
Middleware Architecture with Patterns and Frameworks

c©2003-2009, Sacha Krakowiak (version of February 27, 2009 - 12:58)

Creative Commons license (http://creativecommons.org/licenses/by-nc-nd/3.0/)

Chapter 2

Middleware Principles and Basic

Patterns

In this chapter, we present the main design principles of middleware systems, together
with a few basic patterns that are recurring in all middleware architectures. A number of
more elaborate patterns are built by extending and combining these basic constructs. The
chapter starts with a presentation of the architectural principles and main building blocks
of middleware systems, including distributed objects and multi-layer organizations. It
goes on with a discussion of the basic patterns related to distributed objects. The chapter
concludes with a presentation of patterns related to separation of concerns, including a
discussion on implementation techniques for reflective middleware.

2.1 Services and Interfaces

A (hardware and/or software) system is organized as a set of parts, or components1. The
system as a whole, and each of its components, fulfills a function that may be described
as the provision of a service. Quoting a definition in [Bieber and Carpenter 2002], “a
service is a contractually defined behavior that can be implemented and provided by any
component for use by any component, based solely on the contract”.

In order to provide its service, a component usually relies on services provided to it
by other components. For uniformity’s sake, the system as a whole may be regarded as a
component, which interacts with an externally defined environment; the service provided
by the system relies on assumptions about the services that the environment provides to
the system2.

Service provision may be considered at different levels of abstraction. A provided
service is usually embodied in a set of interfaces, each of which represents an aspect of
the service. The use of these interfaces relies on elementary interaction patterns between

1In this chapter, we use the word component in a non-technical sense, to mean a unit of system decom-

position. This notion is further elaborated in Chapter 7.
2e.g. a computer delivers a specified service, on the provision of a specified power supply, and within a

specified range of environmental conditions, such as temperature, humidity, etc.



2-2 CHAPTER 2. MIDDLEWARE PRINCIPLES AND BASIC PATTERNS

the components. In 2.1.1, we first briefly review these interaction patterns. Interfaces are
further discussed in 2.1.2, and contracts are the subject of 2.1.3.

2.1.1 Basic Interaction Mechanisms

Components interact through an underlying communication system. Communication is
examined in Chapter 4. Here we give an overview of a few common patterns that occur
in service provision.

The simplest form of communication is an asynchronous transient event (Figure 2.1a).
Component A (more precisely, a thread executing in component A) produces an event (i.e.
sends an elementary message to a specified set of recipients), and continues execution. The
message may just be a signal, or it may carry a value. The “transient” attribute means that
the message is lost if no recipient is waiting for it. Reception of the event by component B
triggers a reaction, i.e. starts the execution of a program (the handler) associated with that
event. This mechanism may be used by A to request a service from B, when no result is
expected; or it may be used by B to observe or monitor the activity of A. Communication
using events is further discussed in Chapter 6.

A B A B

(a) Asynchronous event (c) Synchronous call

event

handler
reply

request 

A B

send  m1

messaging
system

receive

deliver m2

receive

wait wait

send  m2

deliver m1

block

(b) Buffered messages

Figure 2.1. Some basic interaction mechanisms

A more elaborate form of communication is asynchronous persistent message passing
(2.1b). A message is a chunk of information that is transmitted by a sender to a receiver.
The “persistent” attribute means that the communication system provides a buffering
function: if the receiver is waiting for the message, the communication system delivers it;
if not, the message remains available until the receiver attempts to read it. Communication
by messages is further discussed in Chapter 4.

Another usual mechanism is synchronous call (2.1c), in which A (the customer of a
service provided by B) sends a request message to B and waits for a reply. This pattern
is that used in RPC, as seen in 1.3.

Synchronous and asynchronous interactions may be combined, e.g. in various forms of
“asynchronous RPC”. The intent is to allow the service requester to continue execution
after issuing the request. The problem is then for the requester to retrieve the results,
which may be done in several ways. For instance, the provider may inform the requester,
by an asynchronous event, that the results are available; or the requester may call the
provider at a later time to find out about the state of the execution.



2.1. SERVICES AND INTERFACES 2-3

It may happen that the provision of a service by B to A relies on the use by B of
a service provided by A (the contract between service provider and customer implies
commitment by both parties). For instance, in Figure 2.2a, the execution of the call from
A to B relies on a callback from B to a function provided by A. In the example, the callback
is executed by a new thread, while the original thread keeps waiting for the completion of
the initial call.

Exceptions are a mechanism that deals with conditions considered as being outside the
normal execution of a service, such as failures, out of range parameter values, etc. When
such a condition occurs, execution of the service is cleanly terminated (e.g. resources
are released) and control is returned to the caller, with an information on the nature of
the exception. Thus an exception may be considered as a “one-way callback”. It is the
responsibility of the requester of the service to provide a handler for all possible exceptions.

The notion of a callback can be extended one step further. The service provided by
B to A may be requested from an outside source, with A still providing one or several
callbacks to B. This interaction pattern (Figure 2.2b) is called inversion of control, because
the flow of control is from B (the provider) to A (the requester). It typically occurs when B
is “controlling” A, i.e. providing administrative services such as monitoring or persistent
saving; in this situation, the request for service originates from the outside, e.g. is triggered
by an external event such as a timing signal.

A B

(a) Synchronous call with callback

callback

A B

service request
for A

callback 1

callback 2

(b) Inversion of control

Figure 2.2. Inversion of control

This use of callbacks is further discussed in Chapter 7.

The above interactions do not explicitly imply a notion of time other than event order-
ing. Continuous media, such as multimedia data, need a form of real-time synchronization.
Multimedia data are exchanged through data streams, which allow continuous transmis-
sion of a sequence of data subject to timing constraints. This form of communication is
examined in Chapter 12.

2.1.2 Interfaces

An elementary service provided by a software component is defined by an interface, which
is a concrete description of the interaction between the requester and the provider of the
service. A complex service may be defined by several interfaces, each of which represents



2-4 CHAPTER 2. MIDDLEWARE PRINCIPLES AND BASIC PATTERNS

a particular aspect of the service. There are actually two complementary views of an
interface.

• the usage view: an interface defines the operations and data structures to be used
for the provision of a service;

• the contract view: an interface defines a contract between the requester and the
provider of a service.

The actual definition of an interface therefore requires a concrete representation for
both views, e.g. a programming language for the usage view and a specification language
for the contract view.

Recall that both the usage view and the contract view involve two parties3: the re-
quester and the provider. As a consequence, the provision of a service actually involves
two interfaces: the interface provided by the component that delivers a service, and the
interface expected by the customer of the service. The provided (or server) interface should
be “conformant” (i.e. compatible) with the required (or client) interface; we shall come
back to the definition of conformance.

client
interface

server
interface

contract

conformance

service
 requester

service
provider

Figure 2.3. Interfaces

The concrete representation of an interface, be it provided or expected, consists of a set
of operations, which may take a variety of forms, corresponding to the interaction patterns
described in 2.1.1.

• synchronous procedure or method call, with parameters and return value;

• access to an attribute, i.e. a data structure (this can be converted into the pre-
vious form by means of “getter” or “setter” functions on the elements of the data
structure);

• asynchronous procedure call;

3Some forms of service involve more than two parties, e.g. one provider with multiple requesters, etc. It

is always possible to describe such situations by one to one relationships, e.g. by defining virtual interfaces

that multiplex actual interfaces, etc.



