
Distance-based Trace Diagnosis for Multimedia
Applications: Help me TED!

Christiane Kamdem Kengne∗†, Noha Ibrahim∗
∗University of Grenoble,LIG

681 rue de la passerelle
38400 Saint Martin d’Hères

France
{surname.name}@imag.fr

Marie-Christine Rousset∗, Maurice Tchuente†
†University of Yaounde I,LIRIMA

BP 812 Yaoundé, Cameroun
UMI 209 UMMISCO

BP 337 Yaoundé, Cameroun
m.tchuente@uy1.uninet.cm

Abstract—Execution traces have become essential resources that
many developers analyze to debug their applications. Ideally, a
developer wants to quickly detect whether there are anomalies
on his application or not. However, in practice, the size of multi-
media applications trace can reach gigabytes, which makes their
exploitation very complex. Usually, developers use visualization
tools before stating a hypothesis. In this paper, we argue that this
solution is not satisfactory and propose to automatically provide
a diagnosis by comparing execution traces. We use distance-based
models and conduct a user case to show how TED, our automatic
trace diagnosis tool, provides semantic added-value information
to the developer. Performance evaluation over real world data
shows that our approach is scalable.
Index Terms—Execution traces; Distance; Diagnosis; Audio/Video
decoding; Multimedia applications.

I. INTRODUCTION

With the proliferation of embedded systems providing an
everywhere access to multimedia contents, the development
of multimedia applications is an area of high competition in
which, the time lost by a developer to debug the application
amounts a financial loss for companies.
The analysis of execution traces, that are sequences of time-
stamped events, is at the core of the optimization and de-
bugging of applications. When the developer has a reference
trace (which can be produced by a simulator), a technique for
detecting possible anomalies within an execution trace is to
compare it with the reference trace using a suitable distance
[1]. However, although there is an abundant literature about
distances on sequences ([2]–[4]), very few distances take into
account the temporal aspect that is crucial in execution traces.
In fact, designing an appropriate distance for a meaningful
comparison between multimedia execution traces is a difficult
task. Indeed, it requires to capture and combine within a
single numerical function, several aspects that are specific
to multimedia execution traces. Whatever the quality of a
distance for suggesting the existence of a bug in an execution
trace, based on its numerical comparison with a reference
trace, the results of the distance calculation are inherently
difficult to interpret by human developers, in particular for
finding the actual cause of the bug.
In this paper, we propose to replace a black-box approach
encapsulated in a single complex distance by a glass-box

approach based on a fine-grained analysis of problems that
are likely to occur in multimedia applications. The idea is
that anomalies in multimedia applications usually have visible
effects (for users) such as desynchronization between sound,
picture or subtitles, the interruption of a video streaming or
the loss of some frames (a frame being an image rendered
during a known time interval).
We make the following contributions:

1) We have identified a family of anomalies likely to
occur in multimedia applications and that are visually
perceptible when a user is watching a video.

2) For each type of anomaly, we have designed a specific
distance which measures appropriately the amplitude of
the corresponding anomaly.

3) Based on these distances, we have designed a diagnosis
tool able to detect degraded execution traces and to
identify the causes of such a degraded behaviour.

The rest of the paper is organized as follows: Section II
provides some background and states the problem of automatic
diagnosis. In Section III we present the general approach
that we propose to solve this problem. In Section IV, we
describe our TED tool and illustrate it on a use case. Section
V summarizes experiments conducted using TED. Finally,
Section VI concludes with some perspectives.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, we explain how execution traces are obtained
and described as timestamped sequences. We also introduce
three well-known types of anomalies occurring in video
streaming. Finally, we state the trace diagnosis problem.

A. Execution Traces Generation and Description

Embedded systems directly integrate hardware tracing support
to collect events generated by applications or perform a post-
mortem analysis of their execution. These techniques minimize
intrusiveness, i.e tracing an application has a minimal impact
on its behaviour, allowing complex interactions to be shown
in real-time applications such as video decoding.
Based on our previous work [5], we formalize the execution
traces that are generated as sequences of timestamped events as
depicted in Fig. 1, where, for instance, 1965720232 (in ms) is

a timestamp of the event ffmpeg:gst ffmpegdec chain:’Received.

Fig. 1. An execution trace

B. Audio/Video decoding Anomalies Description

While streaming a video, some common anomalies can occur.
These anomalies are well known in the community of A/V
developers ([6,7]) and almost always have visual and sound
effects on the video streaming. They can even be simulated
using existing tools that are able to inject those perturbations.
We have chosen to detect three of the common anomalies:
P1: Audio/video/subtitle desynchronization anomaly: This
anomaly reflects a desynchronization in time between audio,
video or subtitles. The audio may be slower than the video or
the subtitle may not appear at the right moment.
P2: Player crash anomaly: The player stops abruptly at a
random execution time, without any reason.
P3: Slow streaming anomaly: Visually, video is very slow.
In this case the audio/video/subtitles are synchronized but take
much more time than in a normal execution.

