
ServiceCoroner:
A Stale References Diagnosis Tool
for the OSGi™ Services Platform

Kiev Gama & Didier Donsez

Université Grenoble 1, France
Kiev.Gama@imag.fr

Didier.Donsez@imag.fr

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

2
2

Outline

� What is the OSGi platform ?

� The Stale References Pathology

� Need for Diagnosis

� The ServiceCoroner tool

� Experimentation

� Conclusion

� Perspectives

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

3
3

What is OSGi Alliance ?

� Consortium founded in March 1999

� Objective

� Create open specifications for delivering administrated

Java services through a network

� Define

� A common platform (framework)

� Services deployment

� Services execution and administration

� A set of based services:

� Log Service, Http Service…

� A deployment unit, a bundle
With permission of Peter Kriens

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

4
4

OSGi Main Concepts

� Framework:

� Bundles execution environment

� Felix, Knopperfish, Equinox, SMF, ProSyst, …

� Lifecycle Event notification

� Bundles:

� Services diffusion

and deployment unit

� Services:

� Java Object implementing
a well define contract

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

5
5

OSGi Application Packaging

� Modularize the middleware/application

� Distribute the different middleware services

� Better component visibility

� Need of a deployment container

� Partial update without restart all

� Implementation

� Based on Jarfile and Manifest entries

� Explicit Package dependencies and Versioning (range, …)

� Ready for probably next generation standard

� Overtake JNLP (JSR-56), J2EE EAR, OSGi R3 bundle

� JSR 277 (Java Module System) for Java Platform 7.0

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

6
6

What are Stale References?

“a reference to a Java object that belongs to the

class loader of a bundle that is stopped or is

associated with a service object that is

unregistered”

OSGi R4 Section 5.4

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

7
7

class

Bv1.0

registered

servant

class

loader

Bundle #2 v1.0

ACTIVE

An example of Stale Reference Pathology?
(i) initial

framework

> start 2

Servant ready (v1.0)

> start 2

Servant ready (v1.0)

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

8
8

class

Bv1.0

service

consumerregistered

servant

class

loader

Bundle #2 v1.0

ACTIVE

An example of Stale Reference Pathology?
(i) initial

class

loader

Bundle #3

ACTIVE

framework

> start 2

Servant ready (v1.0)

> start 3

1- Hello World ! (v1.0)

2- Hello World ! (v1.0)

sayHello()

sayHello()

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

9
9

class

Bv1.0

service

consumerunregistered

servant

class

loader

Bundle #2 v1.0

RESOLVED

(ie stopped)

An example of Stale Reference Pathology?
(ii) After stop 2

class

loader

Bundle #3

ACTIVE

framework

stale
references

> start 2

Servant ready (v1.0)

> start 3

1- Hello World ! (v1.0)

2- Hello World ! (v1.0)

> stop 2

Servant bye bye (v1.0)

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

10
10

class

Bv1.0

service

consumerunregistered

servant

class

loader

Bundle #2 v1.0

« Zombie »

An example of Stale Reference Pathology?
(iii) After update 2 & start 2

class

Bv1.1

registered

servant

class

loader

Bundle #2 v1.1

ACTIVE

class

loader

Bundle #3

ACTIVE

framework

> start 2

Servant ready (v1.0)

> start 3

1- Hello World ! (v1.0)

2- Hello World ! (v1.0)

> stop 2

Servant bye bye (v1.0)

3- Hello World ! (v1.0)

4- Hello World ! (v1.0)

> update 2

> start 2

Servant ready (v1.1)

5- Hello World ! (v1.0)

6- Hello World ! (v1.0)

continue to
serve !!! sayHello()

sayHello()

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

11
11

Bad Consequences

� Memory leaks
� Retention of the classloader of a stopped or uninstalled bundle

� Retention of all java.lang.Class loaded by that bundle

� Utilization of invalid services � Inconsistencies!

� Service is unregistered but still used (wrong!)

� Its context is most likely inconsistent

� e.g. closed connections, old date

� Possible exceptions upon service calls

� good because we can see the problem

� Silent propagation of incorrect results (worst case!)

