different UML-to-B ap-
proaches, the advantage of this MDE architecture compared with the existing UML-to-B tools
(U2B, ArgoUML+B, UML2SQL) is its extensibility. In fact, in order to cover the transforma-
tion of UML constructs that have not been considered by the existing approaches, the rule-writer
simply adds new rules to the default catalog of transformations that we have implemented; and,
if necessary, extends the B meta-model.
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1.3.3 A meta-model for the B method
The B meta-model is a core element of our platform. This meta-model has been discussed
in (Idani, A., 2006, Idani, A. and Coulette, 2008, Idani, A. et al., 2009, Idani, A., 2009). It
is used by components M2M and TMF of Figure 1.7, which are respectively dedicated to the
translation from UML into B, and the generation of the B textual files from the resulting B
model. This meta-model gives a high-level structural view about the abstract syntax of B. I
present an excerpt of it here in order to give an overview of its main concepts and show how the
dependencies between the various B constructs are defined.

1.3.3.1 Abstract machines

An abstract machine (Figure 1.8), specified by the meta-class BMachine, is composed of static
and dynamic parts. The static part contains declarations of sets, constants and variables, and a
characterization of these data in terms of constants properties (clause PROPERTIES) and invari-
ants (clause INVARIANT). Meta-class BData refers to: abstract sets (BAbstractSet), given sets
(BEnumSet), constants (BConstant) and variables (BVariable). The dynamic part, is defined
by meta-classes BOperation and BInitialisation, which are used to represent respectively the
operations and the initialization of a B machine.

Figure 1.8: B abstract machines meta-model

1.3.3.2 Typing

The B typing meta-model is given in Figure 1.9. It represents the abstract syntax of the most
commonly used constructs for typing B data. It does not refer to the B theory. For example, a
variable R can be defined in a B machine as:
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R = {r|r 2 P(E1 ⇥ E2) ^

8x, y, z · (x, y 2 r ^ x, z 2 r ) y = z)}

where E1 and E2 are two abstract sets (instances of meta-class BAbstractSet). However, such a
variable is commonly typed in B with the following invariant:

R 2 E1 7! E2

and corresponds to a partial function. The B meta-model is then suitable for this second defini-
tion of variable R. In fact, it deals with a subset of the B language which is sufficient to cover
all the UML-to-B translations addressed by the existing approaches.

Figure 1.9: B typing meta-model

Typed elements (meta-class BTypedElement) are: parameters, constants, variables, prede-
fined B values (e.g. TRUE and FALSE) and values of given sets. Class TypingPredicate mainly
represents: equality, inclusion and membership. Since the meta-model does not represent the B
theory, but the B syntax, it distinguishes between the various typing operators.

Basic types of the B language are represented with class BBasicType. They include pre-
defined primitive types (class BPrimitiveType) such as BOOL and NAT, and B sets which are
mainly abstract sets (class BAstractSet) and given sets (class BEnumSet). Meta-class BPowType
represents a type defined using the power-set type constructor P. Some specializations of this
meta-class could be defined such as P1, F (finite power-set) and F1.
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1.3.3.3 Relations and associations

Class BComposedType denotes any type defined from at least two other types. It designates
functional relations (e.e.“$”,“!”, etc) and products. Each BComposedType is then defined
from the types of its domain (role name +dom) and its range (role name +ran). Regarding
Meta-class Multiplicity, it describes the cardinalities of the functional relations (Table 1.4).
Although these cardinalities are not explicitly defined in B, they are introduced in the meta-
model because of their suitability to the translation of UML associations into B relations.

multDom multRan
ComposedType lower upper lower upper

Relation $ 0 * 0 *
Partial function 7! 0 * 0 1

Total function ! 0 * 1 1
Partial injection 7⇢ 0 1 0 1

Total injection ⇢ 0 1 1 1
Partial surjection 7⇣ 1 * 0 1

Total surjection ⇣ 1 * 1 1
Partial bijection 7⇢⇣ 1 1 0 1

Total bijection ⇢⇣ 1 1 1 1

Table 1.4: Cardinalities associated to specializations of functional relations.

1.4 Multiple transformations
Most of the MDE tools that deal with model transformations apply stand-alone transformations
where the transformation is defined as a list (preferably deterministic) of transformation rules.
However, often various model transformations need to be composed and integrated during the
modeling activities (e.g. UML-to-Java). One naive solution for multiple transformations is
to encode all the possible transformations and let the user select the one that satisfies his/her
objective. However, this is not suitable for us, because on the one hand, this would lead to a
multitude of different UML-to-B transformations, and on the other hand, among our require-
ments we would like to provide an extensibility mechanism so that one can adapt existing rules
or extend them. Thus, the transformation could not be stand-alone, and must be configured by
the end-user, who decides which rules to apply. Making the transformation configurable, gives
a fine-grained application level to its rules. Rather than selecting a pre-established transforma-
tion, the user creates his/her own transformation by selecting the rules to apply.

1.4.1 A meta-model for configurable transformations
One major benefit of configurable transformations is that the underlying rules can be reused.
In a stand-alone approach common rules must be duplicated, which makes their modification
complex and error-prone. However, the difficulty of configurable transformations is to correctly
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manage their variations and their uncommon parts. Wagelaar and Straeten (2006) discussed
this challenge and presented three techniques that can help manage the composition of model
transformations in an MDE context: knowledge-based systems, feature modeling and domain-
specific languages (DSLs). These techniques are not directly related to our intention to apply
MDE tools in order to deal with multiple transformations. In fact, the underlying solutions
are more suitable to model refinements and model refactoring. Nevertheless, they are inspir-
ing as they recommend the definition of a grammar (or a meta-model) that describes the legal
configurations of model refinements. This idea is developed and enriched in this work in or-
der to address the multiple transformations of UML into B. Figure 1.10 is a simplified version
of our meta-model (Idani, A. et al., 2010a) for configurable transformations. It features two
components: ExecutionContext and Configuration.

Figure 1.10: Configurable model transformation meta-model
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The execution context (whose entry point is class ConfigContext), is apart of the API
of our transformation engine. It refers to: the input UML model, the output B model (class
BSpec), the user configuration (class Config), and a trace model (class Trace) that registers
the executed rules together with their inputs and outputs. Regarding the configuration, as stated
in Figure 1.7 (Section 1.3.2, Page 30), in addition to the catalog of UML-to-B rules, the user
provides a configuration model (called Config in Figure 1.7). This model covers three major
notions: (i) transformation process and phasing, (ii) abstraction levels and (iii) transformation
rules. Note that most of the concepts of this meta-model are generic and can be reused for other
kinds of multiple transformations (e.g. UML-to-Java). To this purpose only a subset of the
execution context need to be specialized.

1.4.2 Transformation process and phasing
In (Czarnecki and Helsen, 2006, Cuadrado and Molina, 2007) phasing is defined as a schedul-
ing mechanism in which the transformation process is divided in several steps, each of which
gathers rules that share a specific purpose. Inspired by these works, we define a transforma-
tion (meta-class Transformation) as a sequence of phases whose order is specified by the
“rule writer”. Attribute isActive of meta-class Phase allows one to switch-off a phase and
association require defines the dependencies that must be checked before running a phase.
Figure 1.11 gives a phasing example composed of five steps that depend on the input UML
element: packages, classes, associations, attributes and operations.

Top-down arrows represent the ordering of phases, and bottom-up arrows represent the de-
pendencies between them. For example, the transformation of attributes, associations and op-
erations requires the transformation of classes. If the latter is not active then the other phases
cannot be executed.

Figure 1.11: A transformation process for a UML class.
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1.4.3 Abstraction levels
For a good flexibility of the UML-to-B transformations, we propose three configuration levels
(meta-class Config and attribute level):

• Meta-model level (M2): means that the transformation rules of a specific configuration
are applied uniformly to all elements of the source model. This is the common approach,
called MTM (Model Type Mappings) in the initial MDA specification (OMG, 2003).

• Model level (M1): at this level all elements of the source model that are concerned by the
configuration are tagged with their corresponding transformation rule. To this purpose our
platform embeds a UML profile, which allows one to apply stereotypes to the elements
to be transformed.

• Mixed level (M1/2): allows us to customize the M2 level by forcing some elements from
the source model to be translated differently with a specific transformation rule.

The M1 configuration is hardly applicable to real size models because it needs to tag all the
elements of the UML model. It is interesting when a small subset of the source model is trans-
lated. The M

2 level allows us to apply existing UML-to-B approaches as they are or to define
new approaches. The idea is to encode their corresponding rules and simply execute them on a
given UML model. The M

1/2 level is, in our opinion, the most interesting one because it pro-
vides the possibility to combine rules issued from several transformation approaches. Indeed,
one can select a by-default UML-to-B approach (among the ones discussed in Section 1.2) and
apply stereotypes to the elements that have to be transformed with different approaches.

Technically, a configuration is an instance of meta-class Config of figure 1.10 where at-
tribute level can be either M2 or M1/2. The model level (M1) is applied when all the model
elements are stereotyped and the M1/2 level is selected by the user. Figure 1.12 gives the rule
selection process. The choice of the execution level (identifyExecLevel?) conditions the trans-
formation according to the two values: M2 or M1/2. For each UML element concerned by the
user configuration, the UML/B transformation engine proceeds as follows:

• If attribute level is set at M2, then the transformation engine applies a transformation
strategy (identifyApproach?) among two possibilities (attribute method of meta-class
Config): getRuleByMethod and getRuleByAdvice. The first strategy refers to a well-
defined approach, for example the ones discussed in Section 1.2. When this strategy is
selected (method = APPROACH) the transformation engine automatically unfolds all
the underlying rules. The second strategy (method = RULE) is intended to experiment
user-defined rules, which are additional rules that do not belong to an existing approach,
or a customization of existing ones.

• If attribute level is set at M1/2, then the transformation engine checks whether the
UML element is tagged with a stereotype or not. Operation getRuleByStereotype applies
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the rule referenced by the stereotype according to a UML profile that we defined to ad-
dress the M1 level. This mechanism allows the user to control the transformation stating,
element by element, the rule to be applied. However, the main limitation of this mech-
anism, in the current version of our platform, is that the dependencies between the rules
and their compatibilities, must be entirely managed by the user. If the UML element is
not stereotyped, one of the getRuleByMethod and getRuleByAdvice strategies is applied,
depending on the user choice.

M1M2

Mixed

yesno

hasStereotype?

identifyApproach?

getRuleByMethod getRuleByAdvice

identifyExecLevel?

FetchRule

getRuleByStereotype

Figure 1.12: Rule selection process.

1.4.4 Transformation rules
A phase is composed of an ordered set of abstract rules (meta-class AbstractRule), provid-
ing a choice among a set of concrete rules (meta-class ConcreteRule). An abstract rule is a
mapping from one or several input objects (e.g. a UML element) to one or more output objects
(e.g. B elements). Every abstract rule is implemented by one or many concrete rules, which
provides several possible behaviours to a given phase. Attribute URI in class ConcreteRule
refers to the location of the concrete rule. The latter can be encoded in Java, XTend or high-
level transformation languages (e.g. ATL, QVT); and hence, a transformation can be a mixture
of different languages. Our UML/B transformation engine is able to invoke external EMF-based
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tools, such as QVTo, as far as a concrete rule respects the signature (inputs and outputs) of the
abstract rule that it implements.

In order to illustrate these notions, let’s consider two transformation approaches. The first
one, inspired by (Snook and Butler, 2004), produces a single B machine for the whole class
diagram. We call this approach UniqueMachine. It aims to reduce the modularity of the B
specification and thus to simplify the theorem proving activity. The second approach, inspired
by (Meyer, 2001), produces a B machine from every class, and a root machine that includes
the other ones to represent the class diagram. This approach leads to a modular B specifi-
cation. We call it MachineByClass. Both approaches are defined in Figure 1.13 which is an
instance of our configurable transformations meta-model. They are represented with the two
instances of meta-class Approach. In this object diagram a transformation is created (ob-
ject MyTransformation) with two phases, Phase1 and Phase2, which are dedicated
respectively to the transformation of packages and classes. In this example we assume that
a class diagram is defined in one package. We consider two abstract rules (one per phase):
TransformPackage and TransformClass. The former is realized by a JAVA-based
concrete rule (createSysMachine), and the latter is realized with two concrete rules that
are written in XTend (ClassToBVariable and ClassToMachine).

Figure 1.13: An object diagram.

Figure 1.14 shows three configurations applying transformation MyTransformation.
By running config1 the rule selection process executes rule createSysMachine fol-
lowed by rule ClassToBVariable. Configuration config2 leads to the execution of
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createSysMachine followed by ClassToMachine. In the first case, when an abstract
rule is not realized by any concrete rule that is compliant with the selected approach, the exe-
cution process runs the selected default rule (association selected). In the second case, the
execution process sequentially runs all default rules and does not care about which approaches
they are compliant with. For example, config2 is associated to approach UniqueMachine,
but it leads to the execution of rule ClassToMachine, which is compliant with approach
MachineByClass. We keep association selectedApproach mandatory in order to pro-
vide the possibility to quickly switch between the two methods (i.e. APPROACH and RULE).
Regarding config3 it provides the possibility to execute specific rules to particular classes:
by default approach UniqueMachine is executed but it allows to translate some classes with
rule ClassToMachine.

Figure 1.14: Example configurations.

1.4.5 Application
To illustrate the three configurations we consider the class diagram of Figure 1.15 where class
Client is tagged with stereotype «ClassToMachine».

<<ClassToMachine>>

Figure 1.15: A class diagram

39



A Model-Driven Architecture for UML-to-B

The resulting specifications are given in Figure 1.16. Note that the transformation process
first extracts an instance of our B meta-model, and then produces the textual files.

config1: Unique Machine

config2: Machine By Class

config3: Mixed approach

Figure 1.16: Three different transformations

1.5 Conclusion
A well-known challenge in software engineering is to have a software specification language
that combines precision of formal notations and expressiveness of graphical (or semi-formal)
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notations. Several research works have been devoted in order to study possible mappings be-
tween these two kinds of notations. This part of my research works has proposed a model
driven platform that allows one to integrate several approaches in a single tool. The underly-
ing platform can be used, on the one hand, to combine and extend translation rules from UML
diagrams into formal B specifications, and on the other hand, to define transformation rules in
several languages (e.g. Java, XTend, etc).

More generally, model transformation has received a lot of interest from the research com-
munity leading to languages and techniques to encode and execute transformation rules. Most
of these works deal with deterministic transformation rules and hence some transformation
choices are done implicitly by the rule writer. The originality of the proposed solution is that it
deals with multiple transformations and provides a way to the final user to configure the trans-
formation. Multiple transformation means that there are several transformation choices of a
source model element. In the existing MDE tools these choices are often done by developers.
For example, tools that transform an object model into a relational database may produce a
table for every class, however one can be interested by generating tables only from concrete
classes and apply other rules to transform abstract classes. Several other examples can be cited
such as tools that generate a java source code from UML diagrams: StarUML does not generate
getters and setters for private and public attributes while EclipseUML generates automatically
getters and setters for private and also public attributes. However, a user may be interested by
a mixture of these two transformations: generate getters and setters only for private attributes.
The proposal done in this chapter provides a flexible application of model transformation since
the choice amongst transformation rules is done by the end-user, not by the developer.
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M ost faults in Information systems (IS) are traced back to deficiencies in specifica-
tions (Martin, 2003) and may originate from both functional and non-functional
requirements. In a UML-based development process, functional requirements can

be defined by means of class diagrams showing the various entities involved in the application
logic. Regarding the non-functional requirements my work focuses on security requirements,
expressed as access control rules. These rules not only require robust specification methods but
also validation and verification techniques to protect systems against malicious attacks. In this
context I have been mainly interested by the Role-Based Access Control model (Ferraiolo et al.,
2001), which is intended to support access control properties such as confidentiality, integrity,
availability and traceability. This topic has been the subject of the Phd thesis of N. Qamar and
M.-A. Labiadh that I co-supervised with Y. Ledru and led to the development of the B4MSecure
platform (Idani, A. and Ledru, 2015).

In (Qamar et al., 2011a) a comparative study evaluating access-control supported techniques
and their validation and verification has been presented and has showed that existing approaches
(formal or semi-formal) have significantly dealt with static features. The dynamic features
are partially covered and they often do not include functional requirements. In fact, when
systems become complex, separation of concerns is often perceived as a good strategy to master
complexity. This explains why functional and security models are often validated separately.
Although it is definitely useful to first analyse both models in isolation, interactions between
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these models must also be taken into account. Indeed, constraints expressed in the security
model also refer to information of the functional model. Hence, evolutions of the functional
state may influence the security behaviour. Conversely, security constraints can impact the
functional behaviour. A typical example is a rule assuming that in order “to modify a file the
current user must be the owner of the file”:

• “current user”: is a security concern referring to a user that is connected to the system.

• “modify a file”: is a functional concern dealing with a data, and a possible action.

• “owner”: is an authorization constraint that grants or forbids file modification.

An authorization constraint is a constraint that combines functional and security concerns
to grant a permission. The proposed FMDE solution to deal with these constraints covers the
functional description of the IS as well as its security policy. The supporting models are based
on UML for the functional description and SecureUML (Basin et al., 2006, 2009) for the access
control rules. A formal B specification is generated automatically from these models, which
allows one to formally reason about the whole system: functional and security models can be
first validated separately, and then integrated in order to verify their interactions. This chapter
describes our solutions and gives the principles of the B4MSecure platform.
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• Section 2.2 presents the principles of the B4MSecure platform.

• Section 2.3 shows how dynamic analyses can be done using B4MSecure and ProB.

• Section 2.4 draws the conclusion and the perspectives of this chapter.

2.1 Role-Based Access Control (RBAC)

2.1.1 Main concepts
RBAC access control mechanism can be used to ensure important properties of data security
i.e. integrity, confidentiality and availability. Figure 2.1 shows the main concepts of the RBAC
model: users (USERS), roles (ROLES), objects (OBS), permissions (PRMS) and operations
(OPS). A sixth data type, session (SESSIONS), is used to associate roles temporarily to users,
which corresponds to the dynamic part of RBAC. The model differentiates between users and
roles: a role is considered as a permanent position in an organization whereas a given user
might be switched with another user for that role. Thus, permissions are offered to roles instead
of users. A permission refers to operations (application-specific user functions) that can be
executed on objects (resources to protect). UA is user assignment, RH is role hierarchy and PA
is permission assignment. These concepts are defined in (Ferraiolo et al., 2001) as:

– UA ✓ USERS ⇥ROLES : a many-to-many mapping between users and roles, UA spec-
ifies which roles can be played by a given user;

– PA ✓ PRMS ⇥ ROLES : a many-to-many mapping permission-to-role, PA expresses
which roles may be granted a given permission;

– RH ✓ ROLES ⇥ ROLES : a partially ordered role hierarchy, a senior role may inherit
the permissions from its junior roles;

– user_sessions(u : USERS ) ! Fin(SESSIONS ): the mapping of user u onto a set of
sessions, it lists the current session of a given user;

– session_roles(s : SESSIONS )! Fin(ROLES ): the mapping of session s onto a set of
roles, it lists the current roles of a given user in a given session;

– PRMS = OPS ⇥OBS : the set of permissions.

RBAC includes also the principle of separation of duty (SoD), which is intended to enforce
conflict of interest policies. There are two main types of separation of duty: SSD (Static Separa-
tion of Duties) and DSD (Dynamic Separation of Duties). A SSD forbids a user to be assigned
to conflicting roles. It is therefore related to relation UA (and possibly relation RH). A DSD
forbids a given user to take conflicting roles simultaneously in the same session.
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Figure 2.1: Role-based Access Control (Ferraiolo et al., 2001)

Advanced RBAC models allow the specification of constraints such as SoD properties and
other properties on roles (e.g. precedence). In IS, contextual information may also be taken into
account when designing an access control policy. This contextual information may correspond
to the current state of the information system, or to the history of interactions with the system.
This has led to the notion of authorisation constraint in SecureUML (Basin et al., 2006, 2009).

2.1.2 Modeling RBAC with SecureUML

In the literature there exists a number of RBAC representations. SecureUML (Basin et al., 2006,
2009) is one of those techniques that adapt the principles of RBAC and offer a way to model
and specify an access control policy. SecureUML provides a security profile extending UML,
and applies OCL to define authorization constraints. It appears a good choice to us since it has
most of the concepts needed to sketch a security policy using RBAC. Besides, SecureUML is
a model-driven approach applying UML diagrams to represent the structural features of an IS,
which is coherent with our FMDE approach and the usage of B and UML together for a formal
definition of the IS.

By mixing security engineering and model-driven software development, security require-
ments can be taken into account at a high level of abstraction. Basin et al. (2009) state that
“in this way, it becomes possible to develop security aware applications that are designed with
the goal of preventing violations of a security policy”. Further works on SecureUML propose
to generate access control infrastructures from SecureUML models and thereby enable a tech-
nology independent development of secure systems, which would prevent errors during the
realization of access control policies. Figure 2.2 is a UML class diagram representing func-
tional concerns (white classes), to which a SecureUML model is associated for the RBAC rules
(grey shaded classes).

This simple model is inspired by a medical IS dealing with patients, doctors, hospitals and
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medical records. In this model we suppose that an instance of class DoctorUser refers to a user
who is assigned to role Doctor. Permission Doctor_Perm grants a doctor the following actions
on a medical record: (i) read attributes data and isValid, (ii) modify attribute data, and (iii) call
operation Validate. A natural way to deal with authorization constraints in SecureUML is to
use OCL. Let us consider, for example, that doctors have the ability to manage only medical
records of patients that are admitted in their hospitals. This can be defined by the following
OCL expression in the context of permission Doctor_Perm.

Figure 2.2: Functional model enriched by RBAC rules

context Doctor_Perm inv:
session.currentUser.hospital = medicalRecord.patient.currentHospital

Expression session.currentUser refers to the currently connected user, and as the
permission is assigned to role doctor, it can be deduced that the user is an instance of class
DoctorUser. This constraint navigates through the functional model to retrieve the patient as-
sociated to the medical record, and his/her current hospital. It also retrieves the doctor user
corresponding to the user asking to access the medical record and retrieves his/her associated
hospital. Finally, the constraint compares these two hospitals.

2.1.3 V&V of RBAC policies
Verification and Validation (V&V) of access-control policies have been studied for a long time.
Numerous tools exist to ensure these tasks at an implementation level. For example, Sarna-
Starosta and Stoller (2004) translate a Security-Enhanced Linux (SELinux) policy into a logic
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program and perform queries on this program to verify information flow, integrity properties
and separation of duty. The shortcoming of these tools is that they only provide a static analysis
focusing on the security policy, without taking into account its relationship with an application
or a database. Moreover, they are anchored at the implementation level and hence they are
platform-dependent, which is not convenient if the application or the policy must be adapted,
corrected or maintained.

2.1.3.1 UMLSec

Jürjens et al. (2005) advocate for an analysis of permissions and security related topics at an
early design stage and provide the UMLsec profile (Jürjens, 2010). The corresponding models
use UML class and sequence diagrams, decorated with stereotypes and tagged-values to express
permissions. The authors verify the conformance between the permissions’ model and the
system’s information flow. In a similar perspective, the Rubacon tool (Höhn and Jürjens, 2008)
aims at verifying that systems configurations comply with security rules. The rules and their
underlying permissions are defined by a UML class diagram including data extracted from
existing applications. Access-control rules are then evaluated by a Prolog analyser on a given
instance of the UML model in order to verify permissions, prohibitions and SoD constraints.

Other tools support UMLSec, such as Carisma tool and its predecessor UMLsecTool. How-
ever, these tools do not allow to sequence actions or to check whether a given sequence is per-
mitted. Matulevicius and Dumas (2010) performed a comparison of UMLsec and SecureUML
and studied possible transformations between them. One of their conclusions is that UMLsec
does not cover the notion of authorisation constraint, which is a central concept in our works.

2.1.3.2 OCL-based verification

The Object Constraint Language (Warmer and Kleppe, 1999) is part of UML and allows the
specification of invariant constraints on a class diagram as well as pre- and post-conditions
of methods. The USE tool (Gogolla et al., 2007) takes as input an object diagram and an
OCL constraint. It checks whether the constraint holds on the given object diagram. The tool
includes a random generator of object diagrams, and the definition of a sequence of actions
creating object diagrams, where pre- and post-conditions can be checked. Sohr et al. (2008)
have adapted this tool for the analysis of security policies. Their work is focused on the security
aspects, i.e. users, roles, sessions and permissions, constrained with OCL assertions, and takes
into account functional information by adding some attributes to the concept of users. For
example, if a constraint states that the doctor accessing medical information of a patient must
be linked to the hospital of the patient, therefore attribute currentHospital should be added to
the definition of users. Unfortunately such extensions of the security model do not really scale
up, because they duplicate information included in the functional model. In (Sohr et al., 2008)
V&V are done based on object diagrams: the diagram is given to the tool, and the tool checks
which constraints are violated. The object diagram can be user-defined, randomly generated, or
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resulting from a sequence of actions applying a pre-defined action language.
Other works have addressed the validation of security policies using UML and OCL. For

example, Ahn and Hu (2007) present an approach using UML class diagrams, a language ded-
icated to the specification of role-based authorisation constraints (called RCL2000), and OCL
to validate SoD constraints. The approach also verifies the constraints given object diagrams.
One important limitation of these techniques is that they do not address realistic functional
operations. There is no side effect in OCL pre- and post- conditions, which means that the
reachability of a given object diagram is not attested. Their V&V start from a given object dia-
gram, but the latter may not be relevant if it is not produced by a valid sequence of functional
operations.

2.1.3.3 Applying a formal language

Several formal languages have been adopted to verify the correctness of RBAC variants. A
significant amount of works has been carried out using Alloy (Jackson, 2002) and Z (Spivey,
1992). Z has mostly been used to specify RBAC concepts at the meta-level, for example as
given in (Yuan et al., 2006); and Alloy has been applied to define and verify security policies
at a modeling level. The advantage of Alloy in comparison with other approaches, including
semi-formal techniques (e.g. OCL, UML), is that Alloy Analyzer is applied to search instances
satisfying complex set of predicates (Power et al., 2010). Alloy offers two kinds of automated
analysis i.e., simulation and checking. In simulation, operations are evaluated to compute re-
sulting states, and check that they conform to invariant properties. In checking, Alloy attempts
to generate instances of a data structure up to a given (small) maximum size, and can identify
counterexamples which do not satisfy a given property. The types of answers that Alloy pro-
vides are: “this property always holds for problems up to size X” or “this property does not
always hold, and here is a counter example”.