C. Trace Diagnosis Problem Statement

The general trace diagnosis problem that we consider is to
detect whether an execution trace presents some anomalies
reflecting an abnormal behaviour of the application under
supervision, and if this is the case, identify the cause or at
least the type(s) of these anomalies.
This problem is difficult to solve in general, i.e. without
exploiting some additional knowledge or without restricting its
scope in order to exploit some domain-specific characteristics.
Our approach is to exploit error-free reference traces that can
be obtained by a simulator, and to compare them with real
execution traces using suitable distances. A simulator is a
tool usually used by developers, in order to restore the good
video decoding environment. Detecting whether a real trace
execution is abnormal consists in a distance-based comparison
with the reference trace obtained by the simulator ran on the
same video and identifying pre-established types of domain-
specific anomalies, namely those mentioned in Section II-B
and referred to as P1, P2 and P3 respectively.
The trace diagnosis problem that we consider in this paper can
then be stated as follows:
Given an execution trace T and a reference trace Tr, how
to automatically detect whether T contains anomalies of type
P1, P2 or P3, using a distance-based comparison with Tr.

III. DISTANCE-BASED DIAGNOSIS

In this section, we explain our general approach for solving
the trace diagnosis problem stated above, using appropriate
distances.
A distance d between two objects is a numerical measure of
how far apart these objects are [8]. Instead of defining a single

distance as a black-box to detect various anomalies, our glass-
box approach defines multiple distances that are appropriate
to the types of anomalies we want to detect.
The procedure that we followed is: First, we decode a movie
video with gstreamer and obtain a reference trace. Then,
we inject in the streaming, perturbations corresponding to the
three types of anomalies and we obtain for each anomaly
the corresponding abnormal execution traces. Finally, for each
type of anomaly, we manually analyze the reference trace and
the execution trace, and extract the differences that are relevant
for each distance. We defined three distances that we present
briefly. The detailed formalization and algorithm computation
of these distances can be found in [9].

A. Occurrence distance

For P1 anomaly, when examining the traces, one can detect
different numbers of occurrences of some events in the sim-
ulated trace and the abnormal one. We define the occurrence
distance between two traces as the number of events whose
ratio of occurrence in the two traces is less than a given
threshold. This distance is appropriate to retrieve P1, A/V/S
desync. anomaly, because it measures the number of events
that differentiate T1 from T2.
Example 1: consider the traces T1 and T2 below, and the
threshold θ = 0.5. Event It occurs 4 times in T1 and 3
times in T2. Its occurrence ratio is 3/4 = 0.75 > 0.5. Event
CS has a ratio of 1/3 = 0.33 < 0.5. Thus it is the only
event with occurrence ratio less than θ, then d1(T1, T2) = 1.

B. Dropping distance

For P2 anomaly, when comparing the simulated and abnormal
traces, we found that some events seem to appear only in one
trace and not in the other one. The corresponding dropping
distance refers to the number of distinct events that belong
only to one trace.
This distance is appropriate to retrieve P2, i.e. Player crash
anomaly (see section II-B).
Example 2: for the traces T1 and T2 below ,
events(T1) = {X, CS, It, E}; for T2; events(T2) ={CS, It,

U}; events(T1) − events(T2) ={X,E} and events(T2) −
events(T1) ={U}, then d2(T1, T2) = |{X, E, U}| = 3.

C. Temporal distance

For P3 anomaly, the duration and the order of some events
differ in the two traces. In the abnormal trace, some events
durations are much longer than in the simulated trace.
The temporal distance that we propose is an adaptation of
the distance model of Mannila et. al [10] which is an edit-
distance taking into account temporal aspects. It uses 3 distinct
operations (Insertion, Deletion, Move) with a cost associated
to each of it, in order to evaluate the total cost of transforming

one sequence to another. The distance between two traces T1

and T2 is the cost of the cheapest sequence that transforms
one sequence into the other.
Example 3: For traces T1 and T2 below, the cheap-
est order-preserving sequence of operations that trans-
forms T1 into T2 is Move(It, 2, 1),Move(It, 4, 2), Ins(U, 5).

However, the beginning timestamp in two traces is not always
the same. Consequently, results obtained with this method
are not satisfactory. Therefore, we adapt the Mannila distance
model in order to have d3(T1, T2) = 0 when T2 is obtained
from T1 by a time shift (for details, see [9]).