2.1. SERVICES AND INTERFACES 2-5

• event source or sink;

• data stream provider (output channel) or receiver (input channel);

The concrete representation of contracts is examined in 2.1.3.
A number of notations, known as Interface Description Languages (IDL), have been

designed to formally describe interfaces. There is currently no single common model of an
IDL, but the syntax of most existing IDLs is inspired by that of a procedural programming
language. Some programming languages (e.g. Java, C#) actually include the notion of
an interface and therefore define their own IDL. A typical interface definition specifies
the signature of each operation, i.e. its name, the type and mode of transmission of
its parameters and return values, and the exceptions it may raise during execution (the
requester is expected to provide handlers for these exceptions).

The representation of an interface, together with the associated contract, completely
defines the interaction between the requester and the provider of the service that the
interface represents. Therefore neither the requester nor the provider should make any
assumption on the other party, beyond the information explicitly specified in the interface.
In other words, anything beyond the client or server interface is seen by the other party
as a “black box”. This rule is known as the encapsulation principle, which is a special
instance of separation of concerns. The encapsulation principle ensures independence
between interface and implementation, and allows a system to be modified by “plug and
play”, replacing a part by a different one provided the interfaces between the replaced part
and the rest of the system remain compatible.

2.1.3 Contracts and Interface Conformance

The contract between the provider and the customer of a service may take a variety of
forms, depending on the specified properties and on the more or less formal expression
of the specification. For instance, the term Service Level Agreement (SLA) is used for a
legal contract between the provider and the customer of a global, high level service (e.g.
between an Internet Service Provider (ISP) and its clients).

From a technical point of view, different kinds of properties can be specified. Following
[Beugnard et al. 1999], we may distinguish four levels of contracts.

• Level 1 applies to the form of the operations, usually by defining types for the
operations and parameters. This part of the contract can be statically verified.

• Level 2 applies to the dynamic behavior of the operations of the interface, by speci-
fying the semantics of each operation.

• Level 3 applies to the dynamic interactions between the operations of an interface, by
specifying synchronization constraints between the execution of these operations. If
the service is composed of several interfaces, there also may exist constraints between
the execution of operations belonging to different interfaces.

• Level 4 applies to the extra-functional properties, i.e. those that do not explicitly
appear in the interfaces. The term “Quality of Service” (QoS) is also used for these
properties, which include performance, security, availability, etc.



2-6 CHAPTER 2. MIDDLEWARE PRINCIPLES AND BASIC PATTERNS

Note again that the contract goes both ways, at all levels, i.e. it constrains the re-
quester as well as the provider. For example, the parameters passed to a function call are
constrained by their type; if the interface involves a callback, the callback procedure must
be provided (this amounts to specifying a procedure-valued parameter).

The essence of an interface’s contract is expressed by the notion of conformance. An
interface I2 is said to conform to an interface I1 if a component that implements all
methods specified in I2 may be used anywhere a component that implements all the
methods specified in I1 may be used. In other words, I2 conforms to I1 if I2 satisfies I1 ’s
contract.

Conformance may be checked at each of the four above-specified levels. We examine
them in turn.

Syntactic Contracts

A syntactic contract is based on the form of the operations. A common way of expressing
such a contract is by using types. A type defines a predicate that applies to objects4 of
that type. The type of an object X is noted T (X ). The notion of conformance is expressed
by subtyping : if T2 is a subtype of T1 (noted T2 ⊑ T1 ), any object of type T2 is also
an object of type T1 (in other words, an object of type T2 may be used anywhere an
object of type T1 is expected). The subtyping relationship thus defined is called true (or
conformant) subtyping.

Let us consider interfaces defined as a set of procedures. For such interfaces, conformant
subtyping is defined as follows: an interface I2 is a subtype of an interface of type I1 (noted
T (I2 ) ⊑ T (I1 )) if I2 has at least the same number of procedures as I1 (it may have more),
and if for each procedure defined in I1 there is a conformant procedure in I2. A procedure
Proc2 is said to be conformant with a procedure Proc1 when the following relationships
hold between the signatures of these procedure.

• Proc1 and Proc2 have the same number of parameters and return values (declared
exceptions are considered as return values).

• For each return value R1 of Proc1, there is a matching return value R2 of Proc2
such that T(R2) ⊑ T(R1) (this is called a covariant relationship).

• For each entry parameter X1 of Proc1, there is a matching entry parameter X2 of
Proc2 such that T(X1) ⊑ T(X2) (this is called a contravariant relationship).

These rules illustrate a general principle of substitutability: an entity E2 may be
substituted for another entity E1 if E2 “provides more and requires less” than E1. Here
“provides” and “requires” must be adapted to each specific situation (e.g. in a procedure
call, the entry parameters are “required” and the result is “provided”). Also “more” and
“less” respectively refer to the notions of subtype and supertype, and include equality.

Note that the subtyping relationship defined in most programming languages usually
fails to satisfy parameter type contravariance and is therefore not a true subtyping re-

4Here the term object designates any entity of interest in the present context, e.g. a variable, a procedure,

an interface, a component.



2.1. SERVICES AND INTERFACES 2-7

lationship. In such case (e.g. in Java), some conformance errors may not be statically
detected, and must be caught by a run time check.

The notion of conformance may be extended to other forms of interface definitions, e.g.
those containing event sources or sinks, or data streams. Examples are found in Chapters
6, 7, and 12.

Recall that the relationship between types is purely syntactic and does not catch the
semantics of conformance. Verifying semantics is the goal of behavioral contracts.

Behavioral Contracts

Behavioral contracts are based on a method proposed in [Hoare 1969] to prove properties
of programs, using pre- and post-conditions together with proof rules based on first-order
logic. Let A be a sequential action. Then the notation

{P} A {Q},

in which P and Q are assertions (predicates on the state of the program’s universe),
says the following: if the execution of A is started in a state in which P holds, and if A
terminates, then Q holds at the end of A. An additional condition may be specified in the
form of an invariant predicate I that should be preserved by the execution of A. Thus if
P and I hold initially, Q and I hold at the end of A, if A terminates. The invariant may
be used to specify a consistency constraint.

This may be transposed as follows in terms of services and contracts. Before the
execution of a service, it is the responsibility of the requester to ensure that the pre-
condition P and the invariant I actually hold. It is the responsibility of the provider of
the service to ensure that the service is actually delivered in finite time, and that the post-
condition Q and the invariant I hold at the end. Possible cases of abnormal termination
must be specified in the contract and handled by retrying or by exception raising. This
method has been developed under the name of “design by contract” [Meyer 1992] through
extensions to the Eiffel language allowing the expression of pre- and post-conditions and
invariant predicates. These conditions are checked at run time. Similar tools have been
developed for Java [Kramer 1998].

The notion of subtyping may be extended to behavioral contracts, by specifying the
conformance constraints for assertions. Consider a procedure Proc1 defined in interface
I1, and the corresponding (conformant) procedure Proc2 defined in interface I2, such that
T (I2 ) ⊑ T (I1 ). Let P1 and Q1 (resp. P2 and Q2 ) be the pre- and post-condition defined
for Proc1 (resp. Proc2 ). The following conditions must hold:

P1 ⇒ P2 and Q2 ⇒ Q1

In other words, a subtype has weaker pre-conditions and stronger post-conditions than
its supertype, which again illustrates the substitutability principle.

Synchronization Contracts

The expression of program correctness by means of assertions may be extended to con-
current programs. The goal here is to separate, as much as possible, the description of
synchronization constraints from the code of the procedures. An early proposal is path



2-8 CHAPTER 2. MIDDLEWARE PRINCIPLES AND BASIC PATTERNS

expressions [Campbell and Habermann 1974], which specify constraints on the ordering
and on the concurrency of procedure executions. Further developments (synchronization
counters, synchronization policies) were essentially extensions and improvements of this
construct, whose implementation relies on run time mechanisms generated from the static
constraint description. Several articles describing proposals in this area may be found in
[CACM 1993], but these techniques have not found a wide application.