Zao et al. (2003) applied Alloy as a constraint analyzer to check inconsistencies among
RBAC policies. The authors focus on static properties of the security model and do not take
into account evolutions of its state. Schaad and Moffett (2002) address administration tasks of
RBAC and arbitrary apply changes to a given model that may result in conflicting situations
which may introduce security flaws. Yu et al. (2009) propose scenarios in terms of state tran-
sitions to uncover violations in security policies. In this approach, all operation calls take the
form of scenarios and a system state is a configuration of objects. Using this technique, one
can analyze role activation (and deactivation) and SoD constraints as well. In (Toahchoodee
et al., 2009a), functional and security models are merged into a single UML model which is
translated into Alloy. Alloy can then be used to find a state which breaks a given property.
These properties are mainly of static nature, i.e. they focus on the identification of a state that
breaks a property, and do not look for sequences of actions leading to such a state. Nevertheless,
Alloy can take into account the behaviour of the actions of the model, and we believe it has the
potential to perform such dynamic analyses.
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2.1.3.4 SecureMova

The tools presented so far, based on UML, OCL and Alloy, only address the validation of
security models, e.g. addressing SoD properties. Most of them do not consider constraints
which involve elements of the functional model, and hence they do not consider evolutions
of the state of the functional model. Basin et al. (2009) report on SecureMova, a tool which
supports SecureUML. The tool allows a designer to create a functional diagram, i.e. a class
diagram, and to relate it to permission rules. Constraints can be attached to permissions and may
refer to elements of the functional diagram. With SecureMova it is possible to ask questions
about a given state, i.e. a given object diagram. These questions are called queries; they return
authorised actions for a given role, or a given user. They can also investigate on overlapping
permissions, i.e. permissions which have a common set of associated actions. Unfortunately,
all examples discussed in (Basin et al., 2009) are of static nature. In fact, it is not possible
to sequence actions (either administrative or functional) or to verify that a given sequence is
permitted (or not) by the combination of the security and functional models. In the next sections,
we will see that a thorough validation of a security policy which includes contextual constraints
must also take into account evolutions of the state of the functional model.

2.1.4 Discussion

Model-Driven Security advocates for the separation of concerns principle in order to ensure
modularity and reduce complexity. This is often achieved by isolating functional and security
requirements; which allows one to define, verify and implement the various concerns separately.
However, in Information Systems, contextual information may also be taken into account when
granting permissions. This contextual information may correspond to the current state of the
IS, or to the history of interactions with the system. This has led to the notion of authorisation
constraint in SecureUML (Basin et al., 2006), combining functional and security concerns to-
gether. This notion reveals therefore the drawback of isolating concerns, and shows the need
to align functional and security models in order to validate their interactions. There has been a
lot of work on the validation of security policies. Some of these works have an associated tool
support. In our work, we are mainly concerned with the V&V of security policies involving
authorisation constraints. Therefore, we need tools that can take into account both functional
and security aspects in their analyses. Moreover, as will be seen in the next sections, evolu-
tions of the functional state of an information system may change the value of an authorisation
constraint. It is thus necessary to consider tools which take into account dynamic aspects of the
secure information system. Looking at related work, we did not find approaches which combine
the dynamic analysis of both functional and security models, with the support for authorisation
constraints.

The constraint of Figure 2.2 states that: “If a doctor wants to modify the medical record of
a given patient, he/she must belong to the same hospital as the patient”. Let us now consider a
malicious doctor, who wants to modify the information of a patient in another hospital. Since the

51



Formal Model-Driven Security

patient and the doctor belong to different hospitals, the doctor will not be authorised to access
this information. In order to validate the rules of the security policy, one may try several typical
situations and query about the permitted/forbidden actions. Using a tool such as SecureMova,
one would provide an object diagram od1 with one doctor and one patient linked to two different
hospitals, and query if the doctor may perform action setData on the patient’s medical record.
The tool would answer that the doctor is not authorised to perform this action. Further validation
of this security policy should explore dynamic aspects of the policy. For example, is it possible
for this malicious doctor to eventually modify the patient’s information? Using only static
tools, one can check that, given an object diagram od2 where the malicious doctor belongs to
the same hospital as the patient, he will be granted this access. The next question to investigate
is: does there exist a sequence of actions which leads a malicious doctor to belong to the same
hospital as the patient? This requires to animate a sequence of actions which leads from od1
to od2. Such a sequence will presumably call an intermediate operation joinHospital which
links the malicious doctor to the hospital of the patient. Here dynamic analyses would allow
one to identify these intermediate actions and check which roles have permissions to perform
these actions. Another way to group the malicious doctor and the patient in the same hospital
is to transfer the patient in the hospital of the doctor. In this second sequence, one should
investigate who has the permission to perform such a transfer. This simple example shows
that the validation of a security policy may require dynamic analyses to identify sequences of
actions leading to an unwanted state. Moreover, these sequences of actions are not restricted
to the standard RBAC functions and may refer to operations defined in the functional model.
This is actually the case when constraints referring to the functional model are expressed on
permissions. Current tools, such as the ones presented in this section, which focus on static
queries or on the dynamic execution of the sole RBAC functions are not sufficient to perform
such dynamic investigations.

2.2 B4MSecure

2.2.1 Overview

In order to address authorisation constraints in MDS and apply dynamic analysis of the IS,
we have developed the B4MSecure platform1 (Akram Idani and Ledru, 2015). The tool is
intended to model the Information System as a whole by covering its functional description,
and its security policy. The supporting models are built on UML for the functional concerns
and SecureUML for the access control rules. A formal B specification is generated from these
models, allowing one to formally reason about the various IS concerns: functional and security
models can be first validated separately, and then integrated in order to verify their interactions.

B4MSecure (Figure 2.3) is built on an MDE architecture in which the input models are
UML class diagrams that are extended with the SecureUML profile. The extraction of B spec-

1 B4MSecure: B for Modeling Secure Information Systems
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ifications applies a catalog of transformation rules that are defined at a meta-level. The ideas
behind the tool are inspired by existing software products, such as popular commercial database
management systems (e.g. Oracle, Sybase) or webservers (e.g. JBoss, Tomcat). The available
implementations of RBAC act like a filter which intercepts a user request to a resource in order
to permit or deny the access to associated functional actions (e.g. transactions on databases,
file operations, etc). The tool is based on the same principles, but at a modeling level. Each
functional operation is encapsulated in a secure operation checking that the current user has the
required authorizations. The usage of B is motivated by the fact that several tools have been
built to translate UML models into B specifications as discussed in Chapter 1. Indeed, the trans-
lation of the functional model can be done by executing a configuration of UML-to-B rules that
are issued from our approach for multiple transformations. Regarding security models, Sohr
et al. (2008) have already proved that it can be specified in UML+OCL. Since the B language
is based on the same principles as OCL (first order predicate logic and set theory), it is possible
to propose a similar translation of the security model into B specifications.

Figure 2.3: Formal V&V activities of functional and security models

The B specifications produced from both security and functional models can therefore be
analyzed using either animation tools such as ProB (Leuschel and Butler, 2003) or proof tools
such as Atelier B. ProB also includes model-checking facilities which can be of interest to
search for malicious sequences of operations. The functional B specification in the left side of
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Figure 2.3 applies a classical UML-to-B translation. The lower side of Figure 2.3 represents
the formal specification produced from the security model and which is intended to control the
functional B operations. Playing scenarios is done by animating the secured operations, which
gives only access to the authorized functional operations. This approach allows the validation of
the functional model as well as the security policy. In fact, animation of an authorized operation
modifies the state of the functional model and hence allows the analyst to validate both models.

Terms “shallow embedding” and “deep embedding” (Wildmoser and Nipkow, 2004) are
often used to describe mappings between formalisms. The first notion means a direct transla-
tion from a source model into a target model, while the second notion means that the mapping
leads to structures that represent data types. Most UML-to-B approaches adopted the “shal-
low embedding” approach. Indeed, they apply a set of rules to ensure a direct translation from
UML into B. Unlike “deep embedding”, this aims to be more straightforward because the re-
sulting formal specifications explicitly include the elements of the source model. The “deep
embedding” approach is commonly used to translate elements of a meta-model. To summarize,
B4MSecure produces two B models:

1. A first B model issued from a UML class diagram, applying a “shallow embedding”
approach. This model can be enriched with invariants and operations and the correctness
of the functional model can be established.

2. A second B model that represents the security policy and defines the access to the func-
tional entities. This model is generated through a “deep embedding” approach. We trans-
late an access control meta-model built on the principles of RBAC, and then we inject in
it the B specification of a specific access control model.

2.2.2 Functional model
To illustrate the B4MSecure approach, we consider the UML class diagram of Figure 2.4, in-
spired by (Bandara et al., 2010). This model represents functional concerns of a banking IS: it
defines customers (class Customer) in relation with their accounts (class Account).

An account is characterized by its balance (attribute balance), the authorized overdraft (at-
tribute overdraft) and a unique identifier (attribute IBAN). A customer may have a credit card
(class CreditCard), allowing him/her to withdraw cash. Operation transferFunds allows one to
transfer an amount of money (parameter m) from the current account to any account defined
with an IBAN number (parameter NB). Operations withdrawCash and depositFunds allow re-
spectively to withdraw or to deposit money. To withdraw an amount of money, the customer
must present an active credit card (attribute inLine must be equal to true).

2.2.2.1 Translating the structural features

In this subsection, we are not going to discuss existing UML-to-B approaches. For more details
about these approaches, we refer the reader to the previous chapter or to Idani, A. et al. (2010b).
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Figure 2.4: UML Class Diagram � Functional Model

Nevertheless, we will focus on the translation set up in B4MSecure, in order to give an overview
of the B specifications produced by the tool.

In B, abstract sets represent an abstraction of a set of objects from the real world. As this
definition is close to the notion of class in UML, it is used by all UML-to-B approaches to
formalize UML classes. The main objective of this translation is to allow the definition of
constructors and destructors of class instances. For example, class Customer produces:

(i) Abstract set2 CUSTOMER defining the set of possible instances;

(ii) Variable3 Customer defining existing instances; and

(iii) Invariant4 : Customer ✓ CUSTOMER.

Regarding class attributes, they are translated into B functions relating the set of existing
instances to the type of the attribute. The resulting functions depend on the attribute character:
mandatory or optional, unique or not unique, single or multiple valuated. For example, attribute
IBAN of class Account is single-valued, mandatory and unique. It is therefore translated into a
total injection. Table 2.1 gives the various translations of single-valued attributes.

Optional Mandatory
Unique 7⇢ ⇢

Not unique 7! !

Table 2.1: B relations extracted from single-valued attributes

The translation of associations follows the same principle. Indeed, each association leads to
a functional relation that depends on the multiplicities of the two ends of the association. For
2 clause SETS.
3 clause VARIABLES.
4 clause INVARIANT.
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example, association AccountOwner is translated into a partial surjective function since its mul-
tiplicities are 0..1 and 1..*. Figure 2.5 presents the typing invariants that are automatically
produced by B4MSecure from the example of Figure 2.4.

INVARIANT
Account ✓ ACCOUNT
^ Customer ✓ CUSTOMER
^ CreditCard ✓ CREDITCARD
^ AccountOwner 2 Account 7⇣ Customer
^ CreditCardOwner 2 CreditCard ⇢ Customer
^ Account__balance 2 Account! Z
^ Account__overdraft 2 Account! Z
^ Customer__name 2 Customer 7! STRING
^ Customer__address 2 Customer 7! STRING
^ CreditCard__inLine 2 CreditCard! BOOL
^ Account__IBAN 2 Account ⇢ N

Figure 2.5: Structural invariants produced by B4MSecure

2.2.2.2 Extraction of basic operations

The B specifications produced by B4MSecure from a given class diagram are intended to be
animated using an animation tool such as ProB (Leuschel and Butler, 2003). This allows one to
see the evolution of the IS and observe the impact that an execution scenario could have on the
functional state. Thus, B4MSecure generates all basic operations such as creation/deletion of
class instances, creation/deletion of links between these instances, getters/setters of attributes,
and getters/setters of links. In general, these operations are correct by construction, meaning
that they do not violate the generated typing invariants. In fact, the proof of correctness of the
functional model means that basic operations preserve the multiplicities of the associations as
well as the character of attributes. This proof is true by construction for most basic operations,
but needs to be consolidated for some deletion operations.

For example, deleting an instance of class Customer is only possible if this instance is not
linked to an instance of class CreditCard. Several special cases exist, and are not all covered
by the translation process in B. In this case the specifications must be updated or completed by
the analyst. Figure 2.6 gives an example of a basic operation that is generated by B4MSecure.
It is a creation operation of class Account. This operation preserves, on the one hand, the
mandatory character of attribute IBAN because a value is assigned to the attribute when the
object is created, and on the other hand, the uniqueness of this attribute thanks to pre-condition:

Account__IBANValue 62 ran(Account__IBAN)

The operation also takes into account the default values of attributes balance and overdraft;
they are respectively initialized to 0 and �100.
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Account_NEW(Instance, Account__IBANValue) ==
PRE

Instance 2 ACCOUNT ^ Instance 62 Account
^ Account__IBANValue 2 N
^ Account__IBANValue 62 ran(Account__IBAN)

THEN
Account := Account [ {Instance}
|| Account__balance := Account__balance [ {(Instance 7! 0)}
|| Account__overdraft := Account__overdraft [ {(Instance 7! -100)}
|| Account__IBAN := Account__IBAN [ {(Instance 7! Account__IBANValue)}

END;

Figure 2.6: Basic creator generated by B4MSecure

2.2.2.3 Enhancing the functional model

Information Systems often include constraints, especially integrity constraints relating to the
functional model. These constraints must be taken into account when defining the various use
cases of the IS. As the verification activities are specific to each IS, the B model produced auto-
matically must be completed manually by adding new invariants and operations. Let’s consider
for example, that the balance of an account must be greater than (or equal) to the overdraft of the
account. The analyst should therefore add the following invariant to the functional B machine:

8 aa . (aa 2 Account) Account__balance(aa) � Account__overdraft(aa))

Figure 2.7: Invariant constraints of the functional model

After adding this invariant to the specifications, the analyst mush check the proof obliga-
tions (POs) generated by AtelierB and correct the underlying B specifications. This would
identify the basic operations that violate the user defined invariants and correct them accord-
ingly. Consider for example, the modification operation of attribute balance that is presented
in Figure 2.8. In order to correct this operation, the analyst must strengthen its precondition by
adding the following predicate:

Account__balanceValue � Account__overdraft

The enhancement of the functional model is done by adding invariant properties and the
underlying preconditions in order to keep correct the basic operations. The user-defined op-
erations, such as operations transferFunds and withdrawCash of class Account, must also be
defined. Figure 2.9 presents the B specification of operation transferFunds. It takes an account
number (parameter N) and a positive amount (parameter m) and performs the transfer of funds
if the following conditions are met: the current account and the beneficiary account are held
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by customers, N corresponds to an existing account other than the current account, and the
authorized overdraft will not be exceeded by this transfer.

The B specifications issued from our functional class diagram are about 300 lines of B
code from which 80 POs were generated by AtelierB for typing invariants. Among these POs,
4 were proved interactively. Furthermore, adding invariant properties produced a total of 94
proof obligations of which only 18 did not pass the automatic prover. Therefore we introduced
preconditions to some basic operations in order to have a formal model preserving all its invari-
ants. This formal verification effort may vary depending on the complexity of the IS; for this
simple example the verification task was reasonably easy to do.

Account__SetBalance(Instance, Account__balanceValue) ==
PRE

Instance 2 Account ^ Account__balanceValue 2 Z
^ (Instance 7! Account__balanceValue) 62 Account__balance

THEN
Account_balance(Instance) := Account__balanceValue

END;

Figure 2.8: Basic setter of class Account

Account__transferFunds(Instance, N, m) ==
PRE

Instance 2 Account ^ N 2 N ^ m 2 N1

^ AccountOwner[{Instance}] 6= ;
^ N 2 ran({Instance} C� Account__IBAN)
^ AccountOwner[{Account__IBAN �1 (N)}] 6= ;
^ Account__balance(Instance) � m � Account__overdraft(Instance)

THEN
Account__balance :=

{(Instance 7! (Account__balance(Instance) � m))}
[ {(Account__IBAN�1(N) 7! (Account__balance(Account__IBAN�1(N)) + m))}
[ ({Instance, Account__IBAN �1 (N)} C� Account__balance)

END ;

Figure 2.9: Operation transferFunds of class Account

2.2.3 Security model
The approach adopted in B4MSecure is a model-driven approach that favours the separation
of concerns principle. The objective is to first allow reasoning about the correctness of the
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functional model without any security concern, and afterwards, to analyze the security model
independently of the functional concerns, and finally to check the connections between both
models.

UML and SecureUML models can be designed using the graphical editor of TopCased5 or
that of Eclipse Papyrus6. Thus, the security policy concrete syntax uses classes and stereotypes
to refer to RBAC concepts. Figure 2.10 is a SecureUML model associated to the class diagram
of Figure 2.4.

Figure 2.10: SecureUML model in B4MSecure

This model defines three roles: CustomerUser, AccountManager and ATM. They respec-
tively represent the customer of the system, the financial manager in charge of the bank’s cus-
tomers, and the automatic teller machine. The underlying access control rules are:

1. Customers can read their personal data (permission CustomerUserPerm1), transfer money,
deposit and withdraw cash (permission CustomerUserPerm2);

2. The account manager, in charge of the clients, has a full access (read and write) on class
Customer (permission AccountManagerPerm1). He/She can thus create customers, read
or modify their data. However, his/her rights on class Account are limited to the creation
of new accounts (permission AccountManagerPerm2);

5 http://www.topcased.org
6 https://www.eclipse.org/papyrus/
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3. Role ATM has the permission to call activation and deactivation operations of class Cred-
itCard (permission ATMPerm).

An authorization constraint is associated to permissions CustomerUserPerm1 and Cus-
tomerUserPerm2 in order to grant the corresponding actions to the sole holder of the account on
which they are invoked. In this security policy, the account manager has no access, neither read
nor write, to the attributes of class Account. We also consider three users and a DSD constraint
as presented in Figure 2.11. Bob is assigned to role AccountManager, and Paul and Martin
are possible users without any assigned role. Note that the assignment of Paul and Martin to
role CustomerUser is done when these two users are created as instances of the functional class
Customer. In fact, in some cases functional classes refer to roles and vice-versa. Hence, we con-
sider that set CUSTOMER of possible instances is a subset of set USERS that represents possible
users of the system. Finally, the DSD constraint of Figure 2.11 means that a user cannot log in
the system by being both AccountManager and CustomerUser in the same session.

Figure 2.11: Users and Role assignment

The B specification issued from the SecureUML model is dedicated to grant or forbid func-
tional operations given the set of roles that are activated by a user. For example, if Paul is a
CustomerUser, therefore he can only read his personal data by calling basic getters of class
Customer. The other operations (modification, creation, etc) are forbidden to him. In order
to translate the security model, our approach follows two steps: (i) propose a “stable” formal-
ization of a RBAC meta-model, then (ii) translate a given security model and inject it into the
formalization of the meta-model. Each operation of the functional model is encapsulated in a
secure operation checking that the current user is allowed (or not) to call this operation.

2.2.3.1 Formal modeling of user assignments and role activation

Figure 2.12 presents the structural part of the B model (Machine UserAssignments) that defines
the right side for Figure 2.1. It refers to: ROLES, USERS and SESSIONS. The assignment of
roles to users is defined with relation roleOf. Contrary to users and roles, which are explicitly
represented with sets, sessions are defined by means of a relation between users and roles. We
consider that a user cannot open several sessions in the system. When a user u belongs to
the domain of relation Session, thus a session is created for him and Session[{u}] gives the
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set of roles that are activated by user u. Other RBAC concepts, such as role hierarchy, static
separation of duties and dynamic separation of duties, are also defined by this specification.
Variable currentUser is useful during the animation of the model because it allows us to identify
the operations that are being executed by a given user. Note that we do not consider concurrent
accesses during animation.

MACHINE
UserAssignments

SETS
ROLES ; USERS

VARIABLES
roleOf, Roles_Hierarchy, currentUser, SSD_mutex, DSD_mutex, Session

INVARIANT
/* Typing invariants */

currentUser 2 USERS
^ roleOf 2 USERS! P (ROLES)
^ Roles_Hierarchy 2 ROLES$ ROLES
^ Session 2 USERS$ ROLES
^ SSD_mutex 2 P1 (ROLES)$ N1

^ DSD_mutex 2 P1 (ROLES)$ N1

Figure 2.12: Users assignment: typing invariants

Figure 2.13 provides some security invariants of machine UserAssignments. For example,
cycles in a role hierarchy are not allowed even if this is graphically possible. In our approach,
B4MSecure creates the valuations of the various data structures and then ProB is applied to
verify that security invariants are preserved. The second invariant guarantees the conformance
between role assignments and role activations. It means that, in a session, a user can only
activate roles among those that are assigned to him. The other invariants guarantee SSD and
DSD constraints. They are somehow redundant: the former refers to relation roleOf and the
latter refers to relation Session.

Machine UserAssignments provides several utility operations that are useful during the an-
imation. Figure 2.14 gives the B specifications of operations safeConnect, addSafeRole and
setCurrentUser. Operation safeConnect creates a session to a given user in which a set of roles
is activated. This operation is done under several conditions: (i) the user is not concerned by
any existing session, (ii) if a role r1 is a super-role of a role r2, therefore the user can activate
r1 or r2 but not both of them {r1, r2}, and (iii) the DSD constraints are preserved. Operation
addSafeRole adds a new role to a given user and preserves SSD constraints. This operation is
useful when roles are created dynamically because of the evolution of the functional state. For
example when a customer is created, role CustomerUser must be added to the corresponding
user. Operation setCurrentUser selects the user who will execute the system.
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/* No cycles in role hierarchy */
^ (Roles_Hierarchy)+ \ id(ROLES) = ;

/* Conformance of role assignments and role activation */
^ 8 (uu).(uu 2 USERS ^ uu 2 dom(Session)) Session[{uu}] ✓ roleOf(uu))

/* Static separation of duties */
^ 8 nn.(nn 2 N1 ^ nn 2 ran(SSD_mutex)) nn � 2)
^ 8 rs.(rs 2 P1 (ROLES) ^ rs 2 dom(SSD_mutex)) card(rs) � SSD_mutex(rs))
^ 8 uu.(uu 2 USERS ^ uu 2 dom(roleOf))
8 rs.(rs 2 P1 (ROLES) ^ rs 2 dom(SSD_mutex))

card((Roles_Hierarchy)+[roleOf(uu)] [ roleOf(uu) \ rs) < SSD_mutex(rs)
)

)

/* Dynamic separation of duties */
^ 8 nn.(nn 2 N1 ^ nn 2 ran(DSD_mutex)) nn � 2)
^ 8 rs.(rs 2 P1 (ROLES) ^ rs 2 dom(DSD_mutex)) card(rs) � DSD_mutex(rs))
^ 8 uu.(uu 2 USERS ^ uu 2 dom(Session))
8 rs.(rs 2 P1 (ROLES) ^ rs 2 dom(DSD_mutex))

card((Roles_Hierarchy)+[Session[{uu}]] [ Session[{uu}] \ rs) < DSD_mutex(rs)
)

)

Figure 2.13: Users assignment: security invariants

2.2.3.2 Formal modeling of permission assignments

To formally define permissions, we first apply a deep embedding approach to the entities of
the model that are associated to permissions. Machine RBAC_Model of Figure 2.15 gives un
excerpt of the B data structures that are generated by B4MSecure. Sets ENTITIES, Attributes,
Operations and KindsOfAtt represent concepts of the meta-model dealing with the functional
concerns. For example, set ENTITIES represents classes of the functional model. Relations
between these sets are: AttributeKind (private or public), AttributeOf (for class attributes), Op-
erationOf (for class operations), constructorOf (for class constructors), destructorOf (for class
deletion), setterOf (for attribute setters) and getterOf (for attribute getters). The other data
structures of machine RBAC_Model define RBAC concerns. The machine also includes the
functional model and machine UserAssignments, and promotes operations safeConnect, dis-
connect and setCurrentUser.

Relation isPermitted defines pairs (r 7! o) that are calculated from the RBAC model in
order to establish for every role r and operation o whether r is allowed to call o or not. For ex-
ample, CustomerUserPerm1 leads to two pairs (CustomerUser 7! Customer_GetName) and
(CustomerUser 7! Customer_GetAddress). Indeed, this permission is related to role Cus-
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safeConnect(user, roleSet) =
PRE

user 2 USERS ^ user 62 dom(Session)
^ roleSet 2 P1 (ROLES) ^ roleSet ✓ roleOf(user)

/* avoid hierarchical redundancy in the roleSet */
^ 8 (r1,r2).(r1 2 roleSet ^ r2 2 roleSet ^ r1 6= r2
) r2 62 closure1(Roles_Hierarchy)[ {r1}] )

/* avoid DSD violation */
^ 8 rs.(rs 2 P1 (ROLES) ^ rs 2 dom(DSD_mutex))

card((Roles_Hierarchy)+[ roleSet] [ roleSet \ rs) < DSD_mutex(rs)
)

THEN
Session := Session [ ({user} ⇥ roleSet)

END;
addRoleSafe(user, role) =
LET newRoles BE newRoles = roleOf(user) [ {role} IN

PRE
user 2 USERS
^ role 2 ROLES ^ role 62 (roleOf(user) [ (Roles_Hierarchy�1)+[roleOf(user)])

/* avoid SSD violation */
^ 8 rs.(rs 2 P1 (ROLES) ^ rs 2 dom(SSD_mutex))

card(((Roles_Hierarchy)+[newRoles] [ newRoles) \ rs) < SSD_mutex(rs)
)

THEN
roleOf := ({user} C� roleOf) [ {(user 7! newRoles)}

END
END;
setCurrentUser(user) =

PRE
user 2 USERS ^ user 6= currentUser ^ user 2 dom(Session)

THEN
currentUser := user

END ;

Figure 2.14: Users assignment: utility operations

tomerUser and refers to an EntityAction of type read, and to class Customer. Two attributes are
defined in this class (Name and Address) and their getters are respectively Customer_GetName
and Customer_GetAddress. The calculation of relation isPermitted is carried out in the initiali-
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sation clause of machine RBAC_Model based on the other B data of this machine.

MACHINE RBAC_Model
INCLUDES Functional_Model, UserAssignements
PROMOTES safeConnect, disconnect, setCurrentUser
SETS

ENTITIES ; Attributes ; Operations ; KindsOfAtt = {public, private};
PERMISSIONS ; ActionsType = {read, create, modify, delete, fullAccess}

CONSTANTS
AttributeKind, AttributeOf, OperationOf,
constructorOf, destructorOf, setterOf, getterOf,
PermissionAssignement, EntityActions, MethodActions,

VARIABLES
isPermitted

PROPERTIES
AttributeKind 2 Attributes! KindsOfAtt ^
AttributeOf 2 Attributes! ENTITIES ^
OperationOf 2 Operations! ENTITIES ^
constructorOf 2 Operations 7⇢ ENTITIES ^
destructorOf 2 Operations 7⇢ ENTITIES ^
setterOf 2 Operations 7⇢ Attributes ^
getterOf 2 Operations 7⇢ Attributes ^
setterOf \ getterOf = ; ^
PermissionAssignement 2 PERMISSIONS! (ROLES ⇥ ENTITIES) ^
EntityActions 2 PERMISSIONS 7! P (ActionsType) ^
MethodActions 2 PERMISSIONS 7! P (Operations) ^

INVARIANT
isPermitted 2 ROLES$ Operations

Figure 2.15: Structural part of RBAC machine

2.2.3.3 Formal modeling of secure operations

B4MSecure produces for every functional operation, a secured operation that verifies (using
a security guard) whether the current user is allowed to call the functional operation. The
secure operation also verifies the authorization constraints, if they are defined in the underlying
permissions, and updates the assignment of roles when required.

Figure 2.16 shows the secure operations associated to Account_transferFunds and Cus-
tomer_NEW. The security guard is defined in clause SELECT. It verifies that the functional
operation belongs to set isPermitted[currentRoles], where definition currentRoles refers to the
roles activated by currentUser (in a session) as well as their super-roles:
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currentRoles ==
Session[{currentUser}] [
ran(Session[{currentUser}] C (Roles_Hierarchy)+)

secure_Account_transferFunds(aAccount, NB, m) =
PRE

aAccount 2 Account ^ NB 2 N ^ m 2 N1 [^ . . .]