IV. THE TED TOOL ILLUSTRATED ON A USE CASE

In this section, we describe TED, our TracE Diagnosis tool
(Fig. 2), and illustrate its functioning on two use cases.

A. TED Architecture

Fig. 2. TED Architecture

TED handles two main phases. In the Preprocessing and
trace generation phase, the Parser tool takes as input an
execution trace generated from a multimedia source file via
the multimedia Toolkit, and a reference trace file. The traces
are preprocessed. This step is very important for a successful
outcome of the analysis as a non cleansed and non normalized
data can lead to spurious and meaningless results [2]. A parsed
trace Ts (respectively Tr) is obtained from execution trace
(respectively reference trace), by removing some redundant
information or by modifying others.
The Diagnosis process is the second and core phase of TED.
The distance selector engine selects an appropriate distance
from the Distances database and applies it to the Ts and Tr.

B. Use cases

We consider the following scenario. A developer retrieves
several execution traces of video streaming watched by a user
and needs to know if there exists anomalies, and what are
these anomalies.
In the Preprocessing and Trace Generation phase, we decode
the movie with gstreamer to obtain the reference trace Tr. We
use a gstreamer element identity [11], with property sleep-
time, to obtain a A/V/S desync. anomaly (scenario b). The
abnormal trace obtained is T . We generate another abnormal
trace, with a slow streaming anomaly (scenario a) by a stress
of CPU and memory in the system.

In the Diagnosis process phase, the developer uses TED as
follows:
Case 1: he has an idea of the anomaly and just want to verify
if his hypothesis is true or not. He selects the distance to apply
and TED gives the diagnosis. In Fig. 3, temporal distance is
used (scenario a). The developer suspects a slow streaming
anomaly (P3). TED detects the anomaly and returns the value
of temporal distances between the two traces per plugins. TED
points out the a plugin to be the one with the most dissimilar
events between the two traces.
Case 2: he has no idea of what is happening and would like
to find if there exists an anomaly in T . He selects the choice
all distances, and TED applies successively all the distances.

Fig. 3. A slow streaming anomaly detected (scenario a)

By using TED, a developer analyzing an execution trace is
notified of anomalies with their types and locations in the trace
(the plugin concerned). TED is a time saver for developers as
they can quickly detect anomalies in execution traces.

V. EXPERIMENTS

We conducted a set of experiments to demonstrate the quality
and efficiency of our proposed execution trace diagnosis
tool. We show how helpful this automatic tool can be for
developers, by an evaluation of TED scalability and precision.
System configuration: Our prototype system is implemented
in Python 3.2. The experiments were run on an Intel Xeon
E5-2650 at 2.0GHz with 32 Gigabytes of RAM with Linux.
Data Set: We use traces from two real applications, described
below:
Gstreamer application: Gstreamer [11] is a powerful open
source multimedia framework for creating streaming appli-
cations, used by several corporations such as Intel, Nokia
and STMicroelectronics. For these experiments we decoded
several movies using Gstreamer on a Linux platform, with the
ffmpeg plugin for video decoding.
GSTapps application: It is a test video decoding application for
STMicroelectronics development boards. The execution trace
contains both application events and system-level events. It is
generated from a ST40 core of the SoC, which is dedicated
to application execution and device control.
Table I gives a description of reference traces.
Running time and Scalability: Fig. 4 reports the wall clocks
of TED for occurrence and dropping distance, when varying
the number of events in execution traces. The horizontal
axis represents the maximum number of events of the two

TABLE I
EXPERIMENTAL DATASET

Video Duration Nb. of events Size
generic 5s 15, 110 2.9Mo

pub 30s 74, 510 14.3Mo

movie 3628s 12, 423, 095 2457, 6Mo

SDK2 335s 2, 382, 720 73.2Mo

compared traces. In practice, we consider θ = 0.25, as
threshold of occurrence ratio. One can notice that, for traces of
more than 1Go, corresponding to approximatively 4, 000, 000
events, TED can give a diagnosis in less than 10s. For the
pub video of table I, an output is obtained in 0.12s. The
experiments showed that the proposed methods can scale to
real application traces.

10-2

10-1

100

101

105 106 107

R
un

ni
ng

 ti
m

e
(s

ec
)

Number of events

Scalability with TED

occurrence distance
dropping distance

Fig. 4. Running time
Precision: In order to evaluate the accuracy of the diagnosis
done by TED, we run TED on a sample of 300 execution
traces as shown in Table II. The first observation is that all
execution traces initially considered as normal were diagnosed
as such by TED. However, the tool gave 14 false-true which
are execution traces considered by TED as normal but which
contain anomalies. Thus, TED has a precision of 95.33%. A
reason of this lack of precision can be the value of threshold
for occurrence distance. We fixed it at θ = 0.25 but it is
better to adapt the threshold value to the length of the video
decoded. We are currently testing the correlation between the
video length and the threshold value.