� E.g. Returning old cached-data

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

12
12

Other « stale » pathologies

� “Forwarded references”

� From one bundle to another

� “Stale” threads

� bundle has stopped but created threads has not

� Unregistered MBeans, RemoteObjects, …

� Unreleased resources

� sockets, file descriptors, locks, …

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

13
13

How to ensure
« stale reference free » applications?

� 2 cases of OSGi™ applications
� From-scratch OSGi™ development

� Bundlization of Legacy codes
� Really frequent
� Module with or without Services/Extension Points

� Good OSGi™ programming practices
� Who trusts their developers ?

� Component Models
� Necessary but not enough

� Stale references may be there but we can’t see them…

� � We need Diagnosis
victim bundles x guilty bundles

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

14
14

The ServiceCoroner tool

� A diagnostics tool for detecting

stale references in OSGi™ applications

� “Inspector” of services death

� Runtime diagnosis

� Points out victim bundles/services

and possible suspects

*The coroner is a legal examiner that investigates the causes of unnatural deaths in English speaking countries. Not all coroners have forensic pathology knowledge,

but for illustration purposes we have named our tool as ServiceCoroner.

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

15
15

The ServiceCoroner tool (cont.)

� Diagnosis of service references “pathologies’’

� How to enable OSGi™ to provide that info?

� Use AOP: diagnosis as a separate concern; portability

� Relies on weak references to know if a service has been

GCd

� Small delays (wait for GC) to get actual info

� Listens to service and bundle events and log them

� Minimal performance impacts
� Weaving Service Registration; Class Loader and Thread Creation

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

16
16

W
e
a
v
in

g

p
ro

c
e
s
s

Aspects

OSGi™

framework

Weaved OSGi™

framework

Input Output

ServiceCoroner

The Weaving Process

Tested Frameworks:

- Apache Felix v1.0

- Equinox v3.2.0

- Equinox v3.3.0*

- Knopflerfish v2.0.4

…

Aspects on the OSGi

R4 API

* That version uses signed jars. We manually removed the class hashes information from the original equinox jar manifest in order to bypass checking

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

17
17

The Diagnosis Process

STOPPED# 5

s40UNINSTALLED# 4

ACTIVE# 3

s20, s21ACTIVE# 2

ACTIVE# 1

ACTIVE# 0

StaleRef SvStatusBundle

> stop 2

> refresh 2

> start 2

> update 3

> uninstall 4

> stop 5

…

Weaved OSGi Framework

B
u
n
d
le

 1

B
u
n
d
le

 4

B
u
n
d
le

 5

stop/refresh/start

update uninstall

stop

B
u
n
d
le

 2

B
u
n
d
le

 3

5

4

s20# 3

2

s40, s21# 1

0

GuiltinessBundle

JDK6’

JHat

JDK6’

JHat

Classical JVMClassical JVM

Yet a
manual

process !

HotSpotDiagnosticMXBean.dumpHead()
or jmap command

Sun JVM 6.0Sun JVM 6.0

Realtime report Snapshot report

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

18
18

class

Bv1.0

service

consumerunregistered

servant

class

loader

Bundle #2 v1.0

« Zombie »

Watching services

class

Bv1.1

registered

servant

class

loader

Bundle #2 v1.1

ACTIVE

class

loader

Bundle #3

ACTIVE

framework

ServiceCoroner

WeakRefs to services

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

19
19

The Diagnosis Process (cont.)

� In vitro (active)

� Force life cycle events

� Not ideal for a production environment.

� Reasonable for a testing environment

� Faster results

� "Brute force" may not lead to events
that reflect the application’s architecture

� In vivo (passive)

� Wait for "normal" life cycle events

� resulted from normal administration tasks

� Ideal for production environments

� Results are more precise

� Take longer (maybe days!)

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

20
20

Executing the Active Process

Diagnosis

� Run a script in the
ServiceCoroner scripting
console

� Script performs a call to update
in bundles that have registered
services

� 10 second interval between
each update call

� Core bundles are not updated
(e.g. bundle 0, libraries, …)

� Use an “exclude list”
containing such bundles

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

21
21

Issues
� Fine grained analysis to find out object referrers

� Used jhat and jmap embedded in the application
� Semi-automated process

� Only in Sun JVM

� Limitations: Large memory footprint;
� Weaving at bundle load time

� How to find out the bundle classloader
� During bundle activation is fine, but…

� …what about the extender model case and library
bundles?