A very simple form of synchronization contract is the synchronized clause of Java,
which specifies execution in mutual exclusion. Another example includes the selection of
a queue management policy (e.g. FIFO, priority, etc.) for a shared resource, among a
predefined set.

Current efforts aim at allowing compile-time checking of the synchronization con-
straints, in order to detect incompatibilities at an early stage. An example of recent
work in this area is [Chakrabarti et al. 2002].

Quality of Service Contracts

The specifications associated with the interface of a system or part of a system, be they
or not expressed in a formal way, are called functional. A system may be subject to
additional specifications, which apply to some of its aspects that do not explicitly appear in
the interface. Such specifications are called extra-functional5. Quality of Service (another
name for these properties) includes the following aspects.

• Availability. The availability of a service is a statistical measure of the fraction of
the time during which the service is ready for use. This depends both on the failure
rate of (parts of) the system that delivers the service and on the time it takes to
restore service after a failure.

• Performance. This quality covers several aspects, which are essential for real-time
applications (applications whose correctness or usability relies on timing constraints).
Some of these aspects are related to communication (bounds on latency, jitter, band-
width); others apply to processing speed or data access latency.

• Security. Security covers properties related to the correct use of a service by its
users, according to specified rules of usage. It includes confidentiality, integrity,
authentification, and access rights control.

Other extra-functional aspects that are difficult to quantify include maintainability
and ease of evolution.

Since most aspects of quality of service depend on a changing environment, it is impor-
tant that the policies of QoS management should be adjustable. Therefore QoS contracts
usually include the possibility of negotiation, i.e. redefining the terms of the contract
through run-time exchanges between the requester and the provider of the service.

5Note that the definition of a specification as “functional” or “extra-functional” is not absolute, but

depends on the current state of the art: an aspect that is extra-functional today may become functional

when technical advances allow its expression to be integrated into an interface.



2.2. ARCHITECTURAL PATTERNS 2-9

2.2 Architectural Patterns

In this section, we review a few basic principles for structuring middleware systems. Most
of the systems examined in this book are organized around these principles, which essen-
tially provide guidelines for decomposing a complex system into parts.

2.2.1 Multilevel Architectures

Layered Architectures

Decomposing a complex system into layers of abstraction is an old and powerful organi-
zational principle. It pervades many areas of system design, through such widely used
notions as virtual machines and protocol stacks.

Abstraction is a conceptual process by which a designer builds a simplified view of a
system as a set of interfaces. The implementation of these interfaces in terms of more
detailed entities is left to a further refinement step. A complex system may thus be
described at different levels of abstraction. In the simplest organization (Figure 2.4a), each
level i defines its own entities, which provide an interface to the upper level (i+1). These
entities are implemented using the interface provided by the lower level (i -1), down to a
predefined base level (usually implemented in hardware). This architecture is described in
[Buschmann et al. 1995] as the Layers pattern.

…

base level

interface i

interface i-1

level i

level i-1

level i+1

…

upcall
interface i

downcall
Interface i-1

upcall

(a) (b) (c)

Figure 2.4. Layered system organizations

The interface provided by each level may be viewed as set of functions defining a
library, in which case it is often called an Application Programming Interface6 (API).
An alternative view is to consider each level as a virtual machine, whose “language” (i.e.
instruction set) is defined by its interface. By virtue of the encapsulation principle, a
virtual machine hides the implementation details of all the lower levels. Virtual machines
[Smith and Nair 2005] have been used to emulate a computer, an operating system, or a
network on top of a different one, to emulate a number of computers in order to multiplex
physical resources, or to implement the run time environment of a programming language
(e.g. the Java Virtual Machine [Lindholm and Yellin 1996]).

This basic scheme may be extended in several ways. In the first extension (Figure
2.4b), a layer at level i may use (part of) the interfaces provided by the machines at the

6a complex interface may also be partitioned into several APIs, each one related to a specific function.



2-10 CHAPTER 2. MIDDLEWARE PRINCIPLES AND BASIC PATTERNS

lower layers. In the second extension, a layer at level i may callback the layer at level i+1,
using a callback interface provided by that layer. In this context, callbacks are known as
upcalls (referring to the “vertical” layer hierarchy).

Although upcalls may be synchronous, their most frequent use is to propagate asyn-
chronous events up the layer hierarchy. Consider the structure of an operating system
kernel. The upper (application) layer activates the kernel through synchronous downcalls,
using the system call API. The kernel also activates hardware-provided functions (e.g.
updating a MMU, sending a command to a disk drive) through the equivalent of syn-
chronous calls. On the other hand, the hardware typically activates the kernel through
asynchronous interrupts (upcalls), which trigger the execution of handlers. This calling
structure is often repeated in the upper layers, i.e. each layer receives synchronous calls
from the upper layer, and asynchronous calls from the lower layer. This organization is
described in [Schmidt et al. 2000] as the Half Sync, Half Async pattern. It is widely
used in communication protocols, as described in Chapter 4.

Multitier Architectures

The advent of distributed systems has promoted a different form of multilevel architecture.
Consider the historical evolution of a common form of client-server applications, in which
a client’s requests are processed using information stored in a database.

In the 1970s (Figure 2.5a), both the data management functions and the application
itself are executed on a mainframe. The client’s terminal is a simple display, which imple-
ments a primitive form of user interface.

In the 1980s (Figure 2.5b), workstations are available as client machines, and allow
elaborate graphical user interface (GUI) facilities to be implemented. The processing
capabilities of the workstation allow it to take up a part of the application processing,
thus reducing the load of the server and improving scalability (since the addition of a new
client station contributes processing power to the application).

The drawback of this architecture is that the application is now split between the client
and the server machines; the communication interface is now internal to the application.
Modifying the application may now involve changes both on the client and the server
machines, and possibly a change in the communication interface.

These drawbacks are corrected by the architecture shown on Figure 2.5c, introduced
in the late 1990s. The functions of the application are split between three machines: the
client station only supports the functions of the GUI, the application proper resides on
a dedicated server, and the management of the database is devoted to another machine.
Each of these “horizontal” divisions is called a tier. Further specialization of the functions
leads to other multitier architectures. Note that each tier may itself be subject to a
“vertical” layered decomposition into abstraction levels.

The multitier architecture still has the benefits of scalability, as the application machine
may be incrementally upgraded (e.g. by adding a machine to a cluster). In addition, the
interfaces between the tiers may be designed to favor separation of concerns, since logical
interfaces now coincide with communication interfaces. For example, the interface between
the application tier and the data management tier can be made generic, in order to easily
accommodate a new type of database, or to connect to a legacy application, using an
adapter (2.3.3) for interface conversion.



2.2. ARCHITECTURAL PATTERNS 2-11

application
data

management

application
data

management
user

interface

(a)

(b)

application
data

management
user

interface

(c)

Figure 2.5. Multitier architectures

Examples of multitier architectures are presented in Chapter 7.

Frameworks

A software framework is a program skeleton that may be directly reused, or adapted
according to well-defined rules, to solve a family of related problems. This definition
covers many cases; here we are interested in a particular form of frameworks that consists
of an infrastructure in which software components may be inserted in order to provide
specific services. Such frameworks illustrate some notions related to interfaces, callbacks,
and inversion of control.

The first example (Figure 2.6a) is the microkernel, an architecture introduced in the
1980s in an attempt to develop flexible operating systems. A microkernel-based operating
system consists of two layers.