TABLE II
TED PRECISION

Nb. traces Initially With TED

Sample of 300 traces normal: 130 normal: 144
abnormal: 170 abnormal: 156

VI. CONCLUSION

To analyse traces of events, programmers use several tools
such as trace visualizers ([12]–[15]) and techniques such as
tracepoints on the execution traces. These techniques need to
have an expert to interpret the graphical representation. In
contrast, our work based on distances develops a technique
which is a first step towards an automatic anomalies detection.
Our approach diagnoses anomalies in an execution trace of
multimedia application, by comparison with a reference trace.
We use distances as models of comparison and specifically

design three distinct distances in order to tackle well-known
anomalies of the multimedia domain. We experimentally show
the originality of our solution compared to existent distances
and show that our proposed approach scales well to real huge
application traces. Distances defined in our approach allow to
identify a specific problem and give a semantic added-value
level to the analysis. Moreover, as all distances, they also
provide insights of how far an abnormal trace is from a correct
one. We also present a use case on how TED performs the
analysis of a trace and conduct some experiments to evaluate
TED scalability and accuracy.
We have two research directions. The first direction is to adapt
our distances to abstract traces (introduced in [5]) so that our
proposal be as generic as possible. The second direction is
to enlarge TED to other types of anomalies for instance when
the image is completely fuzzy, upside down and/or cut in half.
The strength of our contribution is that it is easily extensible to
other types of anomalies: for each new anomaly, we only need
to follow the same methodology as explained in the paper due
to the modularity of TED architecture.

ACKNOWLEDGMENT

This work is supported by French FUI project SoCTrace.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection for
discrete sequences: A survey,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 24, no. 5, pp. 823–839, 2012.

[2] F. Mörchen, “Time series knowledge mining,” 2006.
[3] R. Tavenard, L. Amsaleg, and G. Gravier, “Estimation de similarité entre

séquences de descripteurs à l’aide de machines à vecteurs supports,” in
Proc. Conf. Base de Données Avancées, Marseille, France, 2007.

[4] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest com-
mon subsequence algorithms,” in String Processing and Information
Retrieval, 2000. SPIRE 2000. Proceedings. Seventh International Sym-
posium on. IEEE, 2000, pp. 39–48.

[5] C. K. Kengne, L. C. Fopa, A. Termier, N. Ibrahim, M.-C. Rousset,
T. Washio, and M. Santana, “Efficiently rewriting large multimedia ap-
plication execution traces with few event sequences,” in KDD Industrial
Track (To appear), 2013.

[6] Discussion page: Troubleshooting guide.
[Online]. Available: http://www.cccp-
project.net/wiki/index.php?title=Troubleshooting Guide

[7] Faq: Play an audio or video file. [Online]. Avail-
able: http://windows.microsoft.com/en-us/windows7/play-an-audio-or-
video-file-frequently-asked-questions

[8] T. Pang-Ning, M. Steinbach, and V. Kumar, “Introduction to data
mining,” 2006.

[9] C. Kamdem Kengne, N. Ibrahim, M.-C. Rousset, and M. Tchuent,
“Distance-based Trace Diagnosis for Multimedia Applications: Help me
TED!” Rapport de recherche, 2013.

[10] H. Mannila and P. Ronkainen, “Similarity of event sequences,” in Pro-
ceedings of the 4th International Workshop on Temporal Representation
and Reasoning (TIME ’97), ser. TIME ’97. Washington, DC, USA:
IEEE Computer Society, 1997, pp. 136–.

[11] Gstreamer website. [Online]. Available: http://www.gstreamer.net
[12] B. D. O. Stein, “Pajé trace file format,” 2003.
[13] J. Roberts, “Tracevis: an execution trace visualization tool,” in In Proc.

MoBS 2005. Citeseer, 2005.
[14] M. McGavin, T. Wright, and S. Marshall, “Visualisations of execution

traces (vet): an interactive plugin-based visualisation tool,” in Proceed-
ings of the 7th Australasian User interface conference - Volume 50,
ser. AUIC ’06. Darlinghurst, Australia, Australia: Australian Computer
Society, Inc., 2006, pp. 153–160.

[15] J. Seyster, “Techniques for visualizing software execution,” Citeseer,
Tech. Rep., 2008.