� We need an accurate mechanism to infer a bundle’s
classloader

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

22
22

ServiceCoroner Graphical User Tools
(i) Standalone

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

23
23

ServiceCoroner Graphical User Tools
(ii) JConsole/VisualVM Plugin

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

24
24

Experiments with ServiceCoroner
� Motivation

� Validate ServiceCoroner on real-life OSGi-based SW
� Widely used
� OSS and Non-Commercial OSGi apps

to avoid court trials or man hunts ;-(
� More than 100,000 LoC (Not « HelloWorld » Toys)

� Answer to Is the Stale Reference pathology so frequent ?

� Choices : SW using Services
� JOnAS, Sling, SIP Communicator, Newton
� Remark: some use (partially) Component Models
� Remark: Eclipse (Extension Points) & GlassFish (HK2 comp.)

are not pertinent !

� And the results are …

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

25
25

Experiment results

2.8%40.8%63 %8.5 %
Stale Services Ratio

(IX/VII)XI

0042No. of Stale ThreadsX

358197

No. of Stale Services

FoundIX

225174

No. of Bundles w/ Stale

Svcs.VIII

1051423082Initial No. of Service Refs.VII

41905386Total BundlesVI

Over

125 000

Aprox.

85 000

Aprox.

120 000

Over

1 500 000Lines of CodeV

18

Declarative Services

0
6

Service Binder

20

iPOJOBundles using Component

ModelsIV

Felix 1.0Equinox 3.3.0Felix 1.0Felix 1.0OSGi Impl.III

2.0 incubator snapshot1.2.3Alpha 35.0.1VersionII

Sling
(Content Repository)

Newton
(SCA container)

SIP Comm.
(multiprotocol VoIP and

Chat UA)

JOnAS
(JavaEE server)OSGi-based softwareI

[1] Actually the whole Newton implementation is an SCA constructed on top of OSGi, but its bundles did not use an OSGi component model like the other analyzed applications did.

Stale References are not a myth !

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

26
26

Conclusion

� Stale References are not a myth !

� But Component Models are helpful !
� JOnAS bundles that used a component model (iPOJO)

did not present stale references

� Same for Sling

� SIP Communicator errors were mostly due to GUI
objects retaining references, and services kept as class
attributes

� Newton does not used identified OSGi component
model …

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

27
27

Perspectives

� Release ServiceCoroner in an OSGi OSS Community

� Collaborations to improve current OSGi-based SWs

� JOnAS but others are welcome

� Add other pathologies diagnostics to ServiceCoroner

� “Stale” extension points

� Eclipse IDE & RCP’ plugins

� Other “stale pathologies” related to the R4.1’ Extender Model

� HK2, SCA …

(c
)
K
ie
v
 G
a
m
a
 a
n
d
 D
id
ie
r
D
o
n
se
z,
 2
0
0
8
,
S
e
rv
ic
e
C
o
ro
n
e
r

28
28

More about the ServiceCoroner
� Kiev Gama and Didier Donsez. Runtime Diagnosis of Stale References

in the OSGi Services Platform. Technical Presentation at the OSGi
Community Event, Berlin, Germany, June 10-11, 2008.

� Kiev Gama and Didier Donsez. Service Coroner: A Diagnostic Tool for
Locating OSGi Stale References. In: Proceedings of the 34th
EUROMICRO Conference on Software Engineering and Advanced
Applications, Parma, Italy, September 3-5, 2008.

� Demos, documentations and tools available on
� http://www-adele.imag.fr/users/Kiev.Gama/dev/osgi/servicecoroner

Or googlize "ServiceCoroner"

� Extra stuff : JConsole & VisualVM Plugins for OSGi
� Bundle admin, Felix/Equinox/KF remote shells, …
� http://www-adele.imag.fr/users/Didier.Donsez/dev/osgi/jconsole.osgi/

Short demo !

Q & A