• The microkernel proper, which manages the hardware resources (processor, memory,
I/O, network communication), and provides an abstract resource management API
to the upper level.

• The kernel, which implements a specific operating system (a “personality”) using
the API of the microkernel.

In most microkernel-based organizations, an operating system kernel is structured as a
set of servers, each of which is in charge of a specific function (e.g. process management,
file system, etc.). A typical system call issued by an application is processed as follows.

• The kernel analyzes the call and downcalls the microkernel using the appropriate
function of its API.

• The microkernel upcalls a server in the kernel. Upon return, the microkernel may
interact with the hardware; this sequence may be iterated, e.g. if more than one
server is involved.



2-12 CHAPTER 2. MIDDLEWARE PRINCIPLES AND BASIC PATTERNS

• The microkernel returns to the kernel, which completes the work and returns to the
application.

Adding a new function to a kernel is done by developing and integrating a new server.

microkernel

client
application

data
management

callback
 interface

callback interface callback interface
server

(a) microkernel (b) middle tier framework

kernel

hardware

application components
application

framework API

microkernel
 API

Figure 2.6. Framework architectures

The second example (Figure 2.6b) illustrates a typical organization of the middle tier of
a 3-tier client-server architecture. The middle tier framework interacts with both the client
and the data management tiers, and mediates the interaction between these tiers and the
server application program. This program is made up of application components, which
use the API provided by the framework and must supply a set of callback interfaces. Thus
a client request is handled by the framework, which activates an appropriate application
component, interacts with it using its own API and the component’s callback interface,
and finally returns to the client.

Detailed examples of this organization are presented in Chapter 7.

Both above examples illustrate inversion of control. To provide its services, the frame-
work uses callbacks to externally supplied software modules (servers in the microkernel
example, or application components in the middle tier example). These modules must
respect the framework contract, by providing a specified callback interface, and by using
the framework API.

The layered and multitier organizations define a large grain structure for a complex
system. Each layer or tier (or layer in a tier) is itself organized using finer grain entities.
Objects, a common way of defining this fine grain structure, are presented in the next
section.

2.2.2 Distributed Objects

Objects in Programming

Objects have been introduced in the 1960s as a means of structuring computing systems.
While there are many definitions for objects, the following properties capture the most
common object-related concepts, especially in the context of distributed computing.

An object, in a programming model, is a software representation of a real-world entity
(such as a person, a bank account, a document, a car, etc.). An object is the association



2.2. ARCHITECTURAL PATTERNS 2-13

of a state and of a set of procedures (or methods) that operate on that state. The object
model that we consider has the following properties.

• Encapsulation. An object has an interface, which comprises a set of methods (pro-
cedures) and attributes (values that may be read and written). The only way of
accessing an object (consulting or changing its state) is through its interface. No
part of the state is visible from outside the object, other than those explicitly present
in the interface, and the user of an object should not rely on any assumption about
its implementation. The type of an object is defined by its interface.

As explained in 2.1.2, encapsulation achieves independence between interface and
implementation. The interface acts as a contract between the user and the imple-
menter of an object. Changing the implementation of an object is invisible to its
users, as long as the interface is preserved.

• Classes and instances. A class is a generic description that is common to a set of
objects (the instances of the class). The instances of a class have the same interface
(hence the same type), and their state has the same structure; they differ by the
value of that state. Each instance is identified as a distinct entity. Instances of a
class are dynamically created, through an operation called instantiation; they may
also be dynamically deleted, either explicitly or automatically (by garbage collection)
depending on the specific implementation of the object model.

• Inheritance. A class may be derived from another class by specialization, i.e. by
defining additional methods and/or additional attributes, or by redefining (over-
loading) existing methods. The derived class is said to extend the initial class (or
base class) or to inherit from it. Some models also allow a class to inherit from more
than one class (multiple inheritance).

• Polymorphism. Polymorphism is the ability, for a method, to accept parameters of
different types and to have a different behavior for each of these types. Thus an
object may be replaced, as a parameter of a method, by a “compatible” object. The
notion of compatibility, or conformance (2.1.3) is expressed by a relationship between
types, which depends on the specific programming model or language being used.

Recall that these definitions are not universal, and are not applicable to all object
models (e.g. there are other mechanisms than classes to create instances, objects may be
active, etc.), but they are representative of a vast set of models used in current practice,
and are embodied in such languages as Smalltalk, C++, Eiffel, Java, or C#.

Remote Objects

The above properties make objects specially well suited as a structuring mechanism for
distributed systems.

• Heterogeneity is a dominant feature of these systems. Encapsulation is a powerful
tool in a heterogeneous environment: the user of an object only needs to know
an interface for that object, which may have different implementations on different
locations.



2-14 CHAPTER 2. MIDDLEWARE PRINCIPLES AND BASIC PATTERNS

• Dynamic creation of object instances allows different objects to be created with
the same interface, possibly at different remote locations; of course middleware must
again provide a mechanism for remote object creation, in the form of factories (2.3.2).

• Inheritance is a mechanism for reuse, as it allows a new interface to be defined in
terms of an existing one. As such, it is useful for distributed applications developers,
who are confronted with a changing environment and have to define new classes to
deal with new situations. In order to use inheritance, a generic (base) class is first
designed to capture a set of object features that are common to a wide range of
expected situations. Specific, more specialized, classes are then defined by extending
the base class. For example, an interface for a color video stream may be defined
as an extension of that of a (generic) video stream. An application that uses video
stream objects also accepts color video streams, since these objects implement the
video stream interface (this is an instance of polymorphism).

The simplest and most common way of distributing objects is to allow the objects that
make up an application to to be located on distributed sites (other ways of distributing
objects are described in Chapter 5). A client application may use an object located on
a remote site by calling a method of the object’s interface, as if the object were local.
Objects used in this way are called remote objects, and a method call on a remote object
is called Remote Method Invocation; it is a transposition of RPC to the world of objects.

Remote objects are an example of a client-server system. Since a client may use
several different objects located on a remote site, different words are used to designate
the remote site (the server site) and an individual object that provides a specific service
(a servant object). To make the system work, an appropriate middleware must locate an
implementation of the servant object on a possibly remote site, send the parameters to
the object’s location, actually perform the call, and return the results to the caller. A
middleware that performs these tasks is an Object Request Broker, or ORB.

ORBClient Servant
Name
server

register

lookup

return ref to servant

invoke

return

Figure 2.7. Remote Method Invocation

The overall structure of a call to a remote object (Figure 2.7) is similar to that of
an RPC: the remote object must first be located, which is usually done by means of a



2.3. PATTERNS FOR DISTRIBUTED OBJECT MIDDLEWARE 2-15

name server or trader (Chapter 3); then the call itself is performed. Both the lookup and
the invocation are mediated through the ORB. The internal organization of an ORB is
examined in detail in Chapter 5.

2.3 Patterns for Distributed Object Middleware

Remote execution mechanisms rely on a few design patterns, which have been widely de-
scribed in the literature, specially in [Gamma et al. 1994], [Buschmann et al. 1995], and
[Schmidt et al. 2000]. In this presentation, we concentrate on the specific use of these
patterns for distributed object middleware, and we discuss their similarities and differ-
ences. For an in-depth discussion of these patterns, the reader is directed to the specified
references.

2.3.1 Proxy

The Proxy pattern is one of the first design patterns identified in distributed programming
[Shapiro 1986]. While its application domain has been extended to many other aspects
[Buschmann et al. 1995], we only discuss here the use of Proxy for distributed objects.

1. Context. This pattern is used for applications organized as a set of objects in
a distributed environment, communicating through remote method invocation: a
client requests a service provided by some possibly remote object (the servant).