THEN
SELECT

Account_transferFunds_ 2 isPermitted[currentRoles]
^ (CustomerUser 2 currentRoles) AccountOwner(aAccount) = currentUser)

THEN
Account_transferFunds(aAccount, NB, m)

END
END;

secure_Customer_NEW(aCustomer, theAccount) =
PRE

aCustomer 2 CUSTOMER ^ theAccount 2 F(Account) [^ . . .]
THEN

SELECT
Customer_NEW_ 2 isPermitted[currentRoles]

THEN
Customer_NEW(aCustomer, theAccount) ||
addRoleSafe(aCustomer, CustomerUser)

END
END;

Figure 2.16: Operational part of RBAC machine

The security guard of secure_Account_transferFunds is strengthened with the authoriza-
tion constraint of permission CustomerUserPerm2. For every permission p associated to a role
r and a constraint c, the tool adds guard (r 2 currentRoles ) c) to all operations that are
concerned with p. Note that in the graphical model the constraint is directly written in B.
In this case the constraint is: AccountOwner(aAccount) = currentUser. Regarding operation
secure_Customer_NEW, it is not concerned with an authorization constraint. But, as class Cus-
tomer and role CustomerUser are aligned, the operation applies addSafeRole to update relation
roleOf when a customer is created.

These two operations show how B4MSecure takes into account the relationship between
functional and security models. In one case the permission is granted to users when some
functional conditions hold and in the other case the creation of some objects may grant new
permissions to users since they may acquire additional roles.
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2.3 Animation and dynamic analyses
The example in the previous section highlights the need for dynamic analyses of both func-
tional and security models. When the security policy refers to functional elements, a dynamic
analysis should not only cover the RBAC functions, but also take into account the behaviour of
the functional model. Dynamic analyses can take two forms: test and model-checking. Tests
correspond to the execution of a sequence of actions on the various models, or on their imple-
mentations. The test sequence is either defined by the security policy designer, possibly on the
basis of use cases, or it may be the output of a test generation tool.

However, tests can only check a limited number of behaviours. When absolute guaran-
tees are required, such as ensuring that all threats are handled, verification techniques, such as
model-checking and theorem proving, should be considered. Theorem proving can show that
constraints are satisfiable, or establish that some property, like SoD, is an invariant of the model.
However, as we are interested by the reachability of particular states that may open breaches
and favour security threats, theorem proving is not an efficient technique. We apply theorem
proving to guarantee that the functional model is correct regarding its invariants as discussed in
Section 2.2.2, and also to guarantee that the pre-established security operations are correct with
respect to the RBAC constraints (i.e. Role hierarchy, SSD, DSD, etc).

2.3.1 Animation in B4MSecure
In order to favour dynamic analyses in one integrated framework, B4MSecure applies ProB
Java API as presented in Figure 2.17.

Figure 2.17: Animation in B4MSecure
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Note that the B specifications that are extracted by the tool can also be verified outside
B4MSecure using ProB standalone. The State View (bottom-left) gives the values of the B
variables in the current state, i.e. after animating the sequence of the History View (bottom-
right). The Execution View (top-right) shows the B operations that can be triggered in the
current state. The content of these views is computed by the Java API of ProB; B4MSecure just
provides some convenient actions to ensure animation and/or model-checking via the API.

Figure 2.17 shows a sequence of functional operations that creates customers Paul and Mar-
tin, as well as their respective accounts cpt1 and cpt2. An amount of 200e is added to Martin’s
account and then 300e are transferred from this account to Paul’s account.

Account_NEW(cpt1, 111) ;
Customer_NEW(Paul,{cpt1}) ;
Account_NEW(cpt2, 222) ;
Customer_NEW(Martin,{cpt2}) ;
Account__depositFunds(cpt2, 200) ;
Account__transferFunds(cpt2, 111, 300)

###

Account_balance = {(cpt1 7! 300), (cpt2 7! �100)}

AccountOwner = {(cpt1 7! Paul), (cpt2 7!Martin)}

Account_IBAN = {(cpt1 7! 111), (cpt2 7! 222)}

Account_overdraft = {(cpt1 7! �100), (cpt2 7! �100)}

Figure 2.18: Valid functional sequence and its target state

The scenario of Figure 2.18 that is animated in B4MSecure (Figure 2.17) corresponds to a
normal use case of the IS. Playing with functional scenarios shows that use cases are feasible
with the current specification, and helps identify missing steps in the use cases or the specifi-
cation. A similar animation can be performed by calling the secured version of the use case
(machine RBAC_Model). This eases the understanding and validation of the security policy and
shows that the security policy does not prevent the execution of functional use cases.

2.3.2 Testing the security policy
Having an operational formal model of the security policy, it becomes possible to carry out
security tests, by testing permissions and/or prohibitions. For example, when a test consists of
reading an object, one can simply check that the getter (or a reading operation) is allowed (or
not) in a given state. Several testing objectives can be addressed when testing a secure opera-
tion: with a role that does not have access to this operation, without satisfying an authorization
constraint, or outside the operation precondition.

In order to perform security tests, we structure the animation of secure operations, accord-
ing to their permissions. We consider three parts: preamble, nominal/robustness and call. The
“preamble” sequence leads to a state allowing the execution of a permitted operation. The
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“nominal/robustness” varies the users and the roles that are concerned by the permission grant-
ing access to the operation. The “nominal” sequence corresponds to a positive test, and se-
quence “robustness” presents a slight variation compared to the nominal case, which must lead
to a failure (negative test). Finally, the “call” part applies the operation that we want to test in
order to see that it can be effectively called if it is authorized. For example, if we want to test
operation depositFunds, granted by permission CustomerUserPerm2 to role CustomerUser, we
consider the sequences of Figure 2.19.

preamble =
BEGIN

safeConnect(Bob, {AccountManager}) ;
setCurrentUser(Bob) ;
secure_Account_NEW(cpt1, 111) ;
secure_Customer_NEW(Paul,{cpt1}) ;
secure_Account_NEW(cpt2, 222) ;
secure_Customer_NEW(Martin,{cpt2})

END ;

nominal =
BEGIN

safeConnect(Paul, {CustomerUser}) ;
setCurrentUser(Paul) ;

END ;
robustness =
BEGIN

safeConnect(Martin, {CustomerUser}) ;
setCurrentUser(Martin)

END ;
call =
BEGIN

secure_Account__depositFunds(cpt1,500)
END

Figure 2.19: Structuring security tests

Positive tests verify that a user can execute the permitted operation if he/she activates the
corresponding role and satisfies the functional preconditions as well as the authorization con-
straint. For example, sequence « preamble ; nominal ; call » is a positive test and the resulting
state is represented with the object diagram of Figure 2.20. In this sequence, Paul deposits
money into his own account.

Figure 2.20: Initial object diagram

Positive tests that fail during the animation may reveal some defects in the definition of se-
curity rules. For example, a use case where the account manager modifies the allowed overdraft
of an account should be feasible. However, the following test sequence, which is therefore a
positive test, cannot be animated:
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safeConnect(Bob, {AccountManager}) ;
setCurrentUser(Bob) ;
secure_Account_NEW(cpt1, 111) ;
secure_Account_setOverDraft(cpt1,�500)

Operation Account_setOverDraft is a basic operation, generated by B4MSecure in order to
modify the value of attribute OverDraft of class Account; but there is no permission granting
access to this operation. Failure of this test reveals that a permission has been forgotten.

Regarding negative tests, they are close to positive tests, but they invalidate one of the el-
ements of the permission: role, precondition or authorization constraint. Contrary to positive
tests, a negative test cannot fully run, since it contains an illegal call to a secure operation. A
negative scenario, should not be allowed by the animator. For example, sequence « pream-
ble ; robustness ; call » is a negative test that invalidates the authorization constraint. In this
sequence, Martin tries to deposit money into an account that does not belong to him.

2.3.3 Attack scenarios

The advantage of theorem proving and testing, discussed in the previous sections, is that when
looking for threats, the security analyst has the guarantee that flaws are not issued from invariant
violations, but rather from the functional or the security logic. In this sense, the identification
of attack scenarios is mainly a validation task, which can be done by model-checking. Indeed,
an exhaustive model exploration may exhibit a malicious sequence of operations leading to a
given state (where a property holds) from which a bad action may be done.

To show a possible malicious scenario based on our simple example, we start the exploration
from a normal state, that of Figure 2.20, reached by sequence « preamble ; nominal ; call ».
In this state Paul is a customer and owns account cpt1 whose balance is equal to 500. Bob
as AccountManager cannot execute operations transferFunds or withdrawCash on cpt1. The
answer to a static query such as “Is Bob able to transfer funds from Paul’s account?” would be
NO, since the permission given to a manager on class Account only allows instance creation.
However, the good question should be “Is there a sequence of operations that can be executed
by Bob in order to become able to transfer funds from Paul’s account?”. To answer the question
we use the model-checking feature of ProB to explore the state space and find states that satisfy
property: AccountOwner(cpt1) = Bob. We are therefore looking for a sequence of operations
executed by Bob allowing him to become the owner of cpt1. After finding the state we use ProB
to verify whether it is possible to come back into a state where cpt1 is owned by Paul. The
objective is to check if the attacker can execute the reverse actions in order to hide his attack.

Sequence of Figure 2.21 has been exhibited by ProB after exploring more than 36000 reach-
able states. We structure it in four steps. In step 1 Bob adds himself to the system as a
customer. As the creation of a customer requires at least one account, Bob creates the fictive
account cpt3 and then he calls operation secure_Customer_NEW. In step 2, the attacker be-
comes the owner of cpt1. To this purpose he must first remove the link between Paul and cpt1.
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But, in the functional model a customer must have at least one account, consequently operation
secure_Customer_RemoveAccount(Paul, {cpt1}) is possible only if Paul has another account.
For this reason, Bob creates another fictive account cpt4 and adds it to Paul’s accounts. The last
action of step 2 reaches the malicious state where Bob is the owner of cpt1. Finally, step
3 realizes the attack and step 4 brings the system back to a normal state.

/* step 1: create customer Bob */
safeConnect(Bob, {AccountManager}) ;
setCurrentUser(Bob) ;
secure_Account_NEW(cpt3, 333) ;
secure_Customer_NEW(Bob,{cpt3}) ;

/* step 2: get the ownership of Paul’s Account */
secure_Account_NEW(cpt4, 444) ;
secure_Customer_AddAccount(Paul,{cpt4}) ;
secure_Customer_RemoveAccount(Paul,{cpt1}) ;
secure_Customer_AddAccount(Bob,{cpt1}) ;

/* step 3: attack */
disConnect(Bob) ;
safeConnect(Bob, {CustomerUser}) ;
secure_Account_transferFunds(cpt1, 333, 500) ;

/* step 4: hide the attack */
disConnect(Bob) ;
safeConnect(Bob, {AccountManager}) ;
secure_Customer_RemoveAccount(Bob,{cpt1}) ;
secure_Customer_AddAccount(Paul,{cpt1}) ;
secure_Customer_RemoveAccount(Paul,{cpt4}) ;
secure_Customer_Free(Bob)

Figure 2.21: Malicious scenario

Figure 2.22: Malicious state reached after the execution of steps 1 and 2
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This malicious scenario can be countered by enhancing the functional model and/or the
security model. If the analyst assumes that the flaw is favored by the functional logic, one
possible solution would be to introduce the following invariant:

Account__balanceValue 6= 0) AccountOwner[{Instance}] 6= ;

In fact, operation secure_Customer_RemoveAccount(Paul, {cpt1}) is the dangerous opera-
tion. This invariant means that accounts whose balance is not equal to zero must be owned
by a customer. By introducing this invariant, several functional operations must be corrected
and proved, such as: Customer_RemoveAccount and Account_SetBalance. In other words, to
remove the ownership relation between cpt1 and Paul, the account of Paul must be empty.

If the analyst assumes that the flow is favored by the security logic, a possible solution
would be to limit the scope of permission AccountManagerPerm1 because it currently grants a
full access to role AccountManager on customer’s data, including the deletion of his accounts.

2.4 Discussion and conclusion
One of the advantages of B4MSecure (Akram Idani and Ledru, 2015) is its extensibility; besides
an extension to Event-B has been proposed in (Wakrime et al., 2018) and an extension covering
other security features such as organisations and contextual rules has been defined by Yangui
(2016). Not only the translation of functional models is built on existing UML-to-B works
that are approved by the formal methods community and that are combined together in one
unifying framework, but also the translation of RBAC models can be configured leading to
various translations. This chapter has been focused on one possible translation providing an
overview of our Formal Model-Driven Security approach.

The major motivation behind the tool is that MDS (Basin et al., 2006) advocates for the
separation of concerns principle and suggests the validation of functional and security models
in isolation. However, access control rules often include authorisation constraints, which re-
quires dynamic analyses dealing with elements of both models. Our proposal is built on the B
method and allows the validation and verification of RBAC policies involving constraints. This
work has been applied and experimented in several research projects, the major ones are: ANR
Selkis (2008-2012) and NExTRegio of IRT Railenium (2015-2019). The first project addresses
medical information systems and the second project deals with railway applications.

ANR Selkis (2008-2012). The first versions of B4MSecure have been developed during this
project, and have involved two PhD students (N. Qamar and M.-A. Labiadh) and two M2 stu-
dents that I co-supervised with my colleague Y. Ledru. In (Ledru et al., 2015a) we reported on
the application of B4MSecure to Res@mu, a case study issued from this project. Res@mu is
a medical IS developed by Ifremmont7. It supports every stage of a medical urgency, from the

7 Ifremmont (http://www.ifremmont.com/): Institut Français de recherche en Médecine de Montagne.
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phone call to an emergency call center, to the management of emergency teams during a mis-
sion. The starting point of this study was a set of UML class diagrams and use cases describing
the data structures and main functionalities of the IS. These include 77 classes and more than
100 use cases. The application of B4MSecure was focused on 12 classes. We discarded classes
that do not influence medical acts, our security target, like those describing rescue vehicles or
their base station, or the motivation and circumstances of emergency missions. A total of 34
positive tests and 87 negative test have been defined and played against the models using ProB.
They helped us incrementally define the security policy, following a TDD approach. Thanks
to these tests, errors have been identified in functional use cases, in the initial version of our
access control rules or in manually defined assertions of B models. We believe that the suc-
cess of these tests gives reasonable guarantees in the quality of our security policy. We have
also defined 4 attack scenarios, and several associated variants. They correspond to 7 positive
tests and 13 negative ones. They all try to compromise the confidentiality of medical acts. In
these scenarios, users with high privileges (e.g. team doctor or regulator) try to get access to
the medical acts of a patient by joining the intervention team during or after the intervention.
All attacks failed, which increased our confidence in the security policy. These attacks showed
the usefulness of protecting not only the security target, but also related classes involved in au-
thorisation constraints. However, the scenarios describing these attacks are generally complex
and ProB was not able to compute the enabledness for most of them (18/20 tests), experienc-
ing time-outs or memory errors. We had to break these tests down into smaller test steps that
were played in sequence. The next chapter discusses some solutions to these issues, such as
combining abstraction and theorem proving, to automate the extraction of attack scenarios.

NExTRegio (2015-2019). Papers (Ledru et al., 2019) and (Wakrime et al., 2018) show how
B4MSecure has been used in the railway field. During this collaboration with IFSTTAR8 and
IRT Railenium9 we proposed a modelling approach for railway signalling rules being inspired
by MDS and IS security. The approach models the agents that perform railway operations
and the conditions that must be satisfied before performing these operations. These models
are expressed in SecureUML diagrams enhanced with B assertions, and then translated, using
B4MSecure, into B machines. ProB is applied to verify the model via model-checking and ani-
mation in order to assess the reachability of desired states, and verify the absence of accidents.
Furthermore, the approach proceeds by introducing human errors, checking their consequences,
and deploying counter-measures. For this case study the separation of concerns principle was
useful to define first an uncontrolled model only governed by the laws of physics, where acci-
dents may happen, and second a model controlled by signalling rules, where bad things should
not happen. This is similar to the distinction made in secure IS and MDS between data and
associated functions, described in a so-called “functional” model, and the permissions that rule
the accesses of users to these data, described in a “security” model. Each operation of the un-
8 IFSTTAR: Institut français des sciences et technologies des transports, de l’aménagement et des réseaux,
https://www.ifsttar.fr/

9 IRT Railenium: https://railenium.eu
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controlled model has a controlled version in the control model. This version adds guards to
check the relevant permissions. For example, trains, tracks, lights and their associated oper-
ations correspond to the uncontrolled model. Train drivers and traffic agents must follow the
rules that constrain the call to these operations, which is a kind of role-based access control.
Having this formal specification, the existence of accidents is assimilated to insider threats.
Indeed, the verification of signalling rules assumes that users follow the rules, i.e. they only
access operations that are permitted, and follow authorisation constraints. These assumptions
are not valid in the case of human errors, for example (1) the train driver can overlook an off
light and enter a forbidden track portion or (2) the traffic agent can switch on a light ignoring the
corresponding safety constraints. Such human errors can be the consequence of tiredness. In
2016, Infrabel, the Belgian railway company, reported that 91 trains (out of 1,3 million) ignored
a red light (Infrabel, 2017).
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Looking for malicious behaviours
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This chapter is an update of these two papers:

Amira Radhouani, Akram Idani, Yves Ledru, and Narjes Ben Rajeb. Symbolic Search of
Insider Attack Scenarios from a Formal Information System Modeling. LNCS Trans-
actions on Petri Nets and Other Models of Concurrency, 10:131–152, 2015. URL
https://doi.org/10.1007/978-3-662-48650-4_7.

Amira Radhouani, Akram Idani, Yves Ledru, and Narjes Ben Rajeb. Extraction of insider
attack scenarios from a formal Information System Modeling. In 5th International
Workshop on Formal Methods for Security (FMS), 2014.

T he early detection of potential threats during the modelling and design phase of a Se-
cure Information System is required because it favours the design of a robust access
control policy and the prevention of malicious behaviours during system execution.

This paper deals with internal attacks which can be made by people inside the organization.
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Such attacks are difficult to detect because insiders have authorized system access and also may
be familiar with system policies and procedures. We are interested in finding attacks which
conform to the access control policy, but lead to unwanted states. These attacks are favoured by
policies involving authorization constraints, which grant or deny access depending on the evolu-
tion of the functional Information System state. In this context, we propose to model functional
requirements and their Role Based Access Control (RBAC) policies using B machines and then
to formally reason on both models. In order to extract insider attack scenarios from these B
specifications, our approach first investigates symbolic behaviours. Then, the use of a model-
checking tool allows to exhibit, from a symbolic behaviour, an observable concrete sequence of
operations that can be followed by an attacker. In this chapter, we show how this combination
of symbolic analysis and model-checking allows one to find out such insider attack scenarios.

3.1 Running Example
In this section we use a running example issued from (Basin et al., 2009) and which deals with
a SecureUML model associated to a functional UML class diagram.

3.1.1 Functional model
The functional UML class diagram (presented in Figure 3.1) describes a meeting scheduler
dedicated to manage data about two entities: Persons and Meetings.

Figure 3.1: Functional model of meeting scheduler system

A meeting has one and only one owner (association MeetingOwner), a list of participants
(association MeetingParticipants), a duration, and a starting date. A person can be the owner of
several meetings and may participate to several meetings. Operations notify and cancel are user-
defined, and allow respectively to send messages to participants and to delete a meeting after
notifying their participants by e-mail. Constructors, setters and getters are implicitly defined for
both classes and both associations.

3.1.2 Access control rules
The access control model is given in Figure 3.2 using the secureUML syntax. It features three
different roles:
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• SystemUser: defines persons who are registered on the system and then have permission
UserMeetingPerm which allows them to create and read meetings. Deletion and modifi-
cation of meetings (including operation cancel) are granted to system users by means of
permission OwnerMeetingPerm, featuring an authorization constraint checking that the
user who tries to run these actions is the meeting owner.

• Supervisor: defines system users with more privileges because they can run actions no-
tify and cancel on any meeting even if they are not owners.

• SystemAdministrator: having a full access on entity Person, an administrator manages
system users. Full access grants him the right to create a new person, remove or modify
an existing one. Furthermore, a system administrator has only a read access on meetings:
he is not expected to create or modify meetings.

Figure 3.2: Security model of meeting scheduler system

3.1.3 Validation
This example is intended to be validated in (Basin et al., 2009) based on a set of static queries
that investigate a given system state in order to grasp some useful information like “which user
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can perform an action on a concrete resource in a given state”.
Authorization constraint associated to OwnerMeetingPerm requires information from the

functional model because it deals with the MeetingOwner association. In the remainder, we
consider three users John, Alice and Bob such that user assignments are as defined by Figure
3.3. We also consider a given initial state in which Alice is owner of meeting m1, Bob is a
participant of m1. In such a state, the above static query establishes that only Alice is allowed
to modify or delete m1 because she is the owner of m1.

Figure 3.3: Users assignement

In (Ledru et al., 2014) a dynamic analysis approach based on animation of a formal spec-
ification showed that validation should not only be based on a given static state, but should
search for sequences of actions modifying this state and breaking the authorization constraint.
For example, starting from the above state, a static query would only report that John, and also
Bob, can’t modify m1 because none of them satisfies the authorization constraint. A dynamic
analysis would ask if there exists a sequence of operations enabled by John, or Bob, that al-
lows them to modify m1. This paper contributes towards automatically finding these malicious
sequences. To perform these analysis, we applied the B4MSecure tool to the UML and Se-
cureUML diagrams and generated a B specification counting 946 lines. This tool generates
automatically a specification for all basic functional operations, which is enriched manually by
some user-defined operations (i.e. cancel, notify).

3.2 Dynamic analysis

3.2.1 Trace Semantics for B Specifications
In order to find malicious behaviours of an operational secure IS model, we rely on the set of
finite observable traces of our B specifications. Indeed, B specifications can be approached by
means of a trace semantics composed of an initialization substitution init, a set of operations
O and a set of state variables V . We note val a possible state predicate allowed by the invariant
and op an operation from O. A functional behaviour is an observable sequence Q

Q =̂ init ; op1 ; op2 ; . . . ; opm
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such that 8i.(i 2 1..m) opi 2 O) and there exists a sequence S of state predicates which does
not violate invariant properties:

S =̂ val0 ; val1 ; . . . ; valm

in which val0 is an initial state, and opi is enabled from state vali�1 and state vali is reached by
opi, starting from state vali�1.

The security model filters functional behaviours by analysing access control premises which
are triplets (u,R, c) where u is a user, R is a set of possible roles assigned to u, and c is an
authorization constraint. An observable secure behaviour is a sequence Q, where for every
step i, premise (ui, Ri, ci) is valid (expressed as (ui, Ri, ci) |= true). This means that roles Ri

activated by user ui grant him/her the right of running operation opi and if a constraint ci exists,
then it must be satisfied. The following premises sequence P must be valid for Q:

P =̂ (u1, R1, c1) ; (u2, R2, c2) ; . . . ; (um, Rm, cm)

3.2.2 Tools to exhibit behaviours from B specifications
Model-checking and symbolic proof techniques are of interest in order to exhibit a relevant
behaviour from an operational B specification. Proof techniques deal with infinite systems
and can prove constraint satisfiability, or establish that some operation can be enabled from an
abstract state predicate. Model-checking is based on model exploration of finite systems, and
can be used to find a sequence of actions leading to a given state or property. In our approach,
we combine both techniques in order to overcome their shortcomings: complexity of proofs for
the first one, and state explosion for the second one. In this sub-section, we illustrate both tools.

Model checking and animation (the ProB tool). ProB (Leuschel and Butler, 2003) is an
animation and a model-checker of B specifications that explores the concrete state space of
the specification and generates accessibility graphs. Then, every predicate vali (where i 2

0 . . .m) of sequence S is a valuation of variables issued from V . For example, considering
V = {person,meeting,meetingOwner,meetingParticipants} and starting from an initial
state val0 such that:

val0 =̂ person = ;

^meeting = ;

^meetingOwner = ;

^meetingParticipant = ;

and having O = {personNew,meetingNew,meetingAddParticipants}, the scenario of ta-
ble 3.1 is successfully animated using ProB. Column “reached states” gives only modified B
variables from the previous step.

In step 1, the tool animates operation personNew which modifies variable person (initially
equal to ;) and this action was performed by user John using role SystemAdministrator without
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need of authorization constraint. In step 4, the tool adds participant Bob to the meeting m1 by
animating operation meetingAddParticipants, after verification that authorization constraint is
True for Alice using role SystemUser. Indeed, Alice is the owner of m1.

step Sequence Q Reached states S RBAC premises P

1 personNew person={Alice}
John
SystemAdministrator
no constraint

2 personNew person={Alice, Bob}
John
SystemAdministrator
no constraint

3 meetingNew
meeting={m1}
meetingOwner={(Alice, m1)}

Alice
SystemUser
no constraint

4 meetingAddParticipants meetingParticipants={(m1, Bob)}

Alice
SystemUser
Constraint: Alice is
the owner of m1

Table 3.1: animation of a normal scenario with ProB

Symbolic proof (the GeneSyst tool). ProB is useful to animate scenarios identified during
requirements analysis, or to exhaustively explore a finite subset of state space. As we are inter-
ested in finding malicious scenarios that exhibit a potential internal attack, the ProB technique
may be useful only if it explores the right state space subset in the right direction, which is not
obvious for infinite systems. Symbolic proof techniques, such as that of GeneSyst by Bert et al.
(2005), are more interesting because they allow one to produce symbolic transition systems that
represent a potentially infinite set of values and a set of predicate states. Such tools reason on
the enabledness properties of an operation op from a symbolic state E and the reachability prop-
erties of a symbolic state F by op from E. In (Bert et al., 2005), three enabledness properties
and three reachability properties are defined in terms of the following proof obligations, where
E and F are two disjoint state predicates and x is the set of variables of the system:

(1) always enabled: 8x.E ) Pre(op)

(2) never enabled: 8x.E ) ¬Pre(op)

(3) possibly enabled (¬ (1) ^ ¬ (2)): 9x.E ^ Pre(op)

(4) always reached: 8x.E ^ Pre(op)) [Action(op)]F

(5) never reachable: 8x.E ^ Pre(op)) [Action(op)]¬F

(6) possibly reached (¬ (4) ^ ¬ (5)): 9x.E ^ Pre(op) ^ ¬[Action(op)]¬F
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Where Pre(op) is a predicate representing the preconditions under which the operation op be-
comes feasible (Abrial and Mussat, 1998), and Action(op) is a generalized substitution (Abrial,
1996) representing its action.

The first three proof obligations deal with enabledness property. Proof obligation (1) means
that whenever the state E is satisfied, the precondition of the operation op is true, then op is
always enabled from E. Whereas, according to the proof obligation (2), the op precondition is
false when E is satisfied which means that op can never be enabled from E. Proof obligation
(3) means that there exists a subset in E from which the precondition is satisfied, then op is
possibly enabled from E.

