
Middleware Architecture with Patterns and Frameworks

c©2003-2009, Sacha Krakowiak (version of February 27, 2009 - 12:58)

Creative Commons license (http://creativecommons.org/licenses/by-nc-nd/3.0/)

Chapter 6

Coordination and Events

Many applications involve a number of activities that cooperate to achieve a common
goal and need to interact in order to coordinate their evolution. In this chapter, we are
interested in asynchronous interaction based on three related mechanisms: events, i.e.
state transitions that trigger reactions, message queuing, and shared data-spaces. We
present the main paradigms of asynchronous coordination of loosely coupled activities and
their implementation in middleware. These notions are illustrated by a few case studies.

6.1 Introducing Coordination

6.1.1 Motivation and Requirements

In a broad sense, coordination refers to the methods and tools that allow several entities to
cooperate towards a common goal. A coordination model provides a framework to organize
this cooperation, by defining three elements [Ciancarini 1996]: a) the coordination entities
whose cooperation is being organized, e.g. processes, threads, various forms of “agents”
(see 6.6), organizations, people, etc.; b) the coordination media through which the entities
communicate, e.g. messages, shared variables, or more elaborate mechanisms built above
the basic communication layers; and c) the coordination rules, which define the interaction
primitives and patterns used by the cooperating entities to achieve coordination.

Besides the notion of cooperation, coordination also has a function of integrating pre-
viously independent activities. In the words of [Gelernter and Carriero 1992]: “A coordi-
nation model is the glue that binds separate activities into an ensemble”. In that sense,
coordination is related to composition. The main difference is that coordination models
are associated with loose coupling, while most component-based models (Chapter 7) imply
a notion of strong coupling.

We are specifically interested in application domains that are subject to the following
requirements.

• Loose coupling. The entities involved in the cooperation should be allowed to evolve
independently, and coordination should therefore not impose strong constraints on
their behavior.



6-2 CHAPTER 6. COORDINATION AND EVENTS

• Dynamic evolution. The cooperating entities are allowed to join and leave the ap-
plication freely, during execution. Late binding is therefore mandatory.

• Large scale. The number of cooperating entities may potentially become very large
and they may operate over a wide geographical range; the coordination algorithms
and structures should therefore be scalable with respect to these two aspects.

• Heterogeneity. The cooperating entities may use heterogeneous hardware, operating
systems, run time environments, and security policies; they may be administered by
various authorities.

Examples of such application domains include monitoring of industrial installations,
supervision of networking equipment, weather forecast using distributed sensors, stock
tracking, distributed auctions. In these applications, systems must react to variations
in the environment, and notifications of changes must be propagated to a dynamically
changing set of recipients, which may themselves react by generating other notifications.
Devices and services may be dynamically added or removed. These environments usually
do not have a central controlling authority. Another relevant area is that of ubiquitous
and mobile systems, which involve spontaneous, usually unpredictable, patterns of com-
munication between heterogeneous objects such as mobile phones, portable or wearable
devices, sensors and actuators embedded in mobile equipment, etc. An asynchronous,
loosely coupled communication model is well adapted to these requirements.

6.1.2 Terminology

Before introducing the plan of the chapter, a word on terminology is in order, because
the terms that designate the main concepts of coordination are heavily overloaded and
therefore subject to misuse.

An event is a detectable state transition that locally occurs at a definite point in time
in a specified environment. Example of events, in the environment of a process, are: the
change of the value of a variable (the contents of a memory location); the occurrence of
an interrupt, e.g. a timeout expiration signal or a mouse button click.

In a more general sense, in the context of a distributed system, an event is the notifi-
cation of a local state transition (an event in the above sense) to a set of (usually remote)
receiving entities. The entity in which the state transition occurred is an event producer,
or event source; the entities that receive the notification are event consumers, or event
sinks. An event notification may be initiated by the source (push mode) or by the sink
(pull mode); many coordination schemes use a combination of these two modes.

Note that the reception of a notification by a consumer is a (local) event, in the original
sense, for that consumer; and that event may in turn be notified to other consumers. Also
note that the term “notification” designates both the action of signaling an event to
consumers and the data structure used for this signaling.

The reception of an event notification by an event sink causes the execution of a
specified reaction. The form of this reaction, and the association between an event and a
reaction, depend on the specific coordination model and on the framework that implements
it. The terms callback and handler are often used in relation to the implementation of
reactions to events.



6.2. PATTERNS FOR COORDINATION 6-3

A message (as defined in Chapter 4) is an information transmitted by a sender to one
or several receiver(s). A message may be considered at different levels of abstraction, from
the physical signal to more elaborate formats. In the context of coordination systems,
a message usually has a composite structure that includes a contents proper and meta-
information whose format depends on the specific messaging system.