2. Problem. Define an access mechanism that does not involve hard-coding the loca-
tion of the servant into the client code, and does not necessitate deep knowledge of
the communication protocols by the client

3. Desirable Properties. Access should be efficient at run time. Programming should
be simple for the client; ideally there should be no difference between local and remote
access (this property is known as access transparency).

4. Constraints. The main constraint results from the distributed environment: the
client and the server are in different address spaces.

5. Solution. Use a local representative of the server on the client site. This represen-
tative has exactly the same interface as the servant. All information related to the
communication system and to the location of the servant is hidden in the proxy, and
thus invisible to the client.

The organization of the proxy is shown on Figure 2.8.

The internal structure of the proxy follows a well-defined pattern, which facilitates
its automatic generation.

• a pre-processing phase, which essentially consists of marshalling the parameters
and preparing the request message.

• the actual invocation of the servant, using the underlying communication pro-
tocol to send the request and to receive the reply.



2-16 CHAPTER 2. MIDDLEWARE PRINCIPLES AND BASIC PATTERNS

Client Proxy

result

Interface I

service request

Servant

service request

result

Interface I

pre-processing

post-processing

(usually: remote call)

Figure 2.8. Proxy

• a post-processing phase, which essentially consists of unmarshalling the return
values.

6. Known Uses.

In middleware construction, proxies are used as local representatives for remote
objects. They do not add any functionality. Examples may be found in Chapter 5.

Some variants of proxies contain additional functions. Examples are client-side
caching and client-side adaptation. In this latter case, the proxy may filter server
output to adapt it to specific client display capabilities, such as low resolution. Such
“smart” proxies actually combine the standard functions of a proxy with those of an
interceptor (2.3.4).

7. References.

Discussions of the proxy pattern may be found in [Gamma et al. 1994],
[Buschmann et al. 1995].

2.3.2 Factory

1. Context. Applications organized as a set of objects in a distributed environment
(the notion of “object” in this context may be quite general, and is not limited to
objects as defined in object-oriented languages).

2. Problem. Dynamically create families of related objects (e.g. instances of a class),
while allowing some decisions to be deferred to run time (e.g. choosing a concrete
class to implement a given interface).

3. Desirable Properties. The implementation details of the created objects should
be abstracted away. The creation process should allow parameters. Evolution of the
mechanism should be easy (no hard-coded decisions).



2.3. PATTERNS FOR DISTRIBUTED OBJECT MIDDLEWARE 2-17

4. Constraints. The main constraint results from the distributed environment: the
client (requesting object creation) and the server (actually performing creation) are
in different address spaces.

5. Solution. Use two related patterns: an Abstract Factory defines a generic inter-
face and organization for creating objects; the actual creation is deferred to concrete
factories. Abstract Factory may be implemented using Factory Methods (a
creation method that is redefined in a subclass).

Another way of achieving flexibility is to use a Factory Factory, as shown on Figure
2.9 (the creation mechanism itself is parameterized).

A Factory may also be used as a manager of the objects that it has created, and may
thus implement a method to look up an object (returning a reference for it), and to
remove an object upon request.

Client Factory

Object

FactoryFactory

create

with
parameters

create

optional

possible delegation from
abstract to concrete factory

optional

request for removal

return
object reference

request for creation

Figure 2.9. Factory

6. Known Uses.

Factory is one of the most widely used patterns in middleware. It is both used in
applications (to create remote instances of application objects) and within middle-
ware itself (one example is binding factories, described in Chapter 3). Factories are
also used in relation to components (Chapter 7).

7. References.

The two patterns Abstract Factory and Factory Method are described in
[Gamma et al. 1994].



2-18 CHAPTER 2. MIDDLEWARE PRINCIPLES AND BASIC PATTERNS

2.3.3 Adapter

1. Context. Service provision, in a distributed environment: a service is defined by
an interface; clients request services; servants, located on remote servers, provide
services.

2. Problem. Reuse an existing servant by providing a different interface for its func-
tions in order to comply to the interface expected by a client (or class of clients).

3. Desirable Properties. The interface conversion mechanism should be run-time
efficient. It should also be easily adaptable, in order to respond to unanticipated
changes in the requirements (e.g. the need to reuse a new class of applications). It
should be reusable (i.e. generic).

4. Constraints. No specific constraints.

5. Solution. Provide a component (the adapter, or wrapper) that screens the servant
by intercepting method calls to its interface. Each call is prefixed by a prologue and
followed by an epilogue in the adapter (Figure 2.10). The parameters and results
may need to be converted.

Client Adapter

result

Interface I1

service request

Servant

service request

result

Interface I2

pre-processing

post-processing

Figure 2.10. Adapter

In some simple cases, an adapter can be automatically generated from the description
of the provided and required interfaces.

6. Known Uses.

Adapters are widely used in middleware to encapsulate server-side functions. Exam-
ples include the Portable Object Adapter (POA) of CORBA (Chapter 5), and the
various adapters for reusing legacy systems, such as the Java Connector Architecture
(JCA).



2.3. PATTERNS FOR DISTRIBUTED OBJECT MIDDLEWARE 2-19

7. References.

Adapter (also known as Wrapper) is described in [Gamma et al. 1994]. A related
pattern is Wrapper Façade ([Schmidt et al. 2000]), which provides a high-level
(e.g. object-oriented) interface to low level functions.

2.3.4 Interceptor

1. Context. Service provision, in a distributed environment: a service is defined by
an interface; clients request services; servants, located on remote servers, provide
services. There is no restriction on the form of communication (e.g. uni- or bi-
directional, synchronous or asynchronous).

2. Problem. One wants to enhance an existing service with new capabilities, or to
provide it by different means.

3. Desirable Properties. The mechanism should be generic (applicable to a wide
variety of situations). It should allow static (compile time) or dynamic (run time)
service enhancement.

4. Constraints. Services may be added or removed dynamically.

5. Solution. Create interposition objects (statically or dynamically). These objects
intercept calls (and/or returns) and insert specific processing, that may be based on
contents analysis. An interceptor may also redirect a call to a different target.

Client

Interface  I

Servant

Client Interceptor Servant

Client Interceptor Servant

Servant

Servant(a)

(b)

(c)

I I

II

I

I

Figure 2.11. Simple forms of Interceptor

This mechanism may be implemented in a variety of forms. In the simplest form, an
interceptor is a module that is inserted at a specified point in the call path between
the requester and the provider of a service (Figure 2.11a and 2.11b). It may also
be used as a switch between several servants that may provide the same service
with different enhancements (Figure 2.11c), e.g. provision for fault tolerance, load
balancing or caching.

In a more general form (Figure 2.12, interceptors and service providers (servants) are
managed by a common infrastructure and created upon request. The interceptor uses
the servant interface and may also rely on services provided by the infrastructure.
The servant may provide callback functions to be used by the interceptor.



2-20 CHAPTER 2. MIDDLEWARE PRINCIPLES AND BASIC PATTERNS

6. Known Uses.

Interceptors are used in a variety of situations in middleware systems.

• to enhance existing applications or systems with new capabilities. An early
example is the subcontract mechanism [Hamilton et al. 1993]. The CORBA
Portable Interceptors (further described in Chapter 5) provide a systematic
way to extend the functionality of the Object Request Broker by inserting
interception modules at predefined points in the call path. Other uses include
the support of fault tolerance mechanisms (e.g. providing support for object
groups), as described in Chapter 11.

• to select a specific implementation of a servant at run time.

• to implement frameworks for component-based applications (see Chapter 7).

• to implement reflective middleware (see 2.4.1 and 2.4.3).