In the generalized substitution theory, formula [S]R means that substitution S always estab-
lishes predicate R, and ¬[S]¬R means that substitution S may establish predicate R. Hence,
proof (4) means that F is always reached by the operation op from E. Proof (5) means that F
is never reached by actions of op from state E. Finally, proof (6) means that state F may be
reached by actions of op, when the operation precondition is true in state E. Note that reacha-
bility properties do not make sense if the enabledness property is not proved. Let us consider,
for example, the functional operation meetingNew:

meetingNew(m, p)=̂

PRE

m 62 meeting ^ p 2 person

THEN

meeting := meeting [ {m}

|| meetingOwner := meetingOwner [ {(m 7! p)}

END

This operation adds a new meeting m and links it to an owner p. If we define states E and F

such that:

E =̂ meetingOwner[{m1}] = ;

F =̂ meetingOwner[{m1}] 6= ;

Therefore, proof obligation produced by GeneSyst for property (6) is successfully proved via
AtelierB showing that operation meetingNew when enabled from a state where m1 does not
exist and there exists at least one person in the system, may lead to a state where m1 is created
and has an owner.

As illustrated above, our work will focus on proof (6) which states the reachability of a target
state from an initial one by some operations that are proved enabled from this one according to
proof (3). We assume it is sufficient to decide whether an operation is potentially useful for a
malicious behaviour. Proofs (4) and (5) can be used if one would like to assume that a state can
never be reached, or it is always reached, by an operation.
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3.2.3 Malicious Behaviour
Based on the security requirements, several operations can be identified as critical. For example,
operations that perform (un)authorized modifications of meetings (e.g. MeetingSetStart) are
critical because they may affect the integrity of meeting information. A malicious behaviour
executed by a user u is an observable secure behaviour Q with m steps such that:

• opm is a critical operation to which an authorization constraint cm is associated.

• user u is malicious and would like to run opm by misusing his/her roles Ru.

• val0 : is an initial state where (u,Ru, cm) |= false

• for every step i (i 2 1..m) premise (u,Ru, ci) |= true

In other words, malicious user u is not initially allowed to execute the critical operation, but
he/she is able to run a sequence of operations leading to a state from which he/she can execute
this operation. In our investigation we assume that user u executes this malicious sequence
without collusion with another user. This problem is left to a future work.

Section 3.1.3 gave an example where neither Bob nor John are allowed to run a modification
operation, such as meetingSetStart which modifies attributes of class Meeting, from the initial
state due to the authorization constraint. This initial state is:

val0 =̂

person = {Alice, Bob}

^ meeting = {m1}

^ meetingOwner = {(Alice 7! m1)}

^ meetingParticipant = {(m1 7! Bob)}

In the following, we denote as init0 the sequence of operations leading to val0 as presented
in table 3.1. We used the model-checking facility of ProB in order to explore exhaustively
the state space and automatically find a path starting from val0 and leading to a state where
operation meetingSetStart becomes permitted to John. We asked ProB to find a sequence
where John becomes the owner of m1:

meetingOwner(m1) = John

After exploring more than 1000 states, ProB found a scenario in which John executes
sequentially operations personNew, personAddMeetingOwner and meetingSetStart. Indeed,
John, as a system administrator, has a full access to entity Person. This permission allows him
to create, modify, read and delete any instance of class Person. First, using his system admin-
istration role, he creates an instance John of class Person that corresponds to him by running
operation personNew(John). Then he adds meeting m1 to the set of meetings owned by John,
by running operation personAddMeetingOwner(John,m1) which is a basic modification op-
eration of class Person. These two actions allowed him to become the owner of m1 and then he
was able to modify the meeting of Alice using his system user role.
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Like all model-checking techniques, when ProB explores exhaustively the state space, it
faces the combinatorial explosion problem which depends on the number of operations provided
to the tool and the state space size. In order to address this problem, our approach proposes a
symbolic search which finds a sequence of potentially useful operations on which the model-
checker should be focused.

3.3 Symbolic Search
The proposed symbolic search is performed by an algorithm (Figure 3.4) that looks for an
observable symbolic sequence Q =̂ init0 ; op1 ; . . . ; opm such that operations are not in-
stantiated. The searched sequence is executed by a user u, where (u,Ru, cm) is not valid for a
critical operation opm in the initial state val0 but becomes valid for state valm�1 where opm can
be enabled. It is a backward search algorithm, starting from the goal state valm�1 from which
the critical operation opm can be enabled: valm�1=̂ cm ^ Pre(opm); and working backwards
until the initial state val0 is encountered. The algorithm ends when sequence Q is found or
when all operations are verified without encountering the initial state. We consider that val0
is a completely valuated state such as the one where Alice is the owner of m1, and Bob is a
participant to m1. This prevents the initial state from being included in both states valm�1 and
valm�2, which would never verify the condition of the while loop.

3.3.1 Termination

Termination of our algorithm is ensured by the termination of the while loop conditions:

val0 6) valm�1 and valm�1 6|= false and Opset 6= ;

• val0 6) valm�1: means that the initial state is not yet encountered. If the initial state
is included in valm�1 (val0 ) valm�1), then our algorithm concludes that a sequence is
found.

• valm�1 6|= false : means that precondition of the last computed operation is not reduced
to false. If this condition becomes false, then the algorithm concludes that there is no fur-
ther state enabling the last computed operation, and then it raises exception "no sequence
found".

• Opset 6= ; : means that there still exist operations that are not exploited. Every opera-
tion is called at the most once in a symbolic sequence because the algorithm iteratively
removes operations from set Opset (Opset =̂ Opset \ {oi}). Hence, when a sequence is
found, the maximum size of a computed scenario is n such that n is the system operations
number. This last condition guarantees termination when none of the previous conditions
becomes false after exploiting all operations.
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1. Q =̂ opm;
2. valm�1 =̂ cm ^ Pre(opm);
3. valm�2 =̂ ¬valm�1;
4. Opset =̂ O;
5. while (val0 6) valm�1 and valm�1 6|= false and Opset 6= ;) do
6. choose any oi 2 Opset where
7. (u,Ru, ci) |= true ^

8. 9x.valm�2 ^ Pre(oi) ^ //PO3
9. 9x.valm�2 ^ Pre(oi) ^ ¬[Action(oi)]¬valm�1 //PO6
10. do
11. Q =̂ oi ; Q ;
12. valm�1 =̂ valm�2 ^ Pre(oi);
13. valm�2 =̂ valm�2 ^ ¬Pre(oi);
14. Opset =̂ Opset \ {oi};
15. else
16. raise exception: No sequence found;
17. enddo
18. endwhile
19. if val0) valm�1 then
20. Q =̂ init ;Q ;
21. else
22. raise exception: No sequence found;
23. endif

Figure 3.4: A symbolic search proof based algorithm

3.3.2 Completeness
Although our algorithm succeeds in finding attacks (see Section 3.3.4), it lacks completeness
in two cases. First, since operations are deleted from set Opset as soon as they are used, it
is not able to extract attack scenarios in which an operation occurs more than once. Second,
the algorithm expects operations to have non trivial preconditions, and may stop too early if the
sequence includes operations with true as a precondition. In fact, the algorithm builds symbolic
states step by step. Based on the precondition of the extracted operation on a given step it infers
the previous states as follows:

valm�1 =̂ valm�2 ^ Pre(oi);
valm�2 =̂ valm�2 ^ ¬Pre(oi);

Due to the precondition negation, the algorithm stops when it extracts an operation without
precondition (i.e. Pre(oi)=̂true). Consequently, the algorithm may extracts just a part of an
existing sequence.
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However, experiments shows that it does well for many case studies and it is able to extract
symbolic sequences that don’t include repetition of operations or operations without precon-
dition or operations with the same preconditions. Because of these restrictions, we propose
to combine the symbolic search with model checking. Thus, the symbolic sequence found by
our algorithm is then used to guide a model-checker which will instantiate the parameters of
operations, and may identify sequences with operation repetition.

3.3.3 Step by Step Illustration

We take advantage of abstraction and step by step we refine the valm�2 symbolic state:

1. At the first step of the algorithm, the state space is represented by two symbolic states:
the first one valm�1 includes all states where the authorization constraint cm is true and
which are enabling opm, and the second one valm�2 is the negation of valm�1 which is
then ¬cm _ ¬Pre(opm). As they are two disjoint state predicates, we conduct proofs (3)
and (6) in order to find an operation oi that belongs to O and which is possibly enabled
from valm�2 and reaches the first state valm�1 and such that premise (u,Ru, ci) is valid.
If oi does not exist, then no sequence could be found for the expected attack and we
can try proof (5) for each operation attesting that all operations never reach valm�1 from
valm�2. Figure 3.5 provides a state machine diagram that illustrates this first iteration. In
this representation, states are predicates and transitions are symbolic operations.

Init0

¬(cm ^ Pre(opm))

opm�1

cm ^ Pre(opm)

opm

Figure 3.5: First iteration algorithm illustration

2. At the second step of the algorithm, if proofs (3) and (6) succeed for some operation
opm�1, then an observable sequence may exist, leading to the critical operation where
access control premise (u,Ru, cm) is valid.

3. If val0 is inside Pre(oi) then the algorithm stops. Otherwise, as showed in Figure 3.6, the
algorithm looks inside state valm�2 in order to find out the previous operations that can
be invoked in the attack scenario. State valm�2 is partitioned into two sub-states which
are:
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valm�2 ^ Pre(opm�1) ⌘ ¬(cm ^ Pre(opm)) ^ Pre(opm�1)

valm�2 ^ ¬Pre(opm�1) ⌘ ¬(cm ^ Pre(opm)) ^ ¬Pre(opm�1)

4. Then, we look for operations that reach the first sub-state from the second one.

Init0

Pre(opm�2)

¬Pre(opm�1)
opm�2

Pre(opm�1)

opm�1

¬(cm ^ Pre(opm))

cm ^ Pre(opm)

opm

Figure 3.6: Second iteration algorithm illustration

5. The algorithm proceeds iteratively (Figure 3.7) by partitioning the second state into two
sub-states until either it finds a state that includes the initial state, which corresponds to a
successful search, or fails the search because valm�1 is empty or all operations have been
invoked once. In the best case, our algorithm gives some symbolic attack scenario, which
consists of sequence (init0 ; opn ; opn+1 ; . . . ; opm) invoked by the same user u and
where:

valn�1=̂¬(cm ^ Pre(opm)) ^ ¬Pre(opm�1) ^ ¬Pre(opm�2) ^ . . . ^ Pre(opn)

and such that val0 ) valn�1 ^ 8i.(i 2 (n..m)) (u,Ru, ci) |= true)

3.3.4 Application
We apply our algorithm to the meeting scheduler example starting from the following initial
state val0:

val0 =̂ person = {Alice, Bob}

^ meeting = {m1}

^ meetingOwner = {(Alice 7! m1)}

^ meetingParticipant = {(m1 7! Bob)}

In this state user John is not allowed to modify meeting m1 because the authorization
constraint allows modification only by the owner of m1. A malicious scenario would lead
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Init0
Pre(opn)

¬Pre(opn+1)
opn

opm�3

Pre(opm�2)

¬Pre(opm�1)
opm�2

Pre(opm�1)

opm�1¬(cm ^ Pre(opm))

cm ^ Pre(opm)

opm

Figure 3.7: Last iteration algorithm illustration

to a state where John becomes able to execute a modification operation such as operation
meetingSetStart on meeting m1. In this state we have to verify:

Pre(meetingSetStart(m1, start))=̂ m1 2 meeting

and (John, SystemUser,MeetingOwner(m1) = John) |= true

1. First iteration: considering the following symbolic states

valm�1 =̂(MeetingOwner(m1) = John) ^m1 2Meeting

valm�2 =̂¬valm�1

we have:

val0 6) valm�1 because, in state val0, MeetingOwner(m1) = Alice,

and

PO (6) is discharged automatically by AtelierB prover for operation meetingNew

which may be executed by John as system user, and also for personAddMeetingOwner

when John is system administrator. In addition, manual proofs has been done to demon-
strate that meetingNew satisfies the PO for instantiation meetingNew(m1, John) and
that personAddMeetingOwner leads to valm�1 if and only if it is executed with pa-
rameters (John,m1). We have also checked PO (5) to verify that all other operations
never reach valm�1 from valm�2. Then, we may go on with the second iteration of the
algorithm for each of these two operations.
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2. Second iteration: we partition state valm�2 into two sub-states:

valm�3=̂ valm�2 ^ ¬Pre(opm�1)

valm�2=̂ valm�2 ^ Pre(opm�1)

• case 1: we choose opm�1 = meetingNew(m1, John), and then we have:
Pre(meetingNew(m1, John)) =̂ m1 /2 meeting ^ John 2 person, and
val0 6) valm�2 because John 62 person

In this case, the algorithm does not find an operation permitted to John leading
to a state where operation meetingNew becomes enabled. Indeed, no operation
satisfies PO (6). In the other side, PO (5) succeeds for all operations. Our algorithm
concludes that there does not exist an attack scenario invoking meetingNew in step
m� 1 (Figure 3.8).

meetingNew

meetingSetStart

init0

Figure 3.8: No state enabling operation meetingNew is found

• case 2: we choose opm�1 = personAddMeetingOwner(John,m1). We have:
Pre(personAddMeetingOwner(John,m1) =

m1 2 meeting ^ John 2 person ^ (John,m1) /2MeetingOwner

valm�2 =̂ ¬(m1 2 meeting ^meetingOwner{(m1)} = John) ^

m1 2 meeting ^ John 2 person ^ (John,m1) /2MeetingOwner

=̂ m1 2 meeting ^ John 2 person ^ (John,m1) /2MeetingOwner

valm�3 =̂ ¬(m1 2 meeting ^meetingOwner{(m1)} = John) ^

¬(m1 2 meeting ^ John 2 person ^ (John,m1) /2MeetingOwner)

=̂ m1 /2 meeting _ (meetingOwner{(m1)} 6= John ^ John /2 person)

val0 6) valm�2 because John 62 person

In this case, PO (6) succeeds for operation personNew, which means that if this
operation is executed, it may lead to a state where operation meetingNew can be
enabled. Operation personNew may be executed by John as system administrator.
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3. Third iteration: we partition state valm�3 into two sub-states:

valm�3 =̂ valm�3 ^ Pre(personNew(John))

=̂ John /2 person ^ (m1 /2 meeting _meetingOwner{(m1)} 6= John)

This stops normally the algorithm because in this case val0 ) valm�3. Figure 3.9
presents the full symbolic scenario that allows John to modify Alice’s meeting.

personNew

personAddMeetingOwner

meetingSetStart

init0

Figure 3.9: Symbolic malicious scenario for user John.

3.3.5 Discussion
Technically, our approach applies the GeneSyst tool in order to produce proof obligations and
then asks the AtelierB prover to discharge them automatically. As the resulting scenarios are
symbolic and based on "possibly reached proofs", the analyst can conclude that attacks may ex-
ist but he can not guarantee their existence for the concrete system. An interesting contribution
of our proof-based symbolic sequences, besides the fact that they draw the analyst’s attention to
potential flaws, is that they give useful inputs to the model-checker. Indeed, a model-checking
tool can be used to exhibit, from a symbolic behaviour, an observable concrete sequence of
operations that can be followed by an attacker. For example, based on the symbolic sequence of
Figure 3.9, ProB was able to extract the malicious concrete scenario represented in Figure 3.10.
In order to reduce significantly the state space, we can ask ProB to explore only operations found
in the symbolic malicious scenarios. For our example, when trying only operations personNew,
personAddMeetingOwner and meetingSetStart, ProB exhibits a concrete attack scenario after
visiting a dozen of states which shows a significant speed up with respect to our initial ProB
attempts (involving more than 1000 states).

Our technique was able to extract another scenario (Figure 3.11) which can be executed by
user Bob holding the supervisor role from the same initial state, in order to steal the ownership
of m1. In this scenario, Bob first cancels the meeting and then he recreates it before applying
the critical operation. The first scenario, done by user John, is made possible by the full access
permission to class Person, associated to role SystemAdministrator, which includes the right to
modify association ends. This attack affects meeting integrity. One solution can be to add a SSD
(Static Separation of Duties) constraint between roles SystemAdministrator and SystemUser.
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John will then still be able to become owner of the meeting, but will not be able to log in as
SystemUser in order to modify it.

The second scenario done by Bob was possible due to role Supervisor which gives him the
right to cancel a meeting, and then, as a SystemUser he can recreate it in order to become its
owner. This scenario does not point out a flaw since whenever a meeting is cancelled it should
be legitimate that a user can start a new meeting with the same identifier as the cancelled one.

Our algorithm was able to extract all possible sequences leading to the state that enables
the critical operation. The security breaches that our technique is looking for, are issued from
flaws in the conceptual logic of the security policy. Then, the produced sequences don’t violate
the access control policy, but they must be checked carefully by the security analyst in order to
decide whether it is an attack scenario (e.g attack 3.10 done by John) or a legitimate access (e.g
scenario 3.11 performed by Bob).

personNew(John)

personAddMeetingOwner(John,m1)

meetingSetStart(m1, 0)

init0

Figure 3.10: John’s scenario.

meetingCancel(m1)

meetingNew(m1, Bob)

meetingSetStart(m1, 0)

init0

Figure 3.11: Bob’s scenario.

3.4 Related Work
Several research works have been devoted to the validation of access control policies. They are
mainly focused on detecting external intrusion. Recently, the interest to insider attacks grew
leading to two categories of validation: stateless and dynamic access control validation.

Stateless access control validation is dedicated to validate security policies in a given state
without taking into account the dynamic evolution of the IS states. Among these works we can
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cite the SecureMova tool (Basin et al., 2009) which models security policies using SecureUML
and OCL expressions. In the same context, Kuhlmann et al. (2013) took advantage on the
USE tool to model RBAC policies in OCL in order to express authorization constraints and
to query about access control rules. Far from UML modeling, Fisler et al. (2005) developed
the Margrave tool to answer the same kind of stateless queries by analysing RBAC models
written in XACML and translated into a form of decision-diagram. Also, some interesting
works (Toahchoodee et al., 2009b, Zao et al., 2003) using Alloy language have been defined
to analyse access control policies. Even though authors have not sought to study the dynamic
evolution of functional states and their effect on the authorization constraints, we believe that a
tool like Alloy could support such analysis. Note that such stateless queries can be performed
easily based on the formal B specifications produced by the B4MSecure platform. The main
limitation of a stateless access control validation is that it does not indicate whether the given
state is reachable, or not, and then it may lead to incomplete conclusions.

Dynamic access control validation attempts to identify strategies followed by malicious
users to counter some security rules by taking advantage of the IS states evolution. In (Qamar
et al., 2011b), we proposed interactive dynamic analysis with the help of a Z animator, but this
approach requires user insight and may miss some possible flaws. Zhang et al. (2005, 2008)
proposed a backward algorithm to find a strategy allowing the attacker to reach a target state. A
plain model-checking approach is proposed in order to check specifications written in the RW
(Read-Write) language. On the one hand, the proposed algorithm suffers from scalability for
the verification of complex specifications because of combinatorial explosion of the state space;
and on the other hand, the RW language is poor compared to B because it doesn’t express com-
plex functional behaviours. The authors propose a contribution towards identifying strategies
involving multiple users in coalition. This aspect is not covered in this paper and is planned
for further work. A similar approach is proposed in (Koleini and Ryan, 2011) in order to vali-
date access control policies of web-based collaborative systems. Even though their experiments
show that they achieve better results compared to the approach in (Zhang et al., 2005, 2008), it
is still a model-checker solution that can not deal with policies of huge size.

Becker and Nanz (2010) approach is the most similar approach to ours. Indeed, they pro-
posed a Hoare-style proof system based on a Logic for State-Modifying (SMP) in which they
express reachability properties in terms of pre and post-conditions. They reason about an ab-
stract set of target states that satisfy some constraint. They also implemented a backward al-
gorithm that extracts the sequence of operations leading to the goal state. Their algorithm is
also able to compute the minimal sequence. However, the use of a logic-based language like
SMP is not adequate for the context of Information Systems with a need to express complex
functional behaviours. Moreover, the use of a proof system on a symbolic model may produce
a sequence which cannot be reproduced in the concrete model. To circumvent this shortcoming
we proposed in our approach to combine both proofs and model-checking techniques.

Our proof based symbolic search is achieved by assessing reachability properties (Bert et al.,
2005) of functional operations. Other works proposed to explore this kind of properties in
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order to reason on sequences of B operations. In (Mammar and Frappier, 2015), the authors
proposed two approaches to prove reachability properties in a B formal information system
modelling. In the first one, they used substitution refinement techniques based on Morgan’s
specification statement, and in the second one, they proposed an algorithm that produces a
proof obligation to be discharged automatically by AtelierB in order to prove whether a given
sequence of operations reaches (or not) a defined state. The proposed techniques may help for
our work since it is a proposal to simplify proofs and make them easier for AtelierB. However,
unlike our approach, they don’t search sequences leading to a goal state from an initial one.
Their approach starts from a given sequence of operations, and tries to prove its reachability.

3.5 Conclusion
This chapter described a symbolic search approach that can extract insider malicious behaviours
from a formal Information System modelling. The meeting scheduler example was discussed
in several articles (Basin et al., 2006, 2009). However, they do not report the attack scenarios
presented in this paper. This is due to the fact that dynamic evolution of the functional state
is not taken into account. We showed how dynamic analysis, assisted by proofs and model-
checking, is useful to find out potential threats. In addition, thanks to our algorithm, proofs
and model checking tools, our method can be automated in order to extract attack scenarios
breaking some authorization constraint. We also applied our approach on several case studies
and we were able to find, automatically, the discussed threats.

Our approach is automated thanks to B4MSecure1, GeneSyst2, AtelierB3 and ProB4. First,
B4MSecure translates functional and security graphical models into B specification, from which
we automatically produce proof obligations of enabledness and reachability properties using
GeneSyst. Then, these proof obligations are discharged automatically using the AtelierB prover.
When a symbolic scenario is found, ProB is used to explore the concrete state space focusing
on operations issued from the symbolic scenario. We developed GenISIS, a new tool that im-
plements our algorithm and integrates all the tools mentioned above in order to have a complete
automated solution. The main limitation of our work is that sometimes, when proof obligations
are complex, AtelierB fails to prove them automatically. Interactive proofs are then required, but
they may be pretty difficult for the analyst. One naive solution is to keep operations for which
proofs don’t succeed automatically in order to be exploited further using the model-checker. A
more interesting solution is to focus on other kinds of proof obligations. For example, one can
try to prove that an operation op is never enabled from a state E and/or op never reaches a state
F . Applying these proofs to the meeting scheduler example we were able to eliminate half of
the operations after proving automatically that they cannot be involved in the attack scenario.

1 http://b4msecure.forge.imag.fr
2 http://perso.citi.insa-lyon.fr/nstouls/?ZoomSur=GeneSyst
3 http://www.atelierb.eu/
4 http://www.stups.uni-duesseldorf.de/ProB
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This chapter is an excerpt issued from these two papers:

Akram Idani. Formal model-driven executable DSLs: Application to Petri-nets. Inter-
national Journal on Innovations in Systems and Software Engineering (ISSE), 18(4),
2022. URL https://doi.org/10.1007/s11334-021-00408-4.

Akram Idani, Yves Ledru, and German Vega. Alliance of Model Driven Engineering
with a Proof-based Formal Approach. International Journal on Innovations in Systems
and Software Engineering (ISSE), 16(3):289–307, 2020. URL https://doi.org/
10.1007/s11334-020-00366-3.

M odel Driven Engineering (MDE) is an interesting paradigm in software systems
development because it provides solutions to the software complexity on the one
hand, and it shows how to bridge the gap between conceptual models and coding
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Formal Model-Driven Executable DSLs

activities, on the other hand. The definition and the use of domain specific models through-
out the engineering life-cycle makes MDE a powerful asset. Furthermore, MDE is assisted
by numerous tools (EMF1, XText2, ATL3, etc) dedicated to put into practice a clear separation
of concerns ranging from requirements to target platforms, and going through several design
stages. Interoperability between these tools is favored by the use of standardized meta-modeling
formalisms which increases automation especially for developing domain specific modeling
languages (called DSMLs). These advantages reduce the risk that human errors such as mis-
interpretation of the requirements and specification documents lead to erroneously validate the
specification, and hence to produce the wrong system. Still, while model-driven DSLs provide
solutions to the validation problem (“do the right system”), the verification problem (“do the
system right”) remains a major challenge due to the lack of formal reasoning tools in MDE
platforms.

Contribution

This chapter shows how we define mappings between DS(M)Ls as they are defined in MDE
techniques and the rigorous world of formal methods. Our approach is assisted by Meeduse
(Idani, A., 2020b), a tool that we developed in order to translate a DS(M)L meta-model into an
equivalent formal B specification that represents its semantic domain, using the set theory and
the first order predicate logic. In MDE, the design of a DS(M)L addresses two main layers:
meta-modeling and modeling. Meta-modeling refers to the definition of the language abstract
syntax where domain concepts and their relationships are defined independently from their
concrete representation. The modeling layer allows one to create instances of these domain
concepts by applying a predefined concrete syntax (graphical or textual). Our approach applies
the formal B language to both layers. At the modeling layer, the abstract data-types generated
from the meta-model layer, become valuated data types, which allows animation. Regarding
the DSL behavioral semantics, they follow the same principles. Indeed, they are defined over
the meta-modeling layer using high-level B operations, which are then animated by Meeduse
on the modeling layer.

This alliance between MDE and a formal method, assisted by Meeduse, makes domain spe-
cific models provable and also executable thanks to the animation of their expected behaviour
directly in a dedicated DS(M)L tool. The interest of Meeduse is that it integrates the ProB
JAVA API (Körner et al., 2020). Given a model designed in the DS(M)L tool, Meeduse injects
it as valuations in the generated B specification and calls ProB in order to compute the list of
operations that may be animated from these valuations. When an operation is animated the tool
computes the new variable valuations and then it translates back these valuations to the initial
model which results in an automatic animation of domain models. This technique allows one to

1 EMF: https://www.eclipse.org/modeling/emf/
2 Xtext: https://www.eclipse.org/Xtext/
3 ATL: http://www.eclipse.org/atl/
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take benefit of formal reasoning tools such as provers and model-checkers throughout the MDE
process. The proposed method uses the AtelierB prover to guarantee the correctness of the
model’s behavior with respect to its invariant properties, and the ProB model-checker in order
to animate underlying execution scenarios. Besides the use of these automatic reasoning tools
in MDE, proved B refinements have been investigated in order to gradually translate abstract
models to concrete ones that can then be automatically compiled into a programming language.

Structure
This chapter is structured as follows:

• Section 4.1 discusses the meaning of DS(M)Ls semantics and presents an overview of
our approach to formally define these semantics.

• Section 4.2 summarizes an experimental study that we have done with several tools ded-
icated to executable DSLs, and gives our observations and lessons learned.

• Section 4.3 shows how the semantics of a DSL can be formally defined using the B
method and CSP.

• Section 4.4 illustrates some debugging activities that can be done using the Meeduse tool.

• Section 4.5 draws the conclusion of this chapter.

4.1 DS(M)L’s semantics
Execution of Domain Specific (Modeling) Languages (DS(M)Ls) is an active research area in
Model Driven Engineering (MDE). The intention is to be able to perform early analysis of a
system’s behavior before its implementation. Indeed, execution a DS(M)L tends to reduce the
gap between the model and the system, since DS(M)Ls would not only represent the expected
system’s structure and behaviour but they can themselves behave as the system should run. In
this work we apply a formal approach in order to define, prove, and execute the underlying
semantics of a DS(M)L. This section presents an overview about DS(M)L semantics as they are
defined in the state of the art and explains the main principles of our approach.