From the above definition, events (more precisely event notifications, which propagate
the occurrence of a local event) are specific instances of messages. The difference between
events and messages is one of usage rather than an intrinsic one; and a number of basic
patterns (e.g. the selection of receivers) are common to both mechanisms. One usually
refers to “events” when emphasis is on the occurrence and signaling of the initial transi-
tion (the local event), and to “messages” when emphasis is on the information contents
being transmitted. However, in many cases, the two terms are not clearly distinguished.
Products that provides coordination primitives using either form of communication are
collectively called Message-Oriented Middleware (MOM).

In the context of coordination systems, the term agent refers to an entity that coordi-
nates its activity with that of other similar entities, and which has the following character-
istics: it is active, i.e. it encapsulates at least one thread of execution; it is self-contained,
i.e. it includes a minimal set of resources needed for its execution; it may communicate
both with its environment (i.e. the run time system that supports its execution) and with
other agents; its behavior is determined both by its own initial program and by its interac-
tions; it may be fixed or mobile (in the latter case, it may migrate from one environment
to another one). The term “agent” is mainly used in conjunction with a specific support
system, which defines its interaction primitives and patterns.

In the rest of this chapter, we present the principles of these coordination mechanisms
and the middleware that implements them. The common patterns for coordination are
reviewed in Section 6.2. Event-based communication is the subject of Section 6.3. Message-
based communication and middleware are presented in Section 6.4. Coordination through
shared objects is discussed in Section 6.5. Some instances of agents are described in Section
6.6. Finally, Section 6.8 is a case study of a message-oriented middleware.

6.2 Patterns for Coordination

The three patterns that follow are directly relevant to coordination. The main common
objective is to favor uncoupling between the cooperating entities, which leads to various
forms of indirect, asynchronous interaction. Since these patterns apply to several coordi-
nation models, and since they may be implemented using various techniques, we present
them in an abstract form, concentrating on the communication aspects. Some indications
on the implementation techniques and on the non-functional properties are given in the
case studies.

6.2.1 Observer

Observer is the basic pattern that underlies coordination. In its primitive form
[Gamma et al. 1994], it involves one “observed” object and an unspecified number of in-
dependent “observer” objects. The problem is for the observers to be kept aware of any



6-4 CHAPTER 6. COORDINATION AND EVENTS

change occurring in the observed object.

This situation typically occurs when a given abstract entity (e.g. the contents of a
spreadsheet) has several different representations, or images (e.g. a table, a histogram, a
pie chart, etc.). Whenever that entity is modified, all its images need to be updated to
reflect these changes; these images, and the processes that maintain them, are independent
of each other, and new forms of images may be introduced at any time.

In the proposed solution, the observers register their interest with the observed, which
therefore ke a list of these observers. When a change occurs, the observed asynchronously
notifies all the registered observers. Each observer can then query the observed to get
aware of the changes. This pattern therefore uses both the push and the pull modes.

Observed Observer_1 Observer_2

register

register

notify

query

query

notify

a change

Figure 6.1. The Observer pattern

This solution favors uncoupling, not only between the observers, which are not aware
of each other, but also between the observed and the observers. Once an observer has
been informed of a change, it may query the observed for a specific piece of information
and it may choose the moment of the query.

This pattern has the following limitations.

• The observed entity bears a heavy load, since it has to provide and to implement
the registration interface, to keep track of the observers, and to answer the queries.
This is detrimental to performance and to scalability.

• While favoring uncoupling, the two-stage process of notification and query is not
selective and may lead to unnecessary exchanges (e.g. an observer may not be
interested in a specific change, but has to query the observed in all cases).

The following pattern attempts to remedy these drawbacks.



6.2. PATTERNS FOR COORDINATION 6-5

6.2.2 Publish-Subscribe

The Publish-Subscribe pattern is a more general form of Observer. It defines two
“roles”, Publisher (event source) and Subscriber (event sink). A given entity may take up
either role, or both.

Events generated by publishers are selectively notified to subscribers. The selection is
achieved by defining event classes, i.e. sets of events that satisfy some conditions, to be
discussed later. A subscriber may register its interest for a class of events by subscribing
to that class. When a publisher generates an event E, all subscribers that previously
subscribed to an event class to which E belongs receive an asynchronous notification of
the occurrence of E. Reacting to this notification is locally arranged by each subscriber
(e.g. by associating a specific handler with each class of events, etc.).

We present the pattern in an abstract form by defining a mediator as an entity that is
responsible for registering subscriptions, receiving events, filtering events according to class
definitions, and routing them to the interested subscribers (Figure 6.2). Depending on the
specific system, the mediator may be implemented in various ways, e.g. by a centralized
server, by distributed cooperating servers, or possibly collectively by the publishers (like
in Observer). These organizations are discussed and illustrated by examples in Section
6.3.

Publisher_1 Subscriber_3Mediator

subscribe (X)

publish
(X)

Subscriber_1

Subscriber_2
Publisher_2

subscribe (X)

subscribe (Y)

publish
(Y)

notify

notify
notify

Figure 6.2. The Publish-Subscribe pattern

There are two main ways of defining event classes.

1. Topic-based classification