Client

Interceptor

result

Interface Iservice request

Supporting
infrastructure

Interface I

Servant

use service

create

create

callback

Figure 2.12. General Interceptor

7. References.

The Interceptor pattern is described in [Schmidt et al. 2000].

2.3.5 Comparing and Combining Patterns

Three of the patterns described in the previous section (Proxy, Adapter, and Inter-

ceptor) have close relationships to each other. They all involve a software module being
inserted between the requester and the provider of a service. We briefly discuss their
similarities and differences.

• Adapter vs Proxy. Adapter and Proxy have a similar structure. Proxy

preserves the interface, while Adapter transforms the interface. In addition, Proxy

often (not always) involves remote access, while Adapter is usually on-site.



2.4. ACHIEVING ADAPTABILITY AND SEPARATION OF CONCERNS 2-21

• Adapter vs Interceptor. Adapter and Interceptor have a similar function:
both modify an existing service. The main difference is that Adapter transforms the
interface, while Interceptor transforms the functionality (actually Interceptor

may completely screen the initial target, replacing it by a different servant).

• Proxy vs Interceptor. A Proxy may be seen as a special form of an Inter-

ceptor, whose function is restricted to forwarding a request to a remote servant,
performing the data transformations needed for transmission, and abstracting away
the communication protocol. Actually, as mentioned in 2.3.1, a proxy may be com-
bined with an interceptor, making it “smart” (i.e. providing new functionalities in
addition to request forwarding, but leaving the interface unchanged).

Using the above patterns, we may draw a first approximate and incomplete picture of
the overall organization of an ORB (Figure 2.13).

Client Servant

Proxy

Factory

Adapter

Client-side
Interceptor

Server-side
Interceptor

Communication system

Figure 2.13. Using patterns in an ORB

The main missing aspects are those related to binding and communication, which are
described in Chapters 3 and 4, respectively.

2.4 Achieving Adaptability and Separation of Concerns

Three main approaches are being used to achieve adaptability and separation of concerns in
middleware systems: meta-object protocols, aspect-oriented programming, and pragmatic
approaches. They are summarized in the following subsections.

2.4.1 Meta-Object Protocols

Reflection has been introduced in 1.4.2. Recall that a reflective system is one that is able
to answer questions about itself and to modify its own behavior, by providing a causally
connected representation of itself.

Reflection is a desirable property for middleware, because a middleware system oper-
ates in a changing environment and needs to adapt its behavior to changing requirements.



2-22 CHAPTER 2. MIDDLEWARE PRINCIPLES AND BASIC PATTERNS

Reflective capabilities are present in most existing middleware systems, but they are usu-
ally introduced locally, for isolated features. Middleware platforms that integrate reflection
in their basic architecture are being developed as research prototypes [RM 2000].

A general approach to designing a reflective system is to organize it into two levels.

• The base level, which provides the functionalities defined by the system’s specifica-
tions.

• The meta-level, which uses a representation of the entities of the base level in order
to observe or modify the behavior of the base level.

This decomposition may be iterated, by considering the meta-level as a base level for a
meta-meta-level, and so on, thus defining a so-called “reflective tower”. In most practical
cases, the height of the tower is limited to two or three levels.

Defining a representation of the base level, to be used by the meta-level, is a process
called reification. It results in the definition of meta-objects, each of which is a represen-
tation, at the meta-level, of a data structure or operation defined at the base level. The
operation of the meta-objects, and their relationship to the base level entities, are specified
by a meta-object protocol (MOP) [Kiczales et al. 1991].

A simple example of a MOP (borrowed from [Bruneton 2001]) is the reification of
a method call in a reflective object-oriented system. At the meta-level, a meta-object
Meta Obj is associated with each object Obj. A method call Obj.meth(params) is executed
in the following steps (Figure 2.14).

1. The method call is reified into an object m, which contains a representation
of meth and params. The precise form of this representation is defined by
the MOP. This object m is transmitted to the meta-object, which executes
Meta Obj.meta MethodCall(m).

object Obj

meta-object
Meta_Obj

base level

meta level

Obj.meth(params)

reification

reflection

client

client object Obj meta-object 
Meta_Obj

Obj.meth(params)

Meta_Obj.metaMethodCall(m)

reflection

reification

Obj.meth(params)

baseMethodCall(m)m=reify(meth, params)

Figure 2.14. Performing a method call in a reflective system

2. The method meta MethodCall(m) then executes any processing specified by the
MOP. To take simple examples, it may print the name of the method (by calling
a method such as m.methName.printName()) before actually executing it (for trac-
ing) or it may save the state of the object prior to the method call (to allow undo
operations), or it may check the value of the parameters, etc.



2.4. ACHIEVING ADAPTABILITY AND SEPARATION OF CONCERNS 2-23

3. The meta-object may now actually execute the initial call7, by invoking a method
baseMethodCall(m) which essentially performs Obj.meth(params)8. This step (the
inverse of reification) is called reflection.

4. The meta-object then executes any post-processing defined by the MOP, and returns
to the initial caller.

Likewise, the operation of object creation may be reified by calling a meta-object
factory (at the meta-level). This factory creates a base-level object, using the base-level
factory; the new object then upcalls the meta-object factory, which creates the associated
meta-object, and executes any additional operations specified by the MOP (Figure 2.15).

meta-object
Factory

base level

meta level

X=newObject(…)

reification

client

meta-object
Meta_Obj

X

X

client Object Factory
meta-object 

Factory

Meta_Obj.metaNewObj(…)

reflection

reification

baseNewObj(…)

X=newObject(…)

Object
factory

object Obj

Object

Meta-Object
create

create
return object ref

return object ref

create

create

referencereflection
callback

callback

Figure 2.15. Object creation in a reflective system

Examples of using meta-object protocols in middleware may be found in Chapters
5 and 11.

2.4.2 Aspect-Oriented Programming

Aspect-oriented programming (AOP) [Kiczales 1996] is motivated by the following re-
marks.

• Many different concerns (or “aspects”) are usually present within an application
(common examples include security, persistence, fault-tolerance, and other extra-
functional properties).

• The code related to these concerns is usually tightly intermixed with the “functional”
application code, which makes changes and additions difficult and error prone.

The goal of AOP is to define methods and tools to better identify and isolate the code
related to the various aspects present in an application. More precisely, an application
developed using AOP is built in two phases.

7it does not have to execute the initial call; for example, if the MOP is used for protection, it may well

decide that the call should not be executed, and return to the caller with a protection violation message.
8note that it is not possible to directly invoke Obj.meth(params) because only the reified form of the

method call is available to the meta-object and also because a post-processing step may be needed.



2-24 CHAPTER 2. MIDDLEWARE PRINCIPLES AND BASIC PATTERNS

• The main part of the application (the base program), and the parts that deal with
different additional aspects are written independently, possibly using specialized lan-
guages for the aspect code.

• All these pieces are integrated to form the global application, using a composition
tool (aspect weaver).

A join point is a place, in the source code of the base program, where aspect-related
code can be inserted. Aspect weaving relies on two main notions: point cut, i.e. the
specification of a set of join points according to a given criterion, and advice, i.e. the
definition of the interaction of the inserted code with the base code. For example, if AOP
is added to an object-oriented language, a particular point cut may be defined as the set
of invocation points of a family of methods (specified by a regular expression), or the set
of invocations of a specified constructor, etc. An advice specifies whether the inserted
code should be executed before, after, or in replacement for the operations located at the
point cuts (in the latter case, these operations may still be called from within the inserted
code). Composition may be done statically (at compile time), dynamically (at run time),
or using a combination of static and dynamic techniques.