4.1.1 Abstract syntax and semantic domains
Bryant et al. (2011) discuss challenges and directions about DSLs semantics and point out that
their formal definition is the foundation for several benefits: automatic generation of some DSL
tooling, formal analysis of a model’s behavior, and/or composition of concerns issued from
different languages. The authors define the semantics of a DSL as a mapping from its abstract
syntax to some semantic domain. The abstract syntax defines the modeling concepts, their
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relationships and attributes; and the semantic domain is some mathematical framework whose
meaning is well-defined. In the same direction, Harel and Rumpe (2004) state that a semantic
domain is a well-defined and well-understood agreement on a language’s meaning.

In MDE, the notion of abstract syntax is well mastered today thanks to the concept of meta-
model (which is standardized by the Meta-Object Facility (MOF) document (Object Manage-
ment Group, 2015)). However, the notion of semantic domain remains unclear because, on the
one hand, the MOF is informally defined, and on the other hand, a common misconception in
modeling languages is to confuse semantics with behaviours as stated in (Harel and Rumpe,
2004). In fact, the description of a behaviour is itself a DSL with its own abstract syntax and
semantic domain. For example, several MDE tools define the simple Petri-net DSL using a
common meta-model, but they apply various languages (Kermeta, xMof, fUML, java) to de-
fine the expected behaviour when firing a petri-net transition. These languages are additional
DSLs with different semantic domains that lead to different behaviours when executing the
same Petri-net model with different tools.

Meta-models are therefore not sufficient to describe the behaviour of a DSL, that’s why
some attempts exist in order to enhance meta-models by action languages, e.g. Kermeta (Bousse
et al., 2018); or to translate meta-models into a target language that offers behavioural facilities,
e.g. Java (Hartmann and Sadilek, 2008). In our approach we apply this second strategy, called
translational in (Bryant et al., 2011), but we use the formal B language (Abrial, 1996), which
offers a way to mathematically define the semantic domain of a DSL. In our approach we adopt
a deep embedding approach when translating a DSL meta-model into the B language. The
formal semantic domain of a DSL will represent data typing with the corresponding structural
constraints defined in set theory and first order logic. Regarding the DSL behaviour, it is defined
using B operations that can be manually written, like presented in this chapter or generated from
additional DSLs that can describe behaviours. In (Idani, A., 2020b) we proposed to produce the
B operations from a coloured Petri-nets DSL.

4.1.2 Dynamic semantics vs Behavioural semantics
Several research works have been devoted in order to provide solutions with tools that make
DSLs executable. In Model-Driven Engineering, DSL execution mainly refers to the definition
of semantics, which are roughly called by means of several terms like dynamic, operational,
executable and/or behavioural. Jézéquel et al. (2013) refer to behavioral semantics of a DSL,
as the semantics that allow to run a program. They identify two kinds of behavioral semantics:
translational semantics and operational semantics: a translational semantics would result in
a compiler while an operational semantics would result in an interpreter. In (Muller et al.,
2005), a different definition is provided without a distinction between operational semantics and
behavioral semantics. The authors refer to a high level execution defined over meta-models and
which uses actions (also called operations) to define model’s behaviour. Similarly to programs
which are made of data structures and algorithms, in (Muller et al., 2005) an executable DSL
is made of meta-data and actions. The various definitions that we found mix low-level notions
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(compilers, programs, etc), and high level notions (meta-models, etc). This is less the case for
programming languages where the terms dynamic semantics and execution semantics are used
to describe the runtime behavior of programs (Vergu et al., 2015). The so-called dynamic (or
execution) semantics in programming languages, “defines how and when the various constructs
of the language produce artifacts (e.g. bytecode) that can be executed in a given target platform
(Floyd, 1993) (e.g. virtual machine)”.

For clarity we use terms dynamic and execution semantics of a DSL as soon as a run-
time environment is concerned which is close to programming languages (Vergu et al., 2015,
Floyd, 1993). Terms operational and behavioral semantics for us are inspired by (Muller et al.,
2005) and they are limited to high level actions that describe how models behave. The gap
between both semantics, does not make them conflicting because at a high level one can de-
fine behaviours of models and at a low level this behaviour can be translated into a runtime
environment. The challenge is how to guarantee the compatibility between the resulting exe-
cutions: that of a model given its operational semantics, and that of the runtime program given
its dynamic semantics. Works of U. Tikhonova (Tikhonova et al., 2013, Tikhonova, 2017a,b)
bridge this gap between operational and dynamic semantics, by providing reusable specification
templates which are templates that allow to explicitly define the dynamic semantics of a DSL
over its operational semantics. These templates are presented in the form of a library of spec-
ifications, each of which formalizes a separate software solution. The operational semantics
of a DSL are then expressed as a composition of these specification templates, which favours
some kind of generic programming of the DSL dynamic semantics. However, the use of a spec-
ification templates library makes several restrictions to the definition of semantics because it
is not obvious to cover all possible behavioural needs with various abstraction levels. In our
proposal, we address the semantic gap between operational and dynamic semantics of a DSL
thanks to the refinement paradigm of the B method which allows to produce step-by-step a low
level implementation of a DSL from its high level description.

4.1.3 Executable DS(M)Ls in Meeduse

Figure 4.1 summarizes how we put into practice the alliance of MDE with a proof-based formal
approach in order to define DS(M)Ls with formal semantics and favour their execution. Our
tool support named Meeduse4 links three technological spaces: EMF (Steinberg et al., 2009)
for model driven engineering, B Method (Abrial, 1996) for proofs and refinements, and finally
the execution of the target system. The top hand side of figure 4.1 represents the abstract syntax
of a DSL by means of an ECore meta-model, its mapping to the corresponding formal semantics
domain (box B Machine), and its operational semantics which starts from the description of an
abstract behavior and applies refinements until the specification of its concrete behavior (boxes
abstract behavior, refined behavior and concrete behavior). The bottom hand side of figure 4.1
defines the dynamic semantics of the DSL since it is an extraction of an executable language

4 Meeduse: Modeling Efficiently EnD USEr needs (http://vasco.imag.fr/tools/meeduse/).
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from the high level DSL artifacts. We build our approach on several components: Translator,
Injector, Animator and Trace runner.

Figure 4.1: Meeduse overview

(1) Translator: this component translates an Ecore (Steinberg et al., 2009) meta-model into an
equivalent B specification gathering the structure of the meta-model as well as basic oper-
ations like constructors, destructors, getters and setters. The resulting B specification can
be enhanced manually by additional invariants and its proof of correctness with respect
to these invariants can be done using AtelierB prover. Technically, the tool translates an
ECore model into an UML model and then applies B4MSecure to produce a formal B
machine representing the functional aspects of the DSL.

(2) Injector: injects instances of a meta-model, which can be designed using EMF-based
modeling tools (like Sirius, GMF, XText, etc) into the B specification produced from the
meta-model. This component introduces enumerations into abstract data structures like
abstract sets, and hence allows valuations of the B machine variables.

(3) Animator: animation of B specifications is done using the ProB JAVA API (Körner et al.,
2020). The Animator component asks ProB to animate B operations and gets the reached
state by means of B variables valuations. Then, Meeduse computes the equivalence be-
tween these valuations and the initial EMF model and applies the necessary modifications
to the model in order to keep this equivalence all along the animation process.
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(4) Trace runner: this component plays a sequence of operations issued from an execution
trace by animating the corresponding B operations, which leads to automatic modifica-
tions of the model. Thanks to this component, animation can be done from outside EMF
by an external program which is running in the target platform. Note that the target plat-
form source code can be produced by applying MDE transformations or by using the
code generator of AtelierB after successive refinements. In both cases, the trace runner is
useful on the one hand, for conformance validation between the model and the execution,
and on the other hand for some kind of runtime verification. In (Idani, A. et al., 2020),
we presented the first strategy where an implementation in the C language is generated
by AtelierB from the most concrete B machine.

4.2 Preliminary study and critical review
In (Idani, A., 2022, 2020a) we experimented several existing MDE implementations of Petri-
nets applying Java, QVT, Kermeta and fUML. We tried them to debug a safety-critical system in
order to check their ability to address properties such as: correctness, deadlock freedom, mutual
exclusion and fairness. This section gives the lessons learned from this study and discusses why
formal alternatives are required to ensure the correctness of DSLs.

4.2.1 A simplified Petri-net DSL
Petri-net (Petri and Reisig, 2008) is a visual language used for modelling concurrent systems.
Its mathematical foundations inspired by the graph theory allow formal calculus about safety
properties. The choice of this DSL is motivated by the fact that it is often used as an illustrative
case by the research works and tools interested in modeling and debugging techniques, and also
because it has had a wide range of applications in safety critical systems. This section builds on
a simplified version of this DSL and defines a Petri-net based safety-critical example.

4.2.1.1 Structural and contextual semantics

Figure 4.2 shows the simplified Petri-net meta-model as considered by (Bousse et al., 2018,
Deantoni, 2016). It is composed of three meta-classes: Net (the root class), Place and Transition.
These classes are linked by four relationships: places, transitions, input and output. This meta-
model defines structural features of a given Petri-net. For instance, a transition must be linked
to at least one input place and one output place. Attribute tokens represents the number of
tokens in a place: it is single-valuated, optional and without a default initial value. The various
references of this meta-model don’t admit repetitions. Note that the meta-model is taken from
(Bousse et al., 2018)5 and it is presented without any modification. There exist some variations
of this meta-model where transitions admit both 0 inputs and 0 outputs. Furthermore, the Petri-
net DSL must comply with the following contextual invariant written in OCL:
5 The corresponding ECore file can be found at (Petri-net ecore file, 2020).
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context Place

inv Token_Is_Natural: self.tokens � 0

Figure 4.2: Petri-nets meta-model.

For illustration we use the Petri-net of figure 4.3 that controls traffic lights in a crossroad. In
some sense, this model deals with a safety-critical system since failures may lead to loss of life
due to accidents that it may cause. This model represents two traffic lights (Light 1 and Light 2)
that are to be placed in two roads that intersect. These traffic lights are respectively controlled
by the left side and the right side of this figure. Every traffic light sequentially switches from
Green to Orange and then to Red, in an infinite loop. This Petri-net model shows concurrent
evolutions of traffic lights without any synchronisation between them. Finally, the current state
of this model assigns red to Light 1 and green to Light 2.

Figure 4.3: Traffic light controller in petri-nets (V1)

In our study we supposed that by using a Petri-net debugger, a domain expert would like to
verify some safety properties such as:
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• correctness: asserts that the system does not exhibit bad behaviors, where invariants
(structural or contextual) are violated.

• deadlock-freedom: states that the traffic lights can’t be blocked in a state in which no
progress is possible

• mutual exclusion: states that lights in a road intersection cannot enter simultaneously
their critical sections (critical sections are states green and orange in our example).

• fairness: requires that the system gives fair turns to its components (in our example both
lights must be able to function).

4.2.1.2 Execution semantics

Basic execution semantics of the Petri-net DSL are defined by means of transition firing which
holds when a transition satisfies an enabledness property. To check this property, we require to
call a query defined as:

query isEnabled(t : Transition) : Boolean =
t.input->forAll(p : Place | p.tokens > 0)

This query returns true if attribute tokens is greater than 0 for each input place of transition
t, false otherwise. Algorithm of figure 4.4, taken from (Bousse et al., 2018), describes how a
Petri-net runs.

Figure 4.4: Running a Petri-net.

This algorithm chooses non-deterministically (operator :2) a transition t (called tenabled)
from the set of transitions that satisfy the enabledness property and then calls operation fire(t).
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As a result the number of tokens in the input places of t is decreased (operation removeToken)
and the number of tokens in the output places is increased (operation addToken). Modifica-
tions of tokens, done at every call to operation fire, modify the set of enabled transitions. The
algorithm may loop or stop when this set becomes empty.

4.2.1.3 Benchmark

In order to debug the aforementioned safety properties using various MDE approaches and
observe their strengths and limitations, our experimental study was built on approaches that
are widely accepted in the MDE literature: Java, QVT, Kermeta and fUML. In the remainder,
we refer to them respectively as: PNetJava, PNetQVT, PNetKermeta and PNetfUML. Our choice
was also motivated by the fact that these approaches are the only ones that we found, where
the Petri-net DSL was already implemented, in addition to the availability of the underlying
artifacts (source code, publications, tutorials). Furthermore, tools assisting these approaches use
the Eclipse Modeling Framework (EMF), which makes easy their integration and the analysis
of the Petri-net DSL within a unified MDE framework.

PNetJava (Hartmann and Sadilek, 2008). Java-based semantics of the petri-net DSL are pro-
posed in (Hartmann and Sadilek, 2008) and supported by a tool named EProvide (2020). This
java implementation is easily reproducible in the Eclipse Modeling Framework. The approach
is combined with graphical editor creation in order to support rapid prototyping of animated
visual interpreters and debuggers.

PNetQVT (Wachsmuth, 2008). QVT (Query/View/Transformation) is an OMG standard for
model transformations. QVT defines: QVT-Relations and QVT-Core which are declarative
languages but at two different levels of abstraction, and QVT-Operational which is an imperative
language. Wachsmuth (2008) used QVT-Relations which is the high-level language of QVT
extending OCL and its semantics with imperative features.

PNetKermeta (Deantoni, 2016, Bousse et al., 2018). Kermeta (Jézéquel et al., 2013) is a lan-
guage workbench that involves different meta-languages for abstract syntax (aligned with EMOF
(Object Management Group, 2015)), static semantics (aligned with OCL) and behavioural se-
mantics. In (Deantoni, 2016, Bousse et al., 2018), the Gemoc studio was applied together with
the Kermeta/XTend language to define the petri-net DSL and debug its execution using an ani-
mation technique.

PNetfUML (Langer et al., 2014, Mayerhofer et al., 2013). fUML (Object Management Group,
2011) is an OMG standard that defines the execution semantics of a subset of UML 2.3. The
standard applies, in the form of pseudo Java-code, a basic virtual machine enabling UML mod-
els using elements comprised in the fUML subset to be executed. Mayerhofer et al. (2013)
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proposes the xMOF tool which integrates fUML with MOF to enable the specification of the
behavioural semantics of DSLs in terms of fUML activities.

4.2.2 Ascertainment and discussion

4.2.2.1 Challenges

There exist several well established tools (Thong and Ameedeen, 2015) that implement the
Petri-net theory for verification purposes and apply various programming languages. However,
even if most of them are open-source, it remains difficult to update their code in order to experi-
ment various semantics. Not only the developer must have high programming skills, but he/she
must also understand the tool logic, which is a very challenging task especially for tools ded-
icated to formal languages. To this purpose, a MDE solution is much more suitable, because
it allows one to reason on the DSL itself, rather than on how the DSL is encoded in a given
programming language. Our works focus on MDE tools dedicated to DSL execution and de-
bugging, and apply them to the Petri-net DSL, together with a formal approach. The objective
is to benefit from the rich catalog of MDE tools without losing sight of correctness and rigorous
development. Indeed several MDE tools exist: model-to-model transformation, model-to-code
generation, constraint-checkers, graphical concrete syntax representation, bi-directional map-
pings, etc. The approach of PNetJava proposes to support stepping back in the execution history
of a DSL. PNetQVT investigated model-to-model transformations as a way to define execution
semantics of a DSL. PNetKermeta relies on generic trace management to provide an omniscient
debugger thereby allowing developers to “go back in time” (Lienhard et al., 2008). Finally,
PNetfUML proposed a new meta-modeling language (xMOF) for specifying the abstract syn-
tax and behavioral semantics of DSLs based exclusively on standardized modeling languages
(fUML and MOF). We experimented these tools being guided by two point of views:

• The end-user point of view: the end-user of a Petri-net is often either a Petri-net expert
who is interested by verification features (such as model-checking), or a domain expert
who is interested by interactive animation and/or simulation. Note that the experimented
approaches were not interested by verification, but rather by validation; and hence we
focused on debugging rather than on proofs and model-checking.

• The developer point of view: we assume that the developer of a Petri-net DSL has a
good knowledge of the Petri-net theory and his/her intention is to provide a bug-free tool.
Thus, we look at how existing tools encoded the semantics of the Petri-net DSL in order
to locate the critical parts and find the origin of failures when they happen.

4.2.2.2 Observations

Unfortunately, even if our benchmark tools address several interesting features and challeng-
ing directions for DSL development, their application to the Petri-net DSL is limited to the
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simplified semantics. As they didn’t go further towards the realistic Petri-net DSL, it is diffi-
cult to objectively evaluate the usefulness of the resulting models for verification. Hence, our
objective was not to check the correctness of their Petri-net case study � since their underly-
ing approaches didn’t deal with correctness � but rather to build a formal MDE Petri-net and
illustrate its contributions based on existing simplified implementations from which unsafe be-
haviours were exhibited. Indeed, our main observation is that even if it seems easy to use MDE
tools to develop the semantics of a language, the developer can miss obvious details without a
good support for verification. Furthermore, this may weaken the general approach of executable
DSLs when applied for debugging complex and safety-critical systems.

The analysis of our benchmark for simplified Petri-nets showed that failures or unsafe be-
haviours may originate from several artifacts:

• The meta-model and its underlying modeling operations, because often execution seman-
tics apply the modeling operations to update the input model. In order to safely update
the model, our approach generates a set of pre-established modeling operations that are
correct by construction, meaning that they will never violate the structural features of the
meta-model.

• The model itself, because incorrect behaviours may not be exhibited from models, es-
pecially when the DSL builder applies internal choices that are not conformant to the
standard semantics. To cope with this issue we have done a systematic analysis of the
MOF semantics for all the constructs that are covered by our approach and provided a
suitable transformation from ECore to B.

• The implementation of the operational semantics that may be distant or not conformant
to the DSL’s specification. This is a validation problem that requires the involvement of
a domain expert. In the context of the Petri-net DSL the semantics are mathematically
defined, which is compatible with the usage of a formal method such as B.

• The execution engine of the meta-language. For example, EMF/OCL based engines
wrongly support non-determinism as discussed in (Baar, 2005, Vallecillo and Gogolla,
2017). In our case, the execution engine is the ProB animator and model-checker (Leuschel
and Butler, 2008). This powerful tool has had several successful industrial applications
that address safety-critical systems.

The four implementations of our benchmark tools are highly simplified and used for illustra-
tion only. The underlying approaches are accepted by the MDE community and have the ability
to design and correctly instrument DSLs. From our experiments PNetJava gave the better exe-
cution outputs however it suffers from its poor abstraction. PNetQVT gave the better abstraction
level however it suffers from limitations of the misuse of non-determinism. Finally, PNetKermeta

and PNetfUML proposed a controllable deterministic behaviour by enabling the first transition
satisfying the enabledness property.
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4.2.2.3 Added-value and limitations

To cope with the aforementioned limitations, we proposed an alternative solution, to the Petri-
net DSL. The correctness of our solution is attested by theorem proving and its execution is
managed by an animator. Section 4.3 presents our solution and Section 4.4 shows how the B
method can help during the verification and validation activities. The challenge is therefore
to show by practice how and why a formal model-driven executable DSL is developed and
executed. The Petri-net DSL is widely applied in safety-critical systems for verification and
simulation (Thong and Ameedeen, 2015), and hence we believe that the application of a formal
method to this DSL is a strong requirement. Moreover, in order to go beyond the simplified
illustrative case we applied our solution to PNML (Petri-Net Markup Language), the interna-
tional standard ISO/IEC 15909 for Petri-nets, providing formal and realistic basis that may be
useful for possible improvements of other MDE tools. This application is presented in the next
chapter.

A major limitation of our FMDE approach is that the integration of a formal method within
MDE tools is not an easy task. Indeed, a major difficulty is that usually a MDE expert does not
have knowledge of formal methods; and often, proofs and model-checking is not widespread
because it seems to create an overhead for the developer. In (Andova et al., 2012), the authors
state that: “[...] the learning curve of formal methods is steep, whereas the learning curve
for drawing diagrams on the black board is very low.”. This observation is true due to the
complexity of the mathematical notations that support formal methods.

Nonetheless, when language analysers, such as compilers, are used for safety-critical or
high-assurance software, Leroy (2009) attests that “validation by testing reaches its limits and
needs to be complemented or even replaced by the use of formal methods such as model check-
ing, static analysis, and program proof ”. In our proposal we advocate for collaborations be-
tween the formal methods community and the MDE community in order to take benefits of
their respective tooling. Our approach (Idani, A. et al., 2020), and its tool support Meeduse
(Meeduse, 2020, Idani, A., 2020b), favor this collaboration since it makes possible the use of
DSL builders and formal methods tools together in one unified framework (i.e. EMF). The DSL
tool development is the task of MDE experts who have the skills to define meta-models with
associated static constraints, and the formal semantics specification is the task of the formal
methods experts who are experienced in provers and model checkers.

4.3 A Formal Model-Driven Petri-net DSL
The disparity between DSL execution tools leads to behaviours that are conformant to the se-
mantics specified by their execution models but which may be far from the expected behaviour
in accordance with the domain expertise. This is an important problem since the same model
may not be executed in the same way on different tools even for deterministic structures. In
fact, when designing a model via a given DSL tool, the domain expert focuses on debugging
his/her model rather than debugging the DSL semantics provided by the MDE expert.

107



Formal Model-Driven Executable DSLs

In (Idani, A., 2022), we proposed an alternative definition of the Petri-net semantics (that
we call PNetReference) using Meeduse. The use of a well-established formal approach assisted
by provers and model-checkers, would at least guarantee the consistency of the Petri-net DSL
and its conformance to the expected semantics. The proposed formal model-driven Petri-net
DSL builds on the B method (Abrial, 1996) and the CSP (Hoare, 1985) process algebra (Com-
municating Sequential Processes).

4.3.1 Static semantics
In order to get a formal B specification of the static semantics of a DSL, Meeduse translates
its meta-model into a correct-by-design B specification. This translation extracts a UML model
from the ECore file of the meta-model, and then applies B4MSecure. Figure 4.5 gives the
structural part of the generated B machine.

Figure 4.5: Structural part of the Petri-nets machine

The invariant covers structural properties defined by multiplicities and the optional/mandatory
character of attributes, as well as contextual constraints like the Token_Is_Natural invari-
ant. For example, predicates from line (18.) to line (23.) translate multiplicities 1..*
associated to references input and output. Attribute tokens which is single-valued, optional and
defined over the set of natural numbers, is translated into a partial function from set Place to
the B type NAT (see line (17.)). Note that in EMF this type does not exist, which then re-
quires the additional OCL constraint in the EMF-based tools. In Meeduse it is possible to mix
predefined EMF/UML basic types with those defined in the B language.

4.3.2 Modeling operations
Our objective is to use Meeduse in order to reproduce the EMF process for editing models, but
in the rigorous world of a formal method. Indeed, EMF generates a Java implementation from
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a meta-model gathering all basic operations (setters, getters, etc) and Meeduse generates a B
machine gathering similar basic operations but which are written in a theory (set theory, first
order predicate logic and generalized substitutions) allowing to carry out proof of correctness.
Figure 4.6 shows the basic setter of attribute tokens produced by Meeduse. By default, this
setter preserves invariant properties since it affects a natural number to attribute tokens thanks
to precondition: val 2 NAT.

Figure 4.6: Basic setter of attribute tokens

Figure 4.7 gives two cases of the place creation operation that depend on the optional/mandatory
character of attribute tokens. An attribute without an initial value in the meta-model leads to
two possibilities: (1) if the attribute is mandatory then the B constructor requires a parameter to
assign an initial value to the attribute and (2) if it is optional then the constructor creates a place
with an undefined attribute value.

Figure 4.7: Constructors of class Place

The B operations generated by Meeduse are conceptually more accurate than the unique
java translation used in EMF-based DSL tools because they guarantee the preservation of the
structural features of the meta-model. From this specification, AtelierB generated 74 proof
obligations (POs) for which it was able to automatically prove 62. The 12 other POs were
proved interactively without any improvement of the B specifications.
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4.3.3 Operational semantics
Tools of our benchmark used (meta-)programming languages with algorithmic facilities in order
to define the operational semantics of Petri-nets. In our approach we use additional B operations
to those generated automatically and we propose to coordinate them using CSP process algebra.
Besides theorem proving, this formal background, allows one to apply associated animation and
model-checking tools in order to rigorously debug and verify the various models.

Operational semantics often introduce complex modifications to the domain-specific model:
they may create or destroy objects, modify relationships between these objects and also update
several class attributes at the same time. We are then afraid that the difficulty in applying
executable DSLs in safety-critical systems goes beyond the failures we were able to exhibit
from our benchmark tools, i.e. overflow typing or implicit assignment of default values, or even
non-determinism. In our opinion, this issue needs a methodological background and a clear
separation of concerns regarding the properties to verify:

1. those of the meta-model with associated modeling operations (e.g. setToken,. . . ),

2. those of the user-defined operations (e.g. addToken, removeToken,. . . ),

3. those of the coordination mechanism (e.g. operations fire and run of figure 4.4).

The first kind of properties is covered by the functional model (machine nets of figure 4.5)
extracted automatically from the meta-model. The resulting B specification gathers modeling
operations and can be enhanced by additional invariants in order to take into account contextual
properties and prove its correctness. The two other kinds of properties would be introduced by
an expert in formal methods based on this functional model. This is a similar approach to a
classical MDE technique where first EMF generates a Java API from a meta-model and then
frameworks for executable semantics suggest the use of specific languages (like QVT, Kermeta,
etc). In our approach this specific language is that of the B method.

We define operational semantics using B operations in an additional machine that we call
semantics in the following. This machine includes the functional machine nets in order to
be able to explicitly call its operations. Contrary to the java protected field produced by EMF
from attribute tokens, in B the only way to modify a variable outside the machine in which
it is defined, is to use operations provided by the latter. The Petri-net implementations of our
benchmark are simple cases because they should address mainly two basic properties: the first
one about attribute tokens that belongs to natural numbers was discussed in the previous sec-
tion, and the second one is about transition enabledness. This property should not only take into
account the positive value of tokens (relation Place_tokens) for all input places (input�1[{tt}])
of a transition tt but must also take into account the upper limit of this attribute for all output
places (output�1[{tt}]). Operation getEnabled (figure 4.8) is a formalisation of query isEn-

abled presented in section 4.2.1.2. Substitution ANY . . . WHERE . . . END gets any transition
tt satisfying preconditions:
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(P1) Place_Tokens[input�1[{tt}]] \ {0} = ;

(P2) Place_Tokens[output�1[{t}]] \ {MAXINT} = ;

Figure 4.8: Operation getEnabled

Since relation Place_tokens is defined over natural numbers, it is not necessary to use the
forAll primitive inside the precondition like in the OCL query. The precondition of operation
getEnabled simply verifies if values 0 and MAXINT belong to the sets of tokens issued from
the input and output places of tt. Precondition (P1) is not sufficient because we would like
to safely increase the number of tokens in the output places. Without precondition (P2), the
Petri-net controller may then reach a state in which a transition is enabled, and the tokens in its
input places are consumed without producing tokens in the output places. This would lead to an
inconsistent Petri-net because consumption and production of tokens should not be dissociated.
Both preconditions are then required in order to be able to call both addToken and removeToken
when a transition is enabled. Figure 4.9 gives the B specification of operations addToken and
removeToken.

Figure 4.9: Operations addToken and RemoveToken
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Every operation has three preconditions allowing the success of the POs computed by the
AtelierB prover:

• the parameter typing predicate pp 2 Place,

• the definition domain of the tokens number (greater than zero or less than maxint), and

• predicate pp 2 dom(Place_Tokens) which asserts that attribute tokens is assigned to
a value for place pp. This predicate guarantees the well-definedness PO of application
Place_Tokens(pp). Indeed, in order to be able to read the value of attribute tokens from
a given place, the program must verify that the value is not undefined for that place.

Both operations addToken and removeToken call the basic setter Place_SetTokens (fig-
ure 4.6) of the functional model, and hence they preserve the meta-model invariant properties.
As the Petri-net running algorithm iterates over input and output places of a transition, we en-
hance machine semantics by an additional getter (figure 4.10) which returns these sets given
a transition tt. Finally, AtelierB discharged four proof obligations from this machine (two POs
for the setter call, and two additional POs for the well-definedness of Place_Tokens(pp)) and
it was able to prove them automatically.

Figure 4.10: Operation getPlaces

4.3.4 Semantics coordination

Machine semantics provides B operations that are proved correct. It guarantees that any run-
ning algorithm based on these operations will not lead to violations of the model’s properties.
The notion of algorithm in the oxford dictionary (Oxford, 2020), is defined as: “an algorithm
is a process or set of rules to be followed in calculations or other problem-solving operations”.
In order to keep reasoning at a high abstraction level, and be faithful to this definition, opera-
tions run and fire presented as algorithms in figure 4.4, will be defined as CSP6 processes that
coordinate operations of machine semantics. The process algebra CSP is an event-based for-
malism that enables description of patterns of system behaviour. Butler and Leuschel (2005)

6 CSP: Communicating Sequential Processes Hoare (1985).
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propose a combination of CSP and the B method and its integration within ProB. This formal-
ism is then useful for executable DSLs due to its abstraction capabilities and also thanks to its
integration within ProB. Figure 4.11 provides the main CSP constructs. In this section we apply
the following ones:

• simple action prefix a ! P where a is a B operation name (called channel in CSP)
possibly followed by a sequence of outputs (!v) and inputs (?var) such that v is a value
expression and var is a variable identifier.

• sequential composition (P ; Q) meaning that the execution of process Q follows that of
process P .

• process interleaving (P ||| Q) where the resulting execution traces are the arbitrary
interleaving of traces issued from each process.

• guarded process (g : P ) which is the execution of process P under a condition defined by
guard g.

Figure 4.11: Some commonly used CSP operators

Figure 4.12 shows the CSP specification of the petri-net running algorithm. This algortihm
is composed of four processes: RUN, FIRE, CONSUME and PRODUCE. Process RUN (line
2.) is a recursion defined by a sequential composition with the prefixed process FIRE. In this
sequence channel getEnabled?trans is a call to the B operation getEnabled whose output value
is registered in variable trans which is then transmitted to process FIRE. Concretely, variable
trans represents an enabled transition provided non-deterministically by operation getEnabled.
The simulation of process RUN continues indefinitely or stops when the system reaches a dead-
lock. Process FIRE, applied to a transition trans, is a sequencing of processes CONSUME and
PRODUCE preceded by the simple action prefix: getPlaces!trans?input?output. This action
is a call to the B operation getPlaces on transition trans in order to get its input and output

places which are further transmitted to processes CONSUME and PRODUCE. These two pro-
cesses apply respectively operations removeToken and addToken to all elements of sets input
and output. Notation |||[x2S]Op!x represents a replicated interleaving which applies all possible
combinations of Op having the various valuations of parameter x taken from set S.
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1. MAIN = RUN
2. RUN = getEnabled?trans! FIRE(trans) ; RUN
3. FIRE(trans) =
4. getPlaces!trans?input?output! (

5. CONSUME(input) ; PRODUCE(output)
6. )

7. CONSUME(input) = |||[x2input]removeToken!x! SKIP
8. PRODUCE(output) = |||[x2output]addToken!x! SKIP

Figure 4.12: CSP formalisation of run and fire

4.4 Debugging with PNetReference
In Meeduse, ProB and EMF are applied together in order to take benefit of the visualisation
capabilities of tools like Sirius and GMF, and the animation and model-checking functions of
ProB. In this preliminary study we used the first version of Meeduse (Figure 4.13); it was just a
prototype that is used as a proof of concepts.

Figure 4.13: Integration of ProB within EMF

EMF and ProB were synchronized at every animation step using a notification mechanism,
which allowed us to debug the traffic light via PNetReference. We have two possibilities to apply
the ProB tool:
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1. interactive animation, which is useful for domain experts,

2. model-checking, which allows sophisticated analysis of reachability properties.

First, Meeduse interprets an input EMF model, such as the traffic light model of figure 4.2
and injects its elements as valuations in the formal specification of the meta-model. These val-
uations (bottom part of figure 4.13) allow ProB to initialize the B machine and start animation.
The right side of figure 4.13 provides the ProB view and the left side shows our Sirius modeler
that we developed for the simplified Petri-net case study. The ProB view shows CSP guided
animation of machine semantics. In the current state of the model two operations are enabled:
start1 and t2. In interactive animation, depending on the choice done by the user, the tool fires
the selected transition and then changes the model according to the formal B specification. For
every animation step, Meeduse gets the B machine state from ProB and translates it back to
the EMF model in order to update the graphical view. As presented in figure 4.13, ProB offers
model-checking functions allowing to find deadlocks, invariant violations and reachability of
CSP goals.

4.4.1 Mutual exclusion
The mutual exclusion property can be expressed by the following invariant which excludes a
state where traffic lights are simultaneously in their critical sections. A traffic light enters its
critical section after enabling transition start and it leaves it by transition end meaning that the
critical section includes states Green and Orange:

In order to check whether this mutual exclusion property holds or not for our Petri-net
model, we add this invariant to machine semantics and we ask ProB to find invariant vio-
lations starting from several possible initial states. ProB successfully found all the expected
invariant violations and also produced the corresponding transition sequences (called counter-
examples). ProB provides several interesting facilities to debug a formal specification in order
to improve it. Figure 4.14 shows the improved petri-net model where place sync is added be-
tween transitions start and end. Note that currently Meeduse does not provide means to apply
the feedback produced by ProB (such as trace analysis, invariant decomposition, etc) to the
input EMF model. The introduction of place sync is hence done after checking the trace pro-
duced by ProB when it found the invariant violation. From the initial state of Figure 4.13 both
start1 and start2 can be enabled because their input places have the required number of tokens.
If start1 (respectively start2) is fired then the token of place sync will be consumed which
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forbids Light 2 (respectively Light 1) to enter its critical section. This token will be restored
after firing transition end1 (respectively end2). From this Petri-net model ProB didn’t find any
invariant violation after visiting all possible nodes of the state space. This proof guarantees the
mutual exclusion property of the improved traffic-light.

Figure 4.14: Improved petri-net for mutual exclusion (V2)

4.4.2 Fairness
In order to check this property we apply a parallel composition of process RUN with process
FAIRNESS defined in figure 4.15, line (12.). This process leads to two possible traces:

• (step1 ; step2 ; goal), and

• (step2 ; step1 ; goal)

Channel step1 (respectively step2) is produced from process FIRE when guard trans =

end1 (respectively trans = end2) holds. The objective of this specification is to stop the
running algorithm when goal STOP is reached, which means that the system produced a trace
where both transitions end1 and end2 are fired by the RUN process. For the example of Fig-
ure 4.14 ProB successfully produced the expected sequences leading to the CSP goal process
and showing that the system gives fair turns to lights 1 and 2. However, given that the running
algorithm is non-deterministic, it would be interesting to seek for the existence of loops where
only one light runs. For this purpose, we can override the getEnabled operation in process RUN
as follows:

RUN = FIRE(start1) ; FIRE(t1) ; FIRE(end1) ; RUN

From this CSP rule, ProB covered the whole state space and didn’t find a deadlock showing
that the system may stay running without evolutions of Light 2. This proof exhibits a weak
fairness from the model. To improve the traffic light Petri-net the domain expert can introduce
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1. MAIN = RUN |[{step1, step2}]| FAIRNESS
2. RUN = getEnabled?trans! FIRE(trans) ; RUN
3. FIRE(trans) =
4. getPlaces!trans?input?output! (

5. CONSUME(input) ; PRODUCE(output)
6. ) ;

7. ( (trans = end1) : step1! SKIP
8. [] (trans = end2) : step2! SKIP
9. [] (trans 62 {end1, end2}) : SKIP )

10. CONSUME(input) = |||[x2input]removeToken!x! SKIP
11. PRODUCE(output) = |||[x2output]addToken!x! SKIP
12. FAIRNESS = (step1! SKIP ||| step2!SKIP) ; goal ! STOP

Figure 4.15: Fairness checking with CSP

a sequencing mechanism (figure 4.16) and replay the fairness checking, first with the CSP
specification of figure 4.15 for non-regression and next with the overriding of rule RUN as
mentioned above. The latter ends with a deadlock because after FIRE(end1) it is not possible
to go back and run again FIRE(start1). The fairness checking with the CSP specification of
figure 4.15 provides the same result as previously meaning that this petri-net controller gives
fair turns to lights 1 and 2 without any loop where only one light runs.

Figure 4.16: Final traffic lights petri-net (V3)

Note that by deleting place sync from figure 4.16 the resulting execution traces, with regard
to the elements issued from the initial model, are included in the ones issued from figure 4.14.
We can therefore assume that the fairness property is a refinement of the mutual exclusion
property, and hence reduce the Petri-net model of figure 4.16 by deleting place sync.
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4.5 Conclusion
Few proposals exist for bridging the gap between DSLs with their supporting tools and a proof
based formal approach dedicated to execution semantics. The closest ones in comparison with
the Meeduse approach in general are (Rivera et al., 2009) and (Gargantini et al., 2010a), where
respectively MAUD and Abstract State Machines (ASM) are used. Unfortunately these works
do not address the joint execution of the formal model and the DSL, which is a major contri-
bution of Meeduse. One interesting perspective is to integrate several target formalisms within
Meeduse being inspired by these works. In this chapter we applied our tool to the simplified
Petri-net DSL. In the next chapter we propose several other applications, including PNML, the
international standard ISO/IEC 15909 for Petri-nets. Before coming to this realistic application
we tried several simplified implementations of this DSL applying MDE tools for DSL exe-
cution. The study allowed us to illustrate via several obvious details, how useful is a formal
approach especially when addressing a DSL that is dedicated to safety-critical systems.

The major observation is that during the verification activities several concerns must be
dissociated: properties of the meta-model, those of the execution semantics and finally those
of the coordination algorithm. When an executable DSL is not carefully defined, it may lead
to a succession of conceptual failures: failures of modeling operations (e.g. setTokens) may
result in failures of execution operations (e.g. addToken), which in turn may result in failures
of the coordination operations (e.g. fire/run). The major risk is that when debugging a model,
the domain expert does not worry about the correctness of the DSL tool because it is basically
the task of the MDE expert. In language programming the developer debugs his/her source-
code (in MDE this is seen as a model) using existing IDEs without paying attention to how
the language semantics are encoded since in the language theory these semantics are formally
defined and compilers are well established techniques. Observations made by this work show
that it is difficult to transpose debugging as used in language programming and compilers into
executable DSLs especially for safety-critical systems.

Finally, we think that the application of executable DSLs in safety-critical systems require
the collaboration of experts from both MDE and formal methods communities. The first ac-
tor defines the DSL with associated modeling tools and the second one defines the execution
semantics with associated verification activities.
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Applications and case studies

Contents
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T he systematic mapping study of Iung et al. (2020) shows that among the 59 existing
language workbenches (LWBs) only 9 provide supports for verification, which is only
done via testing (the formal dimension is completely absent). This is an important

shortcoming because the absence of a good support for verification weakens the applicability
of DSLs, especially for safety-critical systems. Indeed, in these systems correctness is a strong
requirement and it is often addressed by the application of formal methods. During the last
three/four years we investigated and developed a solution to this problem by proposing a For-
mal Model-Driven Engineering (FMDE) approach to create zero-fault DSLs, which are DSLs
whose semantics are mathematically proved correct with regards to their structural and logical
properties.

We developed the Meeduse tool to make the bridge between MDE and the formal B method.
Technically the tool is built on EMF (Steinberg et al., 2009) (The Eclipse Modeling Framework)
and ProB (Leuschel and Butler, 2008), an animator and model-checker of the B method that is
certified T2 SIL4 (Safety Integrity Level), which is the highest safety level according to the
Cenelec EN 50128 standard. ProB is also used by companies such as Alstom, Thales, Siemens,
General Electric, ClearSy and Systerel. In addition to the formal reasoning about the semantics
of DSLs, Meeduse offers execution and debugging facilities, which is a major contribution
in comparison with other works built on DSLs and formal methods. The overall idea is that
animation done in ProB is equivalently applied to the input EMF model leading to a correct
model execution.
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This chapter reviews progress made and three major realistic applications of Meeduse,
which attests the interest and power of our FMDE approach to build executable DSLs (called in
the remainder xDSLs).

Publications related to the applications of Meeduse
Akram Idani. The B Method Meets Petri-Nets: Shallow and Deep Embedding. LNCS

Transactions on Petri-nets and Other Models of Concurrency, 2022a. Submitted re-
vised version.

Akram Idani. The B Method meets MDE: Survey, progress and future. In 16th
International Conference on Research Challenges in Information Science (RCIS),
volume 446 of LNBIP. Springer, 2022b. URL https://doi.org/10.1007/
978-3-031-05760-1_29.

Akram Idani. A Lightweight Development of Outbreak Prevention Strategies Built on
Formal Methods and xDSLs. In ACM European Symposium on Software Engineering
(ESSE). ACM, 2021. URL https://doi.org/10.1145/3501774.3501787.

Akram Idani. Formal model-driven executable DSLs: Application to Petri-nets. Inter-
national Journal on Innovations in Systems and Software Engineering (ISSE), 18(4),
2022c. URL https://doi.org/10.1007/s11334-021-00408-4.

Akram Idani, Germán Vega, and Michael Leuschel. Applying Formal Reasoning to
Model Transformation: The Meeduse solution. In Proceedings of the 12th Trans-
formation Tool Contest, co-located with STAF’2019, volume 2550 of CEUR Workshop
Proceedings, pages 33–44, 2019a.

Akram Idani, Yves Ledru, Abderrahim Ait-Wakrime, Rahma Ben-Ayed, and Simon
Collart-Dutilleul. Incremental Development of a Safety Critical System Combining
formal Methods and DSMLs � Application to a Railway System. In 24th Interna-
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Structure
1. Section 5.1: applies Meeduse to the execution semantics of PNML (Petri-Net Markup

Language), the international standard ISO/IEC 15909 for Petri-nets, and shows the capa-
bilities of the B method in the Petri-net field. This application led to a full-fledged tool
called MeeNET (Meeduse for Petri-Nets).

2. Section 5.2: deals with railway systems (Idani, A. et al., 2019b,a). This application builds
on a graphical DSL that can be used by railway experts to design railroad topologies and
simulate (un)safe train movements.

3. Section 5.3: addresses model-to-model transformations (Idani, A. et al., 2019c). This
application was carried out during the 12th edition of the transformation tool contest
(TTC’19) and won two awards: best verification and audience award.

5.1 Application 1: Petri-net Markup Language
The previous chapter showed by practice how a formal model-driven executable Petri-net DSL
can be developed, executed and debugged. The discussed example are mainly illustrative and
were used to point out a major limitation of MDE tools: the lack of support for verification.
Our approach introduces within these tools formal reasoning, which seems highly required es-
pecially when the DSL tool, such as a Petri-net based tool, has to be used for safety-critical
systems. In the following we present MeeNET1 our formal Petri-net designer and animator,
that is powered by Meeduse and built on top of PNML (Petri-Net Markup Language), the inter-
national standard ISO/IEC 15909 for Petri-nets.

5.1.1 PNML
The Petri-net community has worked several years ago on a standardized Petri-net DSL, called
PNML (Petri Net Markup Language) (Hillah et al., 2009, PNML Homepage, 2020). The lan-
guage provides an agreed-on interchange format that is compliant with a formal definition of
Petri-nets. The standardization process ISO/IEC 15909 were set up by the community in or-
der to provide a commonly used specification for Petri-nets. The standard covers three classes
of Petri-nets: High-Level Petri Nets (HLPN), Symmetric Nets, and Place/Transition Nets (PT-
Nets). Models of following sections belong to the third class (PT-nets). Nonetheless our ap-
proach can be applied to the two other classes.

We believe that for scalability it is important, for MDE tools and works that are dedicated
to executable DSLs, to go beyond the illustrative case study and propose realistic applications
based on PNML. Indeed, existing MDE tools have reached a good level of maturity and pro-
vide several powerful facilities such as omniscient debugging, trace optimisation, visualization,
1 Demo videos can be found at: http://vasco.imag.fr/tools/meeduse/meenet/
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etc. Furthermore, open-source implementations of PNML and the underlying meta-models are
already integrated within EMF. There exist two major platforms: The ePNK ePNK Homepage
(2020) and PNML Framework Homepage (2020). In our work, as far as an ECore file of the
meta-model is defined, Meeduse can be used, first to extract the formal static semantics from
the file and prove its correctness, and then to execute input models if the formal B machine of
the operational semantics is provided.

The aim of MeeNET is to provide a scalable executable formal specification of Petri-nets
and experiment our approach on realistic input models. The underlying formal specification
is currently experimented within The ePNK because this platform provides an extension point,
so that new Petri-net types can be plugged in to the existing tool without touching the code
of The ePNK. This mechanism is interesting from the Meeduse point of view because it is a
kind of DSL refinement, which is a challenging topic for DSL execution and verification. As
refinements are apart of the B method, then the tool opens interesting perspectives to this work.
We partially address this perspective in the remainder.

5.1.2 The PNML Meta-model

PNML identifies concepts that are common to the three classes of Petri-nets in a so-called
PNML Core model (figure 5.1). The common concepts are mainly places, transitions and arcs,
and these objects can have some kind of label. The PNML core model provides means for
splitting up larger Petri-nets into pages; connections between nodes on different pages can be
established by reference places or reference transitions. PNML defines all kinds of graphical
information that can be attached to the different elements, such as position, size, font-type, and
font-size. Our objective is to formalise the executable part of PNML, so not all the PNML
concerns are taken into account. For this reason Meeduse provides an annotation mechanism
allowing the DSL developer to select the concepts to be translated into B. This mechanism
provides also a way to precise the namings and to strengthen the properties of the meta-model
such as multiplicities when required. Note that the current version of MeeNET does not yet
cover the splitting of Petri-nets over pages, it is rather focused on the basic constructs. Classes
RefPlace and RefTrans, for example, are not transformed into B.

In The ePNK, the PT-Nets class of Petri-nets is defined using an extension mechanism called
Petri-net type definition (PNTD). Figure 5.2 shows the corresponding meta-model. It is the
purpose of the PNTD to define the specialisations of meta-class Label that are possible in a
specific class of Petri-nets, and also to define the additional restrictions on the legal connections.
Figure 5.2 introduces two additional kinds of labels for Place/Transition systems: the initial
marking for places, and the inscription for arcs. The initial marking can be any natural number
(including 0) and the inscription for arcs can be any positive number. Technically, figures
5.1 and 5.2 are two distinct meta-models but one is the extension of the other (PT-Nets is the
extension of PNML Core). In our approach, we support this extension mechanism using B
refinements.
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Figure 5.1: The PNML core model of ISO/IEC 15909-2 (2011) (ISO/IEC, 2011)

Figure 5.2: The PNTD for PT-Nets (ePNK Homepage, 2020)

5.1.3 Formal static semantics
In B, there are two kinds of refinements: behaviour refinement and data refinement.

• Behaviour refinement means that an algorithm is changed by another one but without vi-
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olating neither the conditions under which the initial algorithm is defined nor its possible
executions. This kind of refinement would be useful to introduce step by step execution
semantics of a DSL. It is not illustrated in this work; we have defined the formal model
of the PT-nets execution semantics once and for all.

• Data refinement applies a new set of data in the refined model, that is some data can
be replaced and some data can be added. This kind of refinement would be useful to
introduce incrementally the static semantics of a DSL. This is suitable for the PT-nets
class because its data are defined by introducing some additional meta-classes and by
specializing some meta-classes from PNML Core.

Meeduse extracts from every meta-model a specific B machine defining its structural fea-
tures. In this case study, we get two B machines and then we manually establish a refinement
relation between them. Automatic DSL refinements is left to our future works, but we believe
that it can be automated by exploiting the annotation mechanism of Meeduse. By this approach,
it becomes possible to address the other Petri-net classes without any impact on the Core ele-
ments, because every Petri-net class would be defined as a specific refinement of PNML Core.

Figure 5.3 gives the variables and the invariants generated by Meeduse from PNML Core.
In this machine the inheritance is translated into set inclusion (Place ✓ PlaceNode ✓ Node ✓

Object ✓ ID). Variable ID refers to the objects identifiers. Regarding transitions and places,
they are not directly related with input and output references such as in the simplified case study.
In PNML Core, they are nodes, and their connections are defined by means of a class Arc.

MACHINE
PNMLCore

SETS
ID_AS;
LABEL

VARIABLES
ID,
Label,
Object,
Node,
Arc,
PlaceNode,
TransitionNode,
Place,
Transition,
source,
target

INVARIANT
ID 2 F (ID_AS) ^
Label 2 F (LABEL) ^
Object ✓ ID ^
Node ✓ Object ^
Arc ✓ Object ^
PlaceNode ✓ Node ^
TransitionNode ✓ Node ^
Place ✓ PlaceNode ^
Transition ✓ TransitionNode ^
source 2 Arc! Node ^
target 2 Arc! Node ^
Node \ Arc = ; ^
PlaceNode \ TransitionNode = ;

Figure 5.3: Formal static semantics of PNML Core
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The formal static semantics of the PT-nets meta-model is given in Figure 5.4. It is a data
refinement of machine PNMLCore introducing several variables. In the meta-model, place
markings and arc annotations are defined with the XML data-types NonNegativeInteger and
PositiveInteger, as attributes of classes PTMarking and PTAnnotation. The translation into B
applies types NAT (natural integers) and NAT1 (strictly positive natural integers) to the cor-
responding variables PTMarking_text and PTAnnotation_text. The initial marking of places
and the arc inscriptions are optional (multiplicity 0..1) and cannot be shared (because of the
containment). They are then translated into partial injections.

REFINEMENT
ptnets

REFINES
PNMLCore

VARIABLES
PTMarking,
PTAnnotation,
initialMarking,
inscription,
PTMarking_text,
PTAnnotation_text

INVARIANT
PTMarking ✓ Label ^
PTAnnotation ✓ Label ^
PTAnnotation \ PTMarking = ; ^
initialMarking 2 Place 7⇢ PTMarking ^
inscription 2 Arc 7⇢ PTAnnotation ^
PTMarking_text 2 PTMarking! NAT ^
PTAnnotation_text 2 PTAnnotation! NAT1

Figure 5.4: Formal static semantics of PT-nets

The overall formal specification of the static semantics generated by Meeduse is about 457
lines of code. It provides 38 modeling operations from which the AtelierB prover produced 106
POs (95 were proved automatically and 11 using the interactive prover).

5.1.4 Operational semantics

In order to deal with the operational semantics of the PT-nets class of PNML, we introduce two
transient (not serialised) attributes: attribute marking of class Place to represent the current num-
ber of tokens in a place and attribute value of class Arc to represent the number of tokens that
are consumed and/or produced when transitions are fired. These attributes are single-valued,
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mandatory and without an initial value. They are translated into total functions: Place_marking
and Arc_value. Figure 5.5 shows the structural part of the execution semantics machine.

If a place is linked to a PTMarking via relation initialMarking then the corresponding value
(represented with variable PTMarking_text) is assigned to its current marking (initialMarking
; PTMarking_text) in the initialization, otherwise the attribute is set by default at 0 ((Place �
dom(initialMarking)) ⇥ {0}). The same principle is applied to attribute value of class Arc,
but it takes value 1 if the arc does not have an inscription. In fact, when an inscription is not
specified on the input arc (respectively the output arc) of a transition, then by default only one
token is consumed from its source place (respectively one token is produced into its target place)
when the transition is fired. The proof of correctness of this initialization guarantees that none
of the place markings and arc values are missed and that they are conformant to their typing
domains (NAT and NAT1).

MACHINE
semantics

INCLUDES
ptnets

VARIABLES
Place_marking, Arc_value

INVARIANT
Place_marking 2 Place! NAT ^
Arc_value 2 Arc! NAT1

INITIALISATION
Place_marking := (initialMarking ; PTMarking_text)

[ (Place - dom(initialMarking)) ⇥ {0}
|| Arc_value := (inscription ; PTArcAnnotation_text)

[ (Arc - dom(inscription)) ⇥ {1}

Figure 5.5: Structural part of the execution semantics

MeeNET integrates Meeduse and the formal static semantics of PT-nets within The ePNK,
which allows one to experiment several formal specifications for the execution semantics to-
gether with realistic PNML models. For illustration, we propose a different technique than the
application of CSP||B. The following formalization (figure 5.6) is inspired by Attiogbe (2009)
were Event-B was used to provide a faithful formal semantics to basic and high-level Petri-nets.
The notation C� denotes the overriding of a relation by another one. Operation fire selects non-
deterministically a transition tt such that all its input places has a sufficient number of tokens;
then it overrides relation Place_marking in order to update the markings of its input and output
places. The various definitions used in this operation are given in figure 5.7 and the complete
specification is provided in the appendix.

Sets inputs(tt) and outputs(tt) get respectively input and output nodes and arcs of a given
transition tt. Note that set inputs(tt) is restricted to places from which the consumption is

126



Applications and case studies

fire =
ANY tt WHERE

tt 2 Transition ^
card(inputs(tt)) = card(target�1[{tt}])

THEN
Place_marking := Place_marking C� consume(tt) ;
Place_marking := Place_marking C� produce(tt)

END

Figure 5.6: Operation fire used in MeeNET

possible (Arc_value(aa) Place_marking(pp)). Consumption and production of tokens are also
specified by means of set definitions. Set consume(tt) (respectively produce(tt)) computes the
new marking of the input (respectively output) nodes of a transition tt .

inputs(tt) == {pp, aa | pp 2 Place ^ aa 2 Arc
^ source(aa) = pp ^ target(aa) = tt
^ Arc_value(aa)  Place_marking(pp)

}
outputs(tt) == {pp, aa | pp 2 Place ^ aa 2 Arc

^ target(aa) = pp ^ source(aa) = tt
^ Place_marking(pp) + Arc_value(aa) MAXINT

}
consume(tt) == {pp, nn | pp 2 dom(inputs(tt))
^ nn = Place_marking(pp) � Arc_value(inputs(tt)(pp))}

produce(tt) == {pp, nn | pp 2 dom(outputs(tt))
^ nn = Place_marking(pp) + Arc_value(outputs(tt)(pp))}

Figure 5.7: Definitions

5.1.5 MeeNET
Figure 5.8 is a screenshot of MeeNET while executing a PNML file of a satellite memory
system. This file is taken from the benchmark of PNML files provided by the 10th edition of
the model-checking contest (MCC’2020)2. We designed the graphical and the tabular views in
Sirius in order to visualize graphically the model. For example, the green transitions (t1 and t4)
are transitions that can be fired in the current execution step. They satisfy the guard of operation
fire. The animation view and the state view represent the output of ProB. The animation view
is for interactive debugging, it allows the user to select which transition to fire; and State view
gives the current valuations of the B variables of the static semantics machine.
2 The benchmark can be found at: https://mcc.lip6.fr/models.php
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Figure 5.8: A satellite memory PNML model

The Petri-net of Figure 5.8 models the behaviour of the mass memory management sys-
tem in a micro-satellite from the Myriade product line, designed by CNES, the French Space
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Agency. The corresponding controller must ensure that there is always a “security buffer” be-
tween the sectors pointed by places p9 and p3. The size of this buffer is a parameter Y (whose
value in this model is equal to 3). The system should guarantee the following invariant:

p3 > p9) p3� p9 � Y

Based on the valued B specification produced by MeeNET, the ProB model-checker ex-
plored all the state-space and showed that this property is preserved all along the execution of
the Petri-net model. Other properties, such as LTL properties, are provided with the model and
ProB was also able to check them.