One important problem with AOP is the composition of aspects. For instance, if
different pieces of aspect-related code are inserted at the same join point, the order of
insertion may be relevant if the corresponding aspects are not independent. Such issues
cannot usually be settled by the weaver and call for additional specification.

Two examples of tools that implement AOP are AspectJ [Kiczales et al. 2001] and
JAC [Pawlak et al. 2001]. Both apply to base programs written in Java.

AspectJ

AspectJ allows aspects to be defined by specifying pointcuts and advices, in a Java-like
notation. A weaver integrates the aspects and the base program into Java source code,
which may then be compiled.

A simple example gives an idea of the capabilities of AspectJ. The following code
describes an aspect, in the form of pointcut definition and advice.

public aspect MethodWrapping{

/* point cut definition */

pointcut Wrappable(): call(public * MyClass.*(..));

/* advice definition */

around(): Wrappable() {

/* prelude: a sequence of code to be inserted before the call */

proceed (); /* performs the call to the original method */

/* postlude: a sequence of code to be inserted after the call */

}

}

The first part of the description defines a point cut as the set of invocations of any
public method of class MyClass. The advice part says that a call to such a method should



2.4. ACHIEVING ADAPTABILITY AND SEPARATION OF CONCERNS 2-25

be replaced by a specified prelude, followed by a call to the original method, followed by a
specified postlude. In effect, this amounts to placing a simple wrapper (without interface
modification) around each method call specified in the pointcut definition. This may be
used to add logging facilities to an existing application, or to insert testing code to evaluate
pre- and post-conditions for implementing design by contract (2.1.3).

Another capability of AspectJ is introduction, which allows additional declarations and
methods to be inserted at specified places in an existing class or interface. This facility
should be used with care, since it may break the encapsulation principle.

JAC

JAC (Java Aspect Components) has similar goals to AspectJ. It allows additional capabil-
ities (method wrapping, introduction) to be added to an existing application. JAC differs
from AspectJ on the following points.

• JAC is not a language extension, but a framework that may be used at run time.
Thus aspects may be dynamically added to a running application. JAC uses bytecode
modification, and the code of the application classes are modified at class loading
time.

• The point cuts and the advices are defined separately. The binding between point
cuts and advices is delayed till the weaving phase; it relies on information provided
in a separate configuration file. Aspect composition is defined by a meta-object
protocol.

Thus JAC provides added flexibility, but at the expense of a higher runtime overhead
due to the dynamic weaving of the aspects into the bytecode.

2.4.3 Pragmatic Approaches

Pragmatic approaches to reflection in middleware borrow features from the above system-
atic approaches, but tend to apply them in an ad hoc fashion, essentially for efficiency
reasons. These approaches are essentially based on interception.

Many middleware systems involve an invocation path from a client to a remote server,
traversing several layers (application, middleware, operating system, communication pro-
tocols). Interceptors may be inserted at various points of this path, e.g. at the send and
receive operations of requests and replies.

Inserting interceptors allows non-intrusive extension of middleware functionality, with-
out modifying the application code or the middleware itself. This technique may be con-
sidered as an ad hoc way of implementing AOP: the insertion points are the join points and
the interceptors directly implement aspects. By adequately specifying the insertion points
for a given class of middleware, conforming to a specific standard (e.g. CORBA, EJB),
the interceptors can be made generic and may be reused with different implementations of
the standard. The functions that may be added or modified through interceptors include
monitoring, logging and measurement, security, caching, load balancing, replication. A
detailed example of using interceptors in CORBA may be found in Chapter 5.



2-26 CHAPTER 2. MIDDLEWARE PRINCIPLES AND BASIC PATTERNS

This technique may also be combined with a meta-object protocol, i.e. the interceptors
may be inserted in the reified section of the invocation path (i.e. within a meta-level).

Interception techniques entail a run time overhead. This may be alleviated by using
code injection, i.e. directly integrating the code of the interceptor into the code of the client
or the server (this is the analog of inlining the code of procedures in an optimizing com-
piler). To be efficient, this injection must be done at a low level, i.e. in assembly code, or
(for Java) at the bytecode level, using bytecode manipulation tools such as BCEL [BCEL ],
Javassist [Tatsubori et al. 2001], or ASM [ASM ]. To maintain flexibility, it should be pos-
sible to revert the code injection process by going back to the separate interception form.
An example of use of code injection may be found in [Hagimont and De Palma 2002].

2.4.4 Comparing Approaches

The main approaches to separation of concerns in middleware may be compared as follows.

1. Approaches based on meta-object protocols are the more general and systematic.
However, they entail a potential overhead due to the back and forth interaction
between meta- and base-levels.

2. Approaches based on aspects operate on a finer grain that those based on MOPs
and provide more flexibility, at the expense of generality. The two approaches may
be combined, e.g. aspects can be used to modify operations both at the base and
meta levels.

3. Approaches based on interception provide restricted capabilities with respect to MOP
or AOP, but provide acceptable solutions for a number of frequent situations. They
are still lacking a formal model on which design and verification tools could be based.

In all cases, optimization techniques based on low-level code manipulation may be
applied. This area is the subject of active research.

2.5 Historical Note

Architectural concerns in software design appeared in the late 1960s. The THE operating
system [Dijkstra 1968] was an early example of a complex system designed as a hierarchy
of abstract machines. The notion of object-oriented programming was introduced in the
Simula-67 language [Dahl et al. 1970]. Modular construction, an approach to systematic
program composition as an assembly of parts, appeared in the same period. Design prin-
ciples developed for architecture and city planning [Alexander 1964] were transposed to
program design and had a significant influence on the emergence of software engineering
as a discipline [Naur and Randell 1969].

The notion of a design pattern came from the same source a decade later
[Alexander et al. 1977]. Even before that notion was systematically used, the elementary
patterns described in the present chapter had been identified. Simple forms of wrappers
were developed for converting data from one format to another one, e.g. in the context
of database systems, before being used to transform access methods. An early use of in-
terceptors is found in the implementation of the first distributed file system, Unix United



REFERENCES 2-27

[Brownbridge et al. 1982]: a software layer interposed at the Unix system call interface
allows operations on remote files to be transparently redirected. This method was later
extended [Jones 1993] to include user code in system calls. Stacked interceptors, both on
the client and server side, were introduced in [Hamilton et al. 1993] under the name of
subcontracts. Various forms of proxies have been used to implement remote execution,
before the pattern was identified [Shapiro 1986]. Factories seem to have first appeared in
the design of graphical user interfaces (e.g. [Weinand et al. 1988]), in which a number of
parameterized objects (buttons, window frames, menus, etc.) are dynamically created.

A systematic exploration of software design patterns was initiated in the late 1980s.
After the publication of [Gamma et al. 1994], activity expanded in this area, with the
launching of the PLoP conference series [PLoP ] and the publication of several specialized
books [Buschmann et al. 1995, Schmidt et al. 2000, Völter et al. 2002].

The idea of reflective programming was present in various forms since the early days
of computing (e.g. in the evaluation mechanism of functional languages such as Lisp).
First attempts towards a systematic use of this notion date from the early 1980s (e.g.
the metaclass mechanism in Smalltalk-80); the foundations of reflective computing were
laid out in [Smith 1982]. The notion of a meta-object protocol [Kiczales et al. 1991] was
introduced for the CLOS language, an object extension of Lisp. Reflective middleware
[Kon et al. 2002] has been the subject of active research since the mid-1990s, and some
of its notions begin to slowly penetrate commercial systems (e.g. through the CORBA
standard for portable interceptors).

References

[Alexander 1964] Alexander, C. (1964). Notes on the Synthesis of Form. Harvard University Press.