We have tried several PNML files from the MCC’2020 in MeeNET (even the biggest ones)
and it was able to produce a valued B specification that is further used in ProB for verification
purposes. Nevertheless, our objective is not to evaluate the verification capabilities of ProB or
its performance based on the resulting B models. The contribution of our work is that it made
possible the use of ProB in the Petri-nets field. Further works and experiments are required if
one would like to apply ProB to compete with established Petri-net based model-checkers.

5.2 Application 2: Railway systems

The emergence of DSL tools in safety-critical systems (James et al., 2013, Svendsen et al.,
2012, Vu et al., 2014) allows domain experts themselves to provide useful structural models
to the software system engineer who will then develop the operational aspects of the system.
However, as far as we know, none of the existing works in the safety-critical domain, proposes a
way to define proved formal links between the behavioural aspects of a system (in Petri-nets or
other well known formalisms) and DSL tool development. In this section, we give an overview
the work that we presented in (Idani, A. et al., 2019b). We start from an intuitive description of a
safety critical system where the operational aspects are specified thanks to high-level Petri-nets,
especially coloured Petri-nets (CP-nets), and the structural aspects are designed in a dedicated
DSL. The challenge is therefore to merge both worlds (that of CP-Nets and that of DSLs) and
then apply AtelierB in order to prove the correctness of the resulting system. Figure 5.9 gives
the overall architecture that we propose to adress this challenge.

The DSL meta-model and CP-Net models are automatically translated into B specifications
which are enhanced by safety invariants and proved. Then, our approach defines linkage ma-
chines allowing to control the functional model and the associated DSL-tool thanks to the CP-
Net specifications. Every linkage machine refines a CP-Net model and includes the functional
model. This technique is different from the one discussed in section 5.1 for basic Petri-nets,
since the objective is not to execute CP-nets, but rather use CP-nets in order to define the opera-
tional semantics of a given DSL. Indeed, by executing a CP-Net model, Meeduse plays with the
DSL and verifies, via ProB, that the linkage invariants are preserved all along the animation.
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Figure 5.9: Merging CP-Nets and DSLs in a formally defined framework

5.2.1 ERTMS/ETCS Case Study
This work was funded by the NExTRegio project of IRT Railenium. The project aims at per-
forming a system level analysis of a railway signalling system taking into account emergent
solutions for train automation. Indeed, in the last decade, new technologies have been con-
sidered in railway systems in order to improve automation on the one hand and to reduce the
operating costs on the other hand. In particular, the European ERTMS/ETCS3 (ERA, 2016,
Schon et al., 2014) has emerged to replace various national signalling systems. There are three
levels of ERTMS/ETCS which differ by the used equipments and the operating mode. The first
two levels are already operational. However, ERTMS Level 3 is still in design and experimen-
tation phases: it aims at replacing signalling systems by a global european one which is a GPS-
based solution for the acquisition of train positions. In 2018, the ABZ conference (Butler et al.,
2018), which gathers several formal methods communities, proposed a case study4 to model
ERTMS/ETCS level 3 and has published several formal models. Unfortunately, these models
do not combine the power of formal methods with domain specific approaches and hence they
favour verification rather than domain expert validation. The application presented in this sec-
tion contributes to the design phase of ERTMS/ETCS level 3 by mixing formal techniques and
domain specific modeling in a well-known Model Driven Engineering (MDE) paradigm which
makes easier domain expert validation.

An ERTMS Level 3 solution is based on train position and train integrity confirmation, both
transmitted by the on-board train system (called EVC5) to the trackside system (called RBC6).
Given this information, the traffic agent, via RBC, assigns a movement authority to a train
allowing it to move to a given point. In the RBC, track-circuits exist in a logical form by means
of trackside train detection sections (called TTD) which are in turn divided into virtual sub-
sections (called VSS). Figure 5.10, taken from the ERTMS 3 reference document (ERA, 2016),
illustrates a track circuit divided into two TTDs and four VSSs, and where a train is located on
3 ERTMS: European Rail Traffic Management System.

ETCS: European Train Control System.
4 https://www.southampton.ac.uk/abz2018/information/case-study.page
5 European Vital Computer.
6 Radio Block Center.
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VSS23. This simplified view of section conventions, used by railway experts, applies specific
domain representations to represent a situation where a train went through TTD2 and reached
its ending VSS.

Figure 5.10: Section conventions ERA (2016)

5.2.2 Coloured Petri-nets

Several high-level variants of Petri-nets, like coloured petri-nets or predicate-transition nets,
were applied in safety-critical systems and were assisted by formal verification techniques such
as animation, model-checking or proofs. Moreover, some experiences like that of the Oslo
subway, reported in (Hagalisletto et al., 2007), show that in addition to their formal semantics,
high-level Petri-nets favoured communication with domain experts, because chief engineers
from railroad infrastructure and traffic department who are not specialists in Petri-nets nor in
formal methods, were not only able to understand the models, but also to suggest improvements.

We use coloured petri-nets (CP-Nets), which abstract away structural constraints and focus
on safety-critical behaviours. CP-Nets combine the strengths of classical Petri-nets with the
strengths of high-level programming languages (Gehlot and Nigro, 2010), to allow handling
data types with pre-defined functions. For a formal description of CP-nets, one can refer to
(Jensen, 1981); nonetheless, the main concepts used here are:

• Data types: can be simple types (i.e. Integer, Boolean,. . . ) or complex types (i.e. arrays,
sequences,. . . ). In this work, we mainly use integer enumerations.

• Places: represent abstractions on data values (called tokens or colours). The place type is
called the colour set and it is defined by composing data-types.

• Transitions: they are linked to input and output places. When fired, a transition consumes
tokens from its input places such that they match the transition signature. Then, the
transition introduces tokens into its output places.

• Predefined functions: describe some computations done by the transitions when they are
fired. In this paper, we use three basic functions: calculation of the next (n++) and the
previous value (n��) given a token n when n is of type integer, and the negation value
(¬n) when n is of type boolean.
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5.2.2.1 Level 1: Simple train movements

Our first CP-net (figure 5.11) defines simple train movements without train integrity nor move-
ment authorities. This abstract level is mainly intended to guarantee the absence of accidents.

Figure 5.11: Simple movement described in a CP-net

This model describes train movements using transitions moveEven and moveOdd which
move the train forward or backwardand; and changeSens which switches the train moving di-
rection. Place Position contains pairs (t, v) which record the current VSS v occupied by a train
t. Place Free gathers the sections which are not occupied by any train and place Sens registers
for every train its current direction. For our first CP-net model, we would like to prove five
safety properties:

1. Absence of accidents meaning that at most one train occupies a Vss,

2. Every train is located in one and only one Vss,

3. Absence of overlapping between Vss states free and occupied,

4. Vss states cannot be undefined, they are either free or occupied,

5. The train moving direction is never lost

Transition moveEven is fired given a train t located on section v, whose direction is set to
true, and such that its next section v++ is free (e.g. (t, v) 2 Position ^ (v++) 2 Free). When
fired, this transition instantly moves train t from section v to section v++. It consumes tokens
(t, v) and (v++) respectively from places Position and Free, and then respectively introduces
into these places tokens (t, v++) and (v), meaning that v++ becomes the new position of train
t, and section v is released. Transition moveOdd applies the same principles to trains in direc-
tion false but selects the previous section v�� if this section is free. Transition moveEven is

132



Applications and case studies

fired provided that the train direction is set to true while transition moveOdd is fired when its
direction is false.

5.2.2.2 Extraction of B specifications

In order to prove the safety properties of our first level CP-net model we translate it into B
specifications as follows:

First an abstract machine (named CPNData) is generated in order to gather the colour sets
together with the transition signatures as defined in the CP-net model. Colour sets Train and Vss,
which are integer enumerations, are translated into bounded natural constants CPNTrain and
CPNVss. Places Free, Position and Sens become variables in refinement CPNLevel1 because
their values evolve during the execution of the CP-net. In this refinement, by default the variable
typing applies general functions such as sets’ cartesian product and inclusion (e.g. Position ✓
CPNTrain ⇥ CPNVss).

Every transition leads to a basic operation defined in machine CPNData with a typing pre-
condition and a skip substitution, like the example below of operation moveEven:

/* Operation moveEven in machine CPNData */
moveEven(tt, vv) =

PRE tt 2 CPNTrain ^ vv 2 CPNVss THEN
skip

END

The skip substitution of the basic operations is then refined in CPNLevel1 by introducing
the enabledness guards and the expected actions of the transition. In the following we give the
refinement of operation moveEven in CPNLevel1:

/* Refinement of the skip substitution in CPNLevel1 */
moveEven(tt, vv) =

SELECT
(tt 7! vv) 2 Position ^ (vv + 1) 2 Free ^ (tt 7! TRUE) 2 Sens

THEN
Free := (Free � {(vv + 1)}) [ {(vv)} ||

Position := (Position � {(tt 7! vv)}) [ {(tt 7! vv + 1)}
END ;
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Transitions moveOdd and changeSens are translated by applying the same principles. Re-
garding the five safety properties, they are manually introduced in machine CPNLevel1 using
the following invariants:

Position 2 CPNTrain ⇢ CPNVss /* Properties (1) and (2) */
Free \ ran(Position) = ; /* Property (3) */
Free [ ran(Position) = CPNVss /* Property (4) */
Sens 2 CPNTrain! BOOL /* Property (5) */

These invariants restrict the state space defined by the typing predicates presented above.
For example, the typing predicate of relation Position defines all combinations of CPNTrain and
CPNVss couples, while the invariant restricts these combinations to those where a CPNTrain
is linked to one and only one CPNVss while a CPNVss is linked to at the most one CPNTrain.
In our methodology, we consider that if the CP-net model is correct, proofs should be done
without any enhancement of the corresponding B specifications. Otherwise, we decide whether
the CP-net model is wrong or not, given the AtelierB feedbacks. In all cases we do not modify
the generated B operations; we either call the interactive prover when the proof fails due to a
limitation in the automatic prover, or we correct the CP-net model and translate it again into B.
The initial marking substitutions are introduced without invariant violation:

INITIALISATION
Position :2 CPNTrain ⇢ CPNVss ;
Free := CPNVss � ran(Position) ;
Sens :2 CPNTrain! BOOL

Based on machines CPNData and CPNLevel1, and these additional invariants, the AtelierB
generated 17 proof obligations and automatically proved 11 amongst them. The 6 other POs
were proved using the interactive prover.

5.2.3 A Railway DSL for ERTMS/ETCS

5.2.3.1 The meta-model

In order to provide a tool for domain experts allowing them to draw models like that of figure
5.10, we apply model-driven engineering tools for DSML creation (EMF, Ecore-Tools and Sir-
ius). In MDE, the creation of a DSML starts by the definition of its meta-model and then for
every class in the meta-model a graphical representation is created. Figure 5.12 gives the meta-
model that we use in this work and figure 5.13 gives a screenshot of the resulting DSML-tool
in which a model is designed using the proposed graphical representations.

In our meta-model, a railway system is composed of trains (class Train), track sections
called TTD in ERTMS/ETCS 3 (class Trackside) and which are divided into portions called VSS
(class VirtualBlock). The bottom of figure 5.13 draws an overall railway topology by means of
TTD links. Every portion of a given TTD may be linked to two next and previous portions
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Figure 5.12: A railway meta-model

Figure 5.13: A railway model

at the most. In practice, there are four kinds of portions: track extremity (e.g. VSS11 and
VSS62), middle track (e.g. VSS12), switch (e.g. VSS21 and VSS51) and diamonds. Association
pSetted/nSetted provides the currently selected previous/next portion among those to which a
portion is linked. This is useful especially for switches and diamonds. For example, the next
portions of VSS21 are VSS31 and VSS41, but the position of the switch sets the currently selected
next portion of VSS21 to VSS31 and hence the selected previous portion of VSS31 is VSS21 but
for portion VSS41 there is no previous selected portion. Portion VSS41 remains then a track
limit until the switch position is changed. Note that relation pSetted/nSetted is independent
from train direction and a track limit is a portion without a selected next or previous portion.
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Class TrackView represents linear views that follow the current next/previous selections and
where every view starts and ends with track limits. For example, the topology presented in the
bottom of figure 5.13, leads to the two views on the top of the figure. The first view covers
sections TTD1, TTD2 and TTD3 and the second view covers the three other sections: TTD4,
TTD5 and TTD6. If the switches position changes, these views are changed consequently. For
example, if the selected next portion of VSS21 is set to VSS41, then the resulting topology
would lead to two different views: one composed of TTD1/TTD2/TTD4/TTD5/TTD6, and an
other view dedicated to TTD3 only.

Trains have a direction (even or odd) and their representation depends on the set of portions
that their head and rear occupy. In the example of figure 5.13 we consider two trains: T1 whose
front and rear occupy the same portion (i.e. VSS21), and T2 that stretches from portion VSS42
to VSS51. A TTD is occupied when at least one of its portions are occupied. This is represented
by the yellow color in the track views and by the red color in the topology representation. The
green color is used to represent free TTD and VSS in the track view.

5.2.3.2 Formal model

We apply Meeduse to provide domain experts with a formally defined DSL-tool. We give be-
low the translation of classes Train and VirtualBlock and one basic operation Train_AddFront
which adds a virtual block to the set of virtual blocks occupied by the head of a train. Sev-
eral other basic operations are generated by the tool like: Train_RemoveFront, Train_AddRear,
Train_RemoveRear, etc.

MACHINE Functional
SETS

VIRTUALBLOCK; TRACKSIDE
Direction = {even,odd};

VARIABLES
Train, VirtualBlock, Train_direction,
frontOfTrain, rearOfTrain

INVARIANT
Train ✓ TRAIN
^ VirtualBlock 2 VIRTUALBLOCK
^ frontOfTrain 2 Train$ VirtualBlock
^ rearOfTrain 2 Train$ VirtualBlock
^ Train_direction 2 Train! Direction

Train_AddFront(aTrain,aFront) =
PRE

aTrain 2 Train ^
aFront 2 VirtualBlock ^
(aTrain 7! aFront) 62 frontOfTrain

THEN
frontOfTrain :=

frontOfTrain [ {(aTrain 7! aFront)}
END;

Machine Functional generated by Meeduse is about 500 lines with 38 basic operations from
which the AtelierB produced 80 proof obligations that were proved automatically. Given a
model (like that of figure 5.13) Meeduse injects it as valuations in the B specification and calls
ProB in order to compute the list of operations that may be animated from these valuations. For
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example, the following initialization is extracted by Meeduse from our graphical model. The
resulting initial state is hence equivalent to the domain model.

INITIALISATION
Train := {T1, T2} ||

VirtualBlock := {VSS11, VSS12, . . . , VSS62} ||

frontOfTrain := {(T1 7! VSS21), (T2 7! VSS42)} ||

rearOfTrain := {(T1 7! VSS21), (T2 7! VSS51)} ||

Train_direction := {(T1 7! even), (T2 7! odd)}

Starting from this initial state, when the user asks Meeduse to animate a B operation, the tool
calls ProB and gets the new variable valuations and then it translates back these valuations to
the graphical model. This technique results in an automatic visual animation of domain models.
For example, the animation of operation Train_AddFront(T1, VSS31) introduces couple (T1 7!
VSS31) into relation frontOfTrain and then Meeduse modifies the domain model as presented in
figure 5.14 where the head of T1 occupies two virtual blocks VSS21 and VSS31. Since VSS31
is one of the portions of TTD3, then the visual representation of TTD3 automatically changes
from green to yellow.

Figure 5.14: View 1 after animation of Train_AddFront(T1, VSS31)

5.2.4 Putting it all together

Section 5.2.2 focused on train behaviours with an abstract Petri-net specification that guarantees
the absence of accidents, and section 5.2.3 focused on domain modeling of structural aspects
of a railway DSL. In this section, we combine both concerns in order to provide a railway
DSL with a proved safe train behaviour. The B specifications extracted from the meta-model
of Figure 5.12 represent formal static semantics of our DSL, and those extracted from a CP-net
model introduce its operational semantics. In order to merge static and operational semantics
we create machine LinkageV1; it refines CPNLevel1 and includes machine Functional:

137



Applications and case studies

REFINEMENT LinkageV1
REFINES CPNLevel1
INCLUDES Functional
VARIABLES

trainMapping, vssMapping, view
INVARIANT

trainMapping 2 Train 7⇢ CPNTrain
^ vssMapping 2 VirtualBlock 7⇢ CPNVss
^ view 2 TrackView

The refinement guarantees the preservation of the safety invariants of CPNLevel1 and the
inclusion allows us to redefine the CP-net transitions and data using the functional variables of
the DSL. In this machine the linkage of the DSL and the CP-net model is done via functions
trainMapping and vssMapping. They respectively map variables Train and VirtualBlock issued
from the meta-model to sets CPNTrain and CPNVss issued from the CP-net. In our approach
every view in the DSL is controlled by a CP-net since the CP-net defines the VSS set by a se-
quence of integers. Then, the mapping functions are applied to a given view (view 2 TrackView).
For example, the vssMapping relation is computed in the initialisation of LinkageV1 as:

LET mapVss BE mapVss = ran(({view} C blocks �1 ; theVSSs �1 )) IN
ANY map WHERE

map 2 mapVss ⇢ CPNVss ^
8 vss . (vss 2 mapVss ^ nSetted[{vss}] 6= ;

) nSetted(vss) 2 dom(map) ^ map(nSetted(vss)) = map(vss) + 1)
THEN

vssMapping := map
END

END

Note that blocks and theVSSs represent respectively association blocks between classes
TrackView and Trackside, and association vss between classes Trackside and VirtualBlock.
Local variable mapVss defined by: ran(({view} C blocks�1 ; theVSSs�1 )) extracts the set of
VSS for a given view and the mapping is a total injection (⇢) that maps every VSS in this view
to a unique value from set CPNVss. This mapping is done under the condition that if a VSS is
not a track extremity (nSetted[{vss}] 6= ;) then its next selected VSS is mapped (nSetted(vss) 2
dom(map)) and the associated CP-net value is equal to the VSS value plus one. We similarly
compute the trainMapping relation but under the condition that only trains whose head and rear
occupy the same VSS are mapped. In this sense, from the example of figure 5.13 only the first
view can be mapped and then controlled by our first level CP-net model.

Given the mapping relations, the safety invariants of CPNLevel1 are rewritten by means of
linkage invariants ensuring the relationship between the various B specifications. For example,
invariant Free \ ran(Position) = ; used for Property (3) becomes as follows:
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(frontOfTrain [ rearOfTrain)�1[vssMapping�1[Free]] = ;

This means that for every free VSS in the CP-net model, the corresponding virtual block
in the DSML does not contain any train head or rear. Having the linkage invariants, operation
moveEven(tt, vv) in the linkage machine is applied to a train mapped to tt, whose head and rear
occupy a VSS mapped to vv, and whose direction is even and such that the next VSS which
is mapped to vv + 1 is free. Actions of moveEven call basic functional operations issued from
machine Functional. They simply remove the head and the rear of the train from vv and put
them on vv + 1. In the following we give the refinement of operation moveEven in LinkageV1:

moveEven(tt, vv) =
LET train, vss, nextVss BE

train = trainMapping�1(tt)
^ vss = vssMapping�1(vv)
^ nextVss = vssMapping�1(vv + 1)

IN
SELECT

(train 7! vss) 2 frontOfTrain \ rearOfTrain
^ nextVss 62 ran(frontOfTrain [ rearOfTrain)
^ Train_direction(train) = even

THEN
Train_RemoveFront(train, vss); Train_AddFront(train, nextVss) ;
Train_RemoveRear(train, vss); Train_AddRear(train, nextVss)

END
END ;

41 POs were generated and proved by the AtelierB for machine LinkageV1, which mean
that the safety properties (those of machine CPNLevel1) as well as the structural properties
(those of machine Functional) are preserved. Regarding the execution of the DSL, it is done
by railway experts using the animation facility of Meeduse. By animating operations from the
linkage machine, Meeduse automatically updates the corresponding graphical model leading to
its execution.

5.2.5 Refinements

We also apply the refinement principle of the B method to incrementally define formal oper-
ational semantics by means of refined CP-net models. In this section, we only focus on the
first refinement level; we refer the reader to (Idani, A. et al., 2019a,b) for further details. The
general idea is that at every refinement step we introduce additional conceptual elements with
associated safety properties and we prove the preservation of these properties as well as those
of the previous level:
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• Level 2 (authorized train movements): The assumption made in the first CP-net level,
considering that a train moves to the next free virtual section and immediately leaves its
current section, is quite simplistic but sufficient in order to model an abstract accident-free
behaviour. In this second level we introduce a movement authority mechanism, in order
to construct routes to which trains are allowed to move. The additional safety invariants
of this second CP-net level are: (6.) a VSS cannot be waiting and at the same time
assigned to a movement authority; and (7.) a movement authority cannot be shared by
several trains. Given CP-net of Level 2 and the corresponding safety properties, as well as
the refinement invariant, the AtelierB prover generated 32 POs, such that 25 were proved
automatically and 7 interactively, which means that CP-net Level 2 guarantees its own
properties and also those of CP-net Level 1.

• Level 3 (movements with integrity confirmation): In the third refinement level we con-
sider a more realistic train representation than that developed in the two previous levels
where a train occupies only one VSS. In this refinement, a train is seen as a logical entity
defined by the set of VSS that it occupies: its head (place Position), a set of VSS not
yet released behind its head (place Wagon) and the safe rear end (place Tail) which is in
our case one additional VSS defining the minimal distance between two trains. Thus, a
train occupies at least two virtual sections: one for its head and one behind it. When a
train moves, its head is advanced from its current VSS v to the next VSS v++, and then
v is not freed but a virtual wagon is created over it. Indeed, in ERTMS/ETCS 3, the train
must confirm its integrity (i.e. it did not lose wagons) before releasing its safe rear end
which advances its tail by one VSS and removes the corresponding virtual wagon. Given
the B specifications issued from this third level and the associated safety invariants, the
AtelierB produced 62 POs and automatically proved 41 among them. The 21 other POs
were proved manually.

5.3 Application 3: Model transformation

This section summarizes the application of Meeduse to the 2019 edition of the Transformation
Tool Contest (Garcia-Dominguez and Hinkel, 2019) and gives the lessons learned from this
study7. Among other challenges, the contest emphasizes on correctness which motivated us
to apply Meeduse. This study allowed us to try how far we can push the abilities of a formal
method to be integrated within model-driven engineering. The results showed that Meeduse
can be adapted to model transformation which brings to this field formal automated reasoning
tools like AtelierB for theorem proving and ProB for model-checking. Meeduse, combined with
ProB, provides three strategies: random animation, interactive animation and model-checking.
The first strategy runs randomly the transformation rules until it consumes all the elements

7 The proposed solution and demonstration videos can be found at: https://github.com/meeduse/
Meeduse_TTC_2019.
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of the input model and produces the output model. The second strategy applies a step-by-
step debugging of the transformation rules, and the third strategy is useful for analysing the
reachability of some defined states which allows one to verify whether unwanted situations
may happen or not.

Our main objective for the TTC’2019 challenge is to reuse some selected components of
Meeduse in order to execute a formal specification of transformation rules given realistic input
models. As Meeduse was not initially designed to define model transformations, but to define
executable DSLs, we need to rethink the model transformation problem in terms of operational
semantics of an abstract machine. However, presenting the full B model of the TTC’2019
case study requires introducing many concepts and properties, which would be inconvenient
for readers and take much space in this document. Hence, we decided to introduce in this
section our approach and its underlying formal concepts step by step using a simplistic model
transformation example inspired by some basic MDE material available on-line. Application of
Meeduse to the TTC’2019 case study is described in (Idani, A. et al., 2019c).

Figure 5.15 shows simple input and output meta-models for the example transformation.
The input is a model defining persons (of any gender) which may be married (represented by
the person1/person2 relation) and the output is a model focused only on married wives and
husbands.

Figure 5.15: Input/Output meta-models

5.3.1 Step 1: merging meta-models

The input of our tool is the meta-model of a DSL. In order to apply it for model-to-model
transformation, our idea is first to merge both input and output meta-models into a single one
that is automatically translated by Meeduse into B, and then specify the transformation rules as
operations of the corresponding B machine. Intuitively, the state of the transformation execution
includes the input model, the partially generated output model and any additional information
required by transformation rules (for instance, traceability links created by other rules).
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To illustrate this idea, figure 5.16 shows the merging meta-model for our simple transfor-
mation. We suggest that the semantics of the transformation follows a consumption/production
technique: instances of output classes are created while consuming instances of input classes.
In order to keep track of the modeling elements that have been processed by the transforma-
tion, we introduce an abstract meta-class Element to gather modeling elements consumed by
the transformation. This class introduces an attribute name to identify processed elements and
a boolean attribute done to identify input elements that have been already consumed.

Figure 5.16: Merging meta-models

5.3.2 Step 2: generation of the “model construction” specification
From the merging meta-model, Meeduse automatically generates a B specifications with basic
modeling operations as well as structural invariants. This technique allows one to write the
transformation rules in the B language. Figure 5.17 presents the structural part of the result-
ing B machine. The behavioral part of the generated B machine provides all basic operations
for model manipulation: getters, setters, constructors and destructors; for this reason we refer
to this machine as the “model construction” machine. Figure 5.18 shows the specification of
two generated operations. Operation Husband_NEW is a constructor that creates an instance of
class Husband. This operation takes an element from the possible objects defined by abstract
set ELEMENT and adds it to the set of existing instances of class Husband. Operation Hus-
band_SetWife is a setter that straightforwardly assigns a value to the bi-directional reference
husband/wife. Notice that this step is analogous to what happens in MDE tools that generate
code from meta-models. For instance, from a given meta-model definition EMF can generate
Java modeling code (getters, setters, etc), that can be used to program model transformation
in Java. In the same way, Meeduse generates a B machine that can in turn be used to specify
model transformations in B.

The B specification issued from our simple meta-model is about 335 lines of code with 34
basic operations which are proved correct (with respect to the structural invariant) by construc-
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tion. Proofs were carried out using AtelierB, for this simple specification it generated 120 proof
obligations, which were all automatically proved by the theorem prover. This means that the use
of these modeling operations guarantees the preservation of the structural properties (invariant)
of the meta-model.

Figure 5.17: Structural part of the modeling specification

Husband_NEW (aHusband) =
PRE

aHusband 2 ELEMENT
THEN

Husband:= Husband [ {aHusband} k
Element:= Element [ {aHusband}

END;

Husband_SetWife (aHusband,aWife) =
PRE

aHusband 2 Husband
^ aWife 2 Wife

THEN
husband_wife(aHusband) := aWife

END;

Figure 5.18: Generated constructor and setter for class Husband

5.3.3 Step 3: writing the transformation rules
A model transformation is manually written in a new B machine as a set of B operations that
can reuse the modeling operations defined in the simpleModel machine (figures 5.17 and 5.18).
Each transformation rule is defined as a B operation composed of two parts: the guard and the
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action. The guard gives the conditions under which the rule can be triggered, and the action
specifies a sequence of calls to modeling operations (from machine simpleModel) whose effect
is to create the output model. Figure 5.19 gives the two transformation rules that we defined for
our simple example.

Input2Output =
ANY input WHERE

input 2 InputModel
^ input 62 OutputModel

THEN
OutputModel_NEW(input)

END;
Person2HusbandWife =

ANY output, p1, p2 WHERE
output 2 OutputModel
^ p1 2 Person ^ p2 2 Person
^ Person_gender(p1) = male
^ Person_gender(p2) = female
^ ((p1 7! p2) 2 person_1_2 _ (p2 7! p1) 2 person_1_2)
^ Element_done[{p1, p2}] = {FALSE}
^ (husbands [ wifes)[{p1,p2}] = ;

THEN
Husband_NEW(p1) ;
Wife_NEW(p2) ;
Husband_SetWife(p1, p2) ;
OutputModel_AddHusbands(output, p1) ;
OutputModel_AddWifes(output, p2) ;
Element_SetDone(p1, TRUE) ;
Element_SetDone(p2, TRUE)

END
END

Figure 5.19: Transformation rules written in B

Operation Input2Output creates an OutputModel for each InputModel. It takes any existing
instance of class InputModel (input 2 InputModel) which has not been yet transformed (con-
dition input 62 OutputModel) and then its action creates the new instance of OutputModel by
calling basic operation OutputModel_NEW(input).

Operation Person2HusbandWife takes two instances of class Person representing a married
couple (defined by parameters p1 and p2) and translates them into instances of classes Husband
and Wife in the resulting output model. The enabling conditions for this transformation rule are:

• there exists an output model (output 2 OutputModel)
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• the input instances satisfy a pattern, p1 is a male (Person_gender(p1) = male), p2 is a
female (Person_gender(p2) = female) and they are married ((p1 7! p2) 2 person_1_2 _
(p2 7! p1) 2 person_1_2)

• The input instances have not been already processed (Element_done[{p1, p2}] = {FALSE}
and (husbands [ wifes)[{p1, p2}] = ;)

5.3.4 Step 4: animation and debugging
In Meeduse the user can load an EMF input model and injects it in the B specifications as vari-
able valuations. After loading the model, Meeduse asks ProB to animate the initialization and
then gets the initial state of the machine. Given this state, ProB computes the list of operations
whose guards are satisfied and that can then be animated from the initial state. Figure 5.20 is a
screen-shot of Meeduse after loading an example input model containing six persons (View 1�).
The state of the machine after the initialization is displayed in View 3� of figure 5.20 (called
Output State View). The list of operations that can be triggered in the current state is
shown in view 2� of figure 5.20 (the animation view). In our case, the only operation
that can be animated at the initial state is Input2Output, with parameter MyModel.

Figure 5.20: Meeduse screenshot: initial values

This interactive animation technique applies the transformation rules step-by-step to the
input EMF model which is useful for debugging. The animation stops when the B specification
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reaches a deadlock: a state from which there is no other possible operation to animate. It also
stops when an invariant violation is detected. Figure 5.21 gives the result of the animation
at the final state. In the output model, two husbands (Bob and Chuck) and two wives (Alice
and Laurence) were created, with the corresponding marriage relation. The valuations of the
B variables showed in the output state view are equivalent to the EMF model since
Meeduse maintains this equivalence at every animation step.

Figure 5.21: Meeduse screenshot: after animation of all rules

When the domain expert agrees with the behaviors showed by animation, transformation
rules can be played without any human interaction. After loading a model the user can enable
the automatic runner from the animation view by clicking on the corresponding icon.
This runner executes a random animation: at every step it chooses randomly an operation from
those provided by ProB and automatically animates it until reaching the ending state where a
deadlock or an invariant violation is detected.

5.3.5 Step 5: Proving the transformation

Application of a formal method to model transformation brings several benefits to this field.
Indeed, since Meeduse produces a formal specification and automatically manages the trace-
ability between EMF models and the B machine valuations, we can go a step further towards
the usage of automatic reasoning tools like model-checkers.
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The invariants discussed in step 2 define the properties of our meta-model, not those of the
transformation. One way to analyze the transformation and have some confidence about its
correctness is to define unwanted states and ask ProB to find them by model-checking. In the
following we present some example goals that we defined for our simple transformation:

GOAL1 == 9 pp . (pp 2 Husband ^ Person_gender(pp) = female) ;
GOAL2 == 9 pp . (pp 2 Wife ^ Person_gender(pp) = male) ;
GOAL3 == 9 (p1, p2).((p1 7! p2) 2 husband_wife
^ {p1,p2} 6✓ dom(person_1_2) [ ran(person_1_2)) ;

GOAL4 == Husband \ Wife 6= ;

The three first goals are linkage properties between the input and the output meta-model.
Goal1 and Goal2 for example state that an instance of class Husband is created but from a
Person whose gender is female and vice-versa. Goal3 means that a husband and his wife in
the output model are created but without any existing marriage link between the input persons
from which they originate. Goal4 represents a forbidden property of the output meta-model and
means that someone is husband and wife at same time.

Given the B specification extracted from the initial model (that of figure 5.20), we can ask
ProB, from outside Meeduse, to find by model-checking states where one of these goals are
satisfied. The answer of ProB is that all state space is explored without finding any of the four
goals. Since the state space is entirely bounded thanks to valuations, ProB is able to compute
all reachable states. This model-checking proof gives a good confidence about the correctness
of the transformation. It can be applied to bigger examples in the limits of space memory and
the model-checker capacities.

5.3.6 Discussion

We can remark that the chosen style for specifying the transformation rules in B reminds trans-
formation languages available in the MDE community. The specification of the rule guard
(clause ANY) is similar to some declarative transformation languages (it looks like the where
condition and checkonly patterns in QVT relational for example). Nonetheless, the action part
has a more imperative style. As B is not a specialized language for model transformation, some
aspects have to be taken care explicitly, for instance we have to check that a rule is not applied
several times for the same input. An important aspect that is worth mentioning is that we do not
specify explicitly the execution order of the rules. The semantics of a B machine is that, at any
given point during the execution, the system considers all enabled operations and makes a non-
deterministic choice. The choice of the parameters in the ANY clause is also non-deterministic,
meaning that at any execution state, the system will select any objects that satisfy the condi-
tion and use them as arguments for the operation. However, in this example we have indirectly
prescribed an order of execution, because in the guard of the Person2HusbandWife rule
we check for the existence of an object created by the Input2Output rule. This strategy is
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also similar to some declarative transformation languages that use traceability information to
infer an execution order. The dynamics of a B machine execution will be further explored in
the following sections.

A final point concerns the correctness of the transformation rules. As mentioned in the
previous section, the individual model construction operations (constructors, setters, . . . ) were
proved correct, then the result of executing a sequence of operations in the action part of a rule
will obviously preserve the model structural properties. However, we also need to prove that
the order of the sequence of calls is correct, meaning that the preconditions of every opera-
tion in the sequence are satisfied. Lets’s consider for example operation Husband_SetWife
which can be applied only on existing instances of classes Husband and Wife: aHusband 2
Husband ^ aWife 2 Wife. As actions Husband_NEW and Wife_NEW produce these in-
stances, then the proof of correctness associated to the call of Husband_SetWife in rule
Person2HusbandWife succeeds. For our example rules, the AtelierB generated 13 addi-
tional proof obligations, which were automatically proved. This means that we don’t need to
test the validity of the input models or verify the output model using the EMF validator.

5.3.7 The TTC’2019 Case Study
The call for solutions of TTC’2019 was about the transformation of Truth Tables (TT) into Bi-
nary Decision Diagrams (BDD). Among the seven participants, Meeduse was the only attempt
that addressed V&V; the other solutions addressed flexibility, performance and optimality. Fig-
ure 5.22 shows the various views of Meeduse that represent our solution.

Figure 5.22: Application of Meeduse to DSL transformation
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The B machine extracted from the meta-model is about 1162 lines of code from which the
AtelierB generated, and automatically proved 260 proof obligations. This proof gives the guar-
antee that the model’s properties are preserved during the DSL transformation. The operational
semantics were introduced using an additional B machine whose length is about 150 lines of
code. This is more concise (but may be more difficult to understand) than a reference ATL
solution which is about 340 lines of ATL code. The proposed operational semantics of this case
study were defined through five B operations and several additional invariants. For this case
study the correctness of the operational semantics was ensured by model-checking, rather than
by theorem proving because on the one hand it is less time consuming, and on the other hand, it
deals with bounded state spaces that can be exhaustively checked by the ProB model-checker.

From a methodological point of view we were able to define how formal executable DSLs
can be applied to define model transformations. Merging meta-models required the implemen-
tation of an additional driver, but we believe that Meeduse can be adapted to deal with two or
several heterogeneous meta-models. This issue is now considered as a possible evolution of the
tool. In general, we are satisfied by the application of Meeduse to the model-to-model transfor-
mation problem because as far as we know none of the existing works combine theorem proving
and model-checking in a publicly available tool and which is well integrated within EMF-based
platforms.

Regarding performance, it mainly depends on the performance of ProB. Execution times
spent by the tool to generate the output models are given in table 5.1. The number of model
elements grow exponentially. For 14 input ports and 2 output ports, Meeduse reached an out
of memory. For bigger examples, it should be useful to try the experiments on a machine with
higher performances than that on which we have done these measures.

Input Model rows input ports output ports Cells Exec. Time
GeneratedI4O2Seed42 16 4 2 96 3s
GeneratedI5O2Seed5 32 5 2 224 5s
GeneratedI8O2Seed68 256 8 2 2560 1mn3s
GeneratedI8O4Seed68 256 8 4 3072 2mn1s
GeneratedI10O2Seed68 1024 10 2 20480 18mn8s

GeneratedI12O2Seed7634 4096 12 2 57344 6h40mn

Table 5.1: Some performance measures

For readability, we believe that the verbose notation of the B method is accessible because
it recalls some programmatic styles. It is often said to be less difficult than other formal no-
tations. Our transformation file is about 150 lines which remains reasonable. However, the B
specification that we provide is expected to be readable for a formal methods expert, may be
more readable than an ATL or a QVT transformation. But this intuition needs some empirical
studies in order to be confirmed.
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« Maintenant l’abstrait s’était matérialisé,
l’être enfin compris avait aussitôt perdu de son pouvoir de rester invisible, […]

tout ce qui avait paru, jusque-là, incohérent à mon esprit,
devenait intelligible, se montrait évident, comme une phrase, n’offrant aucun

sens tant qu’elle reste décomposée en lettres disposées au hasard, exprime,
si les caractères se trouvent replacés dans l’ordre qu’il faut,

une pensée que l’on ne pourra plus oublier. » 

 Marcel Proust

T his document presented my research works during the last fourteen years. I addressed
two topics: Model-Driven Security and Domain-Specific Languages. The guiding prin-
ciple of my contributions is the combination of two well-known paradigms: Formal

Methods (FM) and Model-Driven Engineering (MDE); to which I refer using acronym FMDE.
During this period I had the opportunity to (co-)supervise many students for their PhD, M2 or
final study engineer projects. I also collaborated with many colleagues and have been mem-
ber of various research projects. My works led to the development of two tools: B4MSecure
(Idani, A. and Ledru, 2015) and Meeduse (Idani, A., 2020b). These tools reached a good level
of maturity and are no longer simple prototypes. They have been applied on several realistic
case studies and showed by practice their strengths. B4MSecure is currently used in the “Infor-
mation Security” lecture of the M2 MoSIG at Grenoble. It is exploited in a lab that introduces
students to the design of Access Control policies, and also to testing via animation and to the
insider threat problem. Regarding Meeduse, it is today the only existing language workbench
(LWB) that favours both formal reasoning � via theorem proving � and the execution of the
DSL � via animation and model-checking.

Several research directions that are mentioned in the introduction have not been discussed in
details in this document, for space reasons and also because some of them are not yet published.
I’m still actively working on these topics, with several perspectives.
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Formal MDS
Nowadays, information technology architectures support interconnection between systems and
favour a greater interoperability and a centralized access to data. However, despite these advan-
tages, they expose information systems to a multitude of security risks. Indeed, organisations
manage sensitive information and security vulnerabilities can lead to financial loss, dilapidation
of the brand image, shutdown of production systems or leakage of confidential information.
Hence, information flows must be controlled to adequately ensure information security and to
enforce the ACIT properties (Availability, Confidentiality, Integrity, Traceability) of Secure In-
formation Systems. Separation of concerns and abstraction/refinement techniques have been
proposed to master the complexity of these systems. First, separation of concerns distinguishes
functional aspects of the IS (data model and the associated business logic) from security con-
cerns. Second, it appears that security can be considered at several abstraction levels: from high
level ACIT properties, close to the concerns of users, to security techniques and mechanisms of
the hardware and software platform.

Significant efforts have been dedicated to the careful definition of security policies and their
deployment on a given technology. The Model-Driven Security (MDS) (Basin et al., 2011)
approach addresses this challenge by trying to define the relationship between high-level secu-
rity modeling, expressed in terms of permission rules, and the implementation level. Platform
Independent Models (PIM) promote a real separation of concerns between the functional re-
quirements and the security policy. MDS makes the link, using transformation tools, between
the PIM and the Platform Specific Model (PSM), where the PSM is a more concrete model that
can be mapped to a given technology platform (programming language, operating system, ...).
However, validation of the various models remains error prone without the assistance of formal
analysis tools and consequently the encoded security policy is poorly understood and difficult
to maintain, correct or adapt. Current validation activities are limited to structural aspects of the
models, where functional and security models are validated separately. However, evolutions of
the functional state of an IS may change the context of several permissions, which may lead to
security threats. The validation activities thus require tools that can take into account dynamic
aspects of both functional and security aspects. These tools can come in the form of model
checkers and animation tools, dedicated to formal specification techniques.

My works in this field propose a way to guarantee a security-by-design approach in which
the MDS benefits from an automated formal support based on the formal B method. Indeed,
formal B specifications take into account behavioural aspects of the secure IS and deal with
interactions between the various models thanks to its composition mechanism. The formal
analysis techniques addressed are intended to exhibit interesting behaviours; for example,

• to check liveness properties of the IS, as security constraints can be too strict and then
block the system;

• to check that the access control forbids the system to enter undesirable functional states;
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• to find malicious behaviours like insider threats performed by authorized users in order
to bypass the security policies;

• to produce positive and negative test scenarios, to check the correctness of normal be-
haviours and the effects produced by non-nominal (undesired) variations of these normal
scenarios;

A backward symbolic search algorithm has been proposed in the PhD thesis of A. Radhouani
in order to extract attack scenarios that are made possible by the evolution of the functional state
of the IS. In addition, this approach is able to extract malicious behaviours performed by a single
user or several users on coalition. The technique presented in Chapter 3 has been complemented
with a two-steps approach: the first step focuses on the functional model regardless of users and
their roles in order to extract the sequences of functional operations that reach the malicious
goal; and the second step guides ProB with a CSP model to identify users able to perform
such attacks according to the security model. This work led to the development of GenISIS,
a tool that is used to exhibit execution paths from a B modelling of an IS. GenISIS has been
experimented with several case studies such as the meeting scheduler example discussed in
(Basin et al., 2009, Radhouani et al., 2015), the medical IS studied in (Ledru et al., 2015b) and
the conference review IS inspired by(Zhang et al., 2008). For each example, GeneISIS aimed
to reach the same malicious goal as handled in the article which addressed the same example,
and it was able to extract all reported attacks. Some metrics about these experiments are given
in Table 1.

Case study Operations Variables Permissions Roles Users scenarios
Library 13 4 3 2 3 8

Medical IS 15 9 3 4 3 10
(Ledru et al., 2015b)
Meeting scheduler 23 7 5 3 3 8
(Basin et al., 2009)

Bank IS 31 11 4 2 3 9
(Bandara et al., 2010)
Conference Review 48 24 8 3 4 14
(Zhang et al., 2008)

Table 1: Summary table of experiments

My works mainly addressed the modeling activities and were based on Platform Indepen-
dent Models (PIM), described using UML models and their associated formal B specifications.
However, in addition to modeling notions, MDS also promotes the transformation of the PIM
into a PSM. The objective is to translate access control into concrete security mechanisms of a
target infrastructure. In practice, this transformation usually includes manual coding activities.
The challenge is therefore to guarantee that security models, graphically designed and formally
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validated, correspond to a deployed security policy. One way to address this perspective is to
apply conformance testing.

From the PIM level, testing activities can take several directions: (1) validation of the normal
behavior of the IS regarding its security rules, (2) automated generation of security tests from
valid functional scenarios, etc. The PSM level validation can be done by verifying whether
the PSM complies with the specification and its validation activities. In this context the goal
is twofold: (1) extract PSM models of target technologies like web applications and databases,
and (2) translate the validation activities carried out on PIM models into validation activities at
the implementation level. This can be achieved by the extraction of security monitors, and/or
the production of log files that can be further analysed applying trace analysis techniques.

Formal xDSLs
Several research works have been devoted by the MDE community in order to deal with ex-
ecutable DSLs. Combemale (2015) state that the intention is to support early validation and
verification in the development process. Indeed, an executable model not only represents the
structural features of a system, but also deals with its behaviour. The model is therefore in-
tended to behave like the final system should run, which provides the capability to simulate,
animate and debug the system’s properties before its implementation. In the literature there are
two major approaches to implement the execution semantics of a DSL: translational approaches
and in-place approaches. The former translate the DSL semantics into a well-established se-
mantic domain that is assisted by numerous tools. The latter weave the execution semantics
into meta-models, which is often done by extending the semantic domain of a DSL with action
languages. Every approach has its strengths and limitations that can be summarized by:

• Translational approaches:

– Strengths: apply available tools, such as animators and/or model-checkers to ensure
the execution capabilities of the DSL.

– Limitations: first, often these approaches require complex transformations to im-
plement the mapping from the DSL to the target semantic domain, and second, the
execution results are only obtained in the target domain.

• In-place approaches:

– Strengths: allow a more intuitive definition of executable DSLs since the language
engineer has only to deal with concepts of the DSL and not with another target
language.

– Limitations: require to implement for each DSL all the execution-based tools.

Since the objective of an xDSL is to ensure early validation during the development process,
the developer must have some confidence in the underlying verification tool. Nonetheless, on
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the one hand, Kosar et al. (2016) and Iung et al. (2020) show that the verification feature of ex-
isting language workbenches (LWBs) is very limited; and on the other hand, the dependability
of the resulting system is strongly related to the correctness of the DSL. Voelter et al. (2019)
analysed the risks of using LWBs regarding the introduction of faults into a critical software
component. The authors observed that existing LWBs have not been developed using a safety
process and attested that “particular DSLs could be, but that is only of limited use if the under-
lying LWB is not”. In this sense, a translational approach is much more pragmatic because it
reuses well-established verification tools, that are often widely accepted by the formal methods
community.

In my opinion, bridging the gap between both worlds (xDSLs and FM) does not require
innovative solutions and can be done by integrating well-established tools provided by both the
Formal Methods community and the MDE community. The lack of automated formal reasoning
in LWBs is not due to the complexity of formal methods and their mathematical background,
but originates from the lack of initiatives that are dedicated to the integration of both techniques.
A supporting argument could be the assertion by Kosar et al. (2016) that “researchers within
the DSL community are more interested in creating new techniques than they are in performing
rigorous [empirical] evaluations”. Unfortunately, not only the integration attempts remain poor,
but also the applications of existing approaches remain limited to illustrative examples without
going further towards realistic safety-critical requirements. This observation may explain why
existing approaches (Rivera et al., 2009, Gargantini et al., 2010b, Merilinna and Pärssinen,
2010, Tikhonova, 2017b, Zalila et al., 2013) are not discussed at all in the systematic mapping
studies of Kosar et al. (2016) and Iung et al. (2020). Meeduse is a LWB providing solutions to
this limitation. It allows one to formally define and reason about the semantics of xDSLs using
the formal B method. The underlying approach is a translational approach, but it goes a step
further in comparison with existing translational approaches by providing effective solutions
to the limitations mentioned above. The applications and case studies presented in Chapter 5
show that the integration of executable DSLs together with theorem proving, animation and
model-checking is viable and should be explored further.

The usage of B in my works appears as a good choice for two reasons: (1) the availability of
a rich UML-to-B state of the art, which provides a viable translation from ECore into B (consid-
ering that ECore is conformant to the MOF, which is a restriction of UML); and (2) the usage of
theorem proving, in addition to model-checking, to guarantee zero-fault DSLs. In most appli-
cation domains such as Requirements Engineering, Enterprise Architectures, Business Process
Management and Legal Contracts, where DSLs do exist, the commonly used verification tools
are model checkers and/or SAT/SMT solvers. Meeduse introduces theorem proving to these
domains. Besides my own experience and judgement, the B Method has been compared to
other state based formal methods and tools in (Mashkoor et al., 2018) and got several good
points. Regarding scalability, which is “the ability to be well applicable to arbitrarily large and
complex projects”, the B method is ranked (Good). The work also highly ranks the verification
features of B and its tool support. Figure 1 gives the evolution time-line of the tool with the
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major highlights and current and short-term perspectives.
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Figure 1: Evolution time-line of Meeduse

The red time-lines refer to DSL tools that are powered by Meeduse and which have their
own existence, such as MeeNET. The latter investigates several interesting research directions
such as DSL refinements and transpilation. Meeduse has been experimented on various kinds of
applications in order to evaluate its strength. For example, in the smart-home domain (project
DomoSur) the objective was the execution of the DSL at run-time, being inspired by (Körner
et al., 2020). The approach also covers model transformations (M2M) and currently, I am work-
ing on bi-directional transformations by addressing two features: (1) proving the isomorphism
of a transformation in B, and (2) updating the input model from changes done in the output
model (propagation).

The xOWL project (executable OWL), started last year, addresses knowledge engineering.
It has a different view and studies the possibility to consider other application domains, which
would allow the analysis of the implications of FMDE outside safety-critical systems. The
motivation of the project is that domain ontologies evolve continuously, which leads to several
problems, especially change impact analysis and resolution. Among existing works, pattern-
driven techniques have been proposed to provide guidance during the ontology evolution so
that it remains consistent. In the xOWL project, ontologies are described via the Ontology Web
Language (OWL). Considering that OWL is a DSL, the proposal is to rethink the underlying
evolution patterns by means of execution semantics that apply the expected changes to a given
ontology. The W3C functional syntax of OWL has been instrumented in Meeduse, leading to a
lightweight development approach. Indeed, the development effort is limited to the specification
of the evolution patterns and their verification and validation. All the other features of xOWL
(execution, verification and debugging) are provided by Meeduse.
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Personal opinion

Undoubtedly, the usage of a formal method with well-established verification tools is a solution
to neutralize bugs that may originate from a modeling language. The question is: “how to
provide the good mixture between correctness and expressiveness?”. I believe that the answer
depends on the application domain of the language. Indeed, formal methods are often negatively
perceived by developers due to their mathematical notations, and consequently translational
approaches have a limited usage for general purpose applications. Nonetheless, formal methods
showed their strengths in the safety-critical domain, and they became a strong requirement to
ensure zero-fault applications. On the other side, MDE provides several benefits to this field
due to the usage of DSLs and the ability to share, visualize and communicate about domain
concepts. Both formal methods and model-driven engineering are desirable in safety critical
systems because domain-specific representations are omnipresent, as well as the use of provers
and model-checkers. I assume that the reader may agree with this claim, even if it appears that
for larger scale projects formal methods are not as widespread, because of the overhead they
may create during the development activities.

Note that The backbone of my works, for MDS and DSLs, is the UML-to-B translation. It
can be considered that MDS is a particular case of DSLs and hence an interesting technical per-
spective would be to revisit B4MSecure using Meeduse. In fact, B4MSecure translates UML
and RBAC into B applying model-to-model transformations written in Java. Considering that
UML, RBAC and B are DSLs, and having their meta-models, it is possible to rewrite the trans-
formations using B, prove their correctness, and execute them in Meeduse. Even if Meeduse is
a recent tool (its reference papers appeared in 2020), the underlying approach is not new since it
provides a translation semantics to a DSL. The limitations of this kind of approach were widely
discussed in the literature (Bryant et al., 2011). The first one is that it “is very challenging to
correctly map the constructs of the DSL into the constructs of the target language”. The use of
the B method in Meeduse provides objective answers to this observation because the semantics
of meta-models is defined by means of OCL constructs in the MOF. These are built on the set
theory and the first order predicate logic, which are also the foundations of the B language.
Structurally a meta-model is a restriction of UML, which is comforting because this means that
mapping a DSL into B is not very challenging. It can be done via a classical UML-to-B ap-
proach, which has been addressed in the past (since the 2000s) by a plethora of techniques. My
research works made this translation more effective than existing techniques; first, by providing
tools and second by embedding ProB in these tools.

Furthermore, the second limitation of translational approaches, as discussed in (Bryant et al.,
2011), is that “the mapping of execution results back into the DSL is not covered”. Indeed, in
the existing works the V&V activities are only obtained in the target domain because getting
back the results in the source language is often claimed to be difficult and requires to extend
the abstract syntax of the input DSL in order to model these results. Existing works start from
a model (in UML or in a given DSL), produce a formal specification and then they “get lost”

157



Conclusion and perspectives

in the formal process. By embedding ProB, Meeduse gave a new vision to the integration of
formal methods and modeling languages.

Every UML-to-B approach has its advantages and limitations. Obviously for a better cov-
erage of UML a combination of the various approaches is needed. The major challenge was
how to gather into a unifying framework several UML-to-B approaches from the rich state of
the art. In B4MSecure and Meeduse the user is able to select the desired UML-to-B transfor-
mation technique and also to combine rules coming from various techniques. This is interesting
because UML has been mapped into numerous state-based formal languages with similar prin-
ciples (e.g. Z, Object-Z, etc), and therefore the only remaining piece is to reuse these mappings
within the tool. I am aware that in order to broaden the spectrum of B4MSecure and Meeduse
several target formal approaches have to be addressed. This objective is reachable since the
power of both tools comes from ProB, and ProB is itself a multi-target platform covering (in
addition to B) Event-B, Z, Alloy and TLA+.
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Abstract

My research works are dedicated to the integration of two well known paradigms: Formal Methods
(FM) and Model-Driven Engineering (MDE). This integration is called Formal MDE (FMDE) all along
the current document. In fact, several works have been already done in order to strengthen the MDE
paradigm with formal reasoning, and therefore make it more viable as far as safety and security concerns
have to be addressed. When taken separately, these works provide a partial coverage of MDE, but when
combined they can address a wide range of models and languages. During the last decade, I investigated
two directions in which the FMDE paradigm proved its value: (i) Model-Driven Security (MDS), and
(ii) Domain-Specific Languages (DSLs). Under the MDE umbrella, both the MDS and DSL commu-
nities advocate for the use of models throughout the development process, providing solutions to the
validation problem (‘do the right system’). Nonetheless, the verification problem (‘do the system right’)
is still a major challenge, perhaps because formal reasoning (i.e. model-checking and/or theorem prov-
ing) was not apart of the MDE initiative. To be pragmatic my contributions build on well-established
notations: mainly UML and B, and � at a smaller scale � BPMN, CSP, Z and Petri-Nets. Besides, the
obtained results can be inspiring and, in my opinion, should be extended with other (semi-)formal lan-
guages, which would confer to FMDE a broader spectrum. This document summarizes for every research
direction (respectively MDS and DSLs) the challenges that guided my works, and give an overview of
my contributions and publications in the field.
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