[Alexander et al. 1977] Alexander, C., Ishikawa, S., and Silverstein, M. (1977). A Pattern Lan-
guage: Towns, Buildings, Construction. Oxford University Press. 1216 pp.

[ASM ] ASM. A Java bytecode manipulation framework. http://www.objectweb.org/asm.

[BCEL ] BCEL. Byte Code Engineering Library. http://jakarta.apache.org/bcel.

[Beugnard et al. 1999] Beugnard, A., Jézéquel, J.-M., Plouzeau, N., and Watkins, D. (1999). Mak-
ing Components Contract Aware. IEEE Computer, 32(7):38–45.

[Bieber and Carpenter 2002] Bieber, G. and Carpenter, J. (2002). Introduction to Service-Oriented
Programming. http://www.openwings.org.

[Brownbridge et al. 1982] Brownbridge, D. R., Marshall, L. F., and Randell, B. (1982). The
Newcastle Connection — or UNIXes of the World Unite! Software–Practice and Experience,
12(12):1147–1162.

[Bruneton 2001] Bruneton, É. (2001). Un support d’exécution pour l’adaptation des aspects non-
fonctionnels des applications réparties. PhD thesis, Institut National Polytechnique de Grenoble.

[Buschmann et al. 1995] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M.
(1995). Pattern-Oriented Software Architecture, Volume 1: A System of Patterns. John Wiley
& Sons. 467 pp.

[CACM 1993] CACM (1993). Communications of the ACM, special issue on concurrent object-
oriented programming. 36(9).



2-28 CHAPTER 2. MIDDLEWARE PRINCIPLES AND BASIC PATTERNS

[Campbell and Habermann 1974] Campbell, R. H. and Habermann, A. N. (1974). The specifica-
tion of process synchronization by path expressions. In Gelenbe, E. and Kaiser, C., editors,
Operating Systems, an International Symposium, volume 16 of Lecture Notes in Computer Sci-
ence, pages 89–102. Springer Verlag.

[Chakrabarti et al. 2002] Chakrabarti, A., de Alfaro, L., Henzinger, T. A., Jurdzinski, M., and
Mang, F. Y. (2002). Interface Compatibility Checking for Software Modules. In Proceedings
of the 14th International Conference on Computer-Aided Verification (CAV), volume 2404 of
Lecture Notes in Computer Science, pages 428–441. Springer-Verlag.

[Dahl et al. 1970] Dahl, O.-J., Myhrhaug, B., and Nygaard, K. (1970). The SIMULA 67 common
base language. Technical Report S-22, Norwegian Computing Center, Oslo, Norway.

[Dijkstra 1968] Dijkstra, E. W. (1968). The Structure of the THE Multiprogramming System.
Communications of the ACM, 11(5):341–346.

[Gamma et al. 1994] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns:
Elements of Reusable Object Oriented Software. Addison-Wesley. 416 pp.

[Hagimont and De Palma 2002] Hagimont, D. and De Palma, N. (2002). Removing Indirection
Objects for Non-functional Properties. In Proceedings of the 2002 International Conference on
Parallel and Distributed Processing Techniques and Applications.

[Hamilton et al. 1993] Hamilton, G., Powell, M. L., and Mitchell, J. G. (1993). Subcontract: A
flexible base for distributed programming. In Proceedings of the 14th ACM Symposium on
Operating Systems Principles, volume 27 of Operating Systems Review, pages 69–79, Asheville,
NC (USA).

[Hoare 1969] Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Communi-
cations of the ACM, 12(10):576–585.

[Jones 1993] Jones, M. B. (1993). Interposition agents: Transparently interposing user code at the
system interface. In Proceedings of the 14th ACM Symposium on Operating Systems Principles,
pages 80–93, Asheville, NC (USA).

[Kiczales 1996] Kiczales, G. (1996). Aspect-Oriented Programming. ACM Computing Surveys,
28(4):154.

[Kiczales et al. 1991] Kiczales, G., des Rivières, J., and Bobrow, D. G. (1991). The Art of the
Metaobject Protocol. MIT Press. 345 pp.

[Kiczales et al. 2001] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold,
W. G. (2001). An overview of AspectJ. In Proceedings of ECOOP 2001, volume 2072 of Lecture
Notes in Computer Science, pages 327–355, Budapest, Hungary. Springer-Verlag.

[Kon et al. 2002] Kon, F., Costa, F., Blair, G., and Campbell, R. (2002). The case for reflective
middleware. Communications of the ACM, 45(6):33–38.

[Kramer 1998] Kramer, R. (1998). iContract - The Java Design by Contract Tool. In Proceedings of
the Technology of Object-Oriented Languages and Systems (TOOLS) Conference, pages 295–307.

[Lindholm and Yellin 1996] Lindholm, T. and Yellin, F. (1996). The Java Virtual Machine Speci-
fication. Addison-Wesley. 475 pp.

[Meyer 1992] Meyer, B. (1992). Applying Design by Contract. IEEE Computer, 25(10):40–52.

[Naur and Randell 1969] Naur, P. and Randell, B., editors (1969). Software Engineering: A Report
On a Conference Sponsored by the NATO Science Committee, 7-11 Oct. 1968. Scientific Affairs
Division, NATO. 231 pp.



REFERENCES 2-29

[Pawlak et al. 2001] Pawlak, R., Duchien, L., Florin, G., and Seinturier, L. (2001). JAC : a flexible
solution for aspect oriented programming in Java. In Yonezawa, A. and Matsuoka, S., editors,
Proceedings of Reflection 2001, the Third International Conference on Metalevel Architectures
and Separation of Crosscutting Concerns, volume 2192 of Lecture Notes in Computer Science,
pages 1–24, Kyoto, Japan. Springer-Verlag.

[PLoP ] PLoP. The Pattern Languages of Programs (PLoP) Conference Series.
http://www.hillside.net/conferences/plop.htm.

[RM 2000] RM (2000). Workshop on Reflective Middleware. Held in conjunction with Middleware
2000, 7-8 April 2000. http://www.comp.lancs.ac.uk/computing/RM2000/.

[Schmidt et al. 2000] Schmidt, D. C., Stal, M., Rohnert, H., and Buschmann, F. (2000). Pattern-
Oriented Software Architecture, Volume 2: Patterns for Concurrent and Networked Objects.
John Wiley & Sons. 666 pp.

[Shapiro 1986] Shapiro, M. (1986). Structure and encapsulation in distributed systems: The proxy
principle. In Proc. of the 6th International Conference on Distributed Computing Systems, pages
198–204, Cambridge, Mass. (USA). IEEE.

[Smith 1982] Smith, B. C. (1982). Reflection And Semantics In A Procedural Language. PhD
thesis, Massachusetts Institute of Technology. MIT/LCS/TR-272.

[Smith and Nair 2005] Smith, J. E. and Nair, R. (2005). Virtual Machines: Versatile Platforms
for Systems and Processes. Morgan Kaufmann. 638 pp.

[Tatsubori et al. 2001] Tatsubori, M., Sasaki, T., Chiba, S., and Itano, K. (2001). A Bytecode
Translator for Distributed Execution of “Legacy” Java Software. In ECOOP 2001 – Object-
Oriented Programming, volume 2072 of Lecture Notes in Computer Science, pages 236–255.
Springer Verlag.

[Völter et al. 2002] Völter, M., Schmid, A., and Wolff, E. (2002). Server Component Patterns.
John Wiley & Sons. 462 pp.

[Weinand et al. 1988] Weinand, A., Gamma, E., and Marty, R. (1988). ET++ - An Object-
Oriented Application Framework in C++. In Proceedings of OOPSLA 1988, pages 46–57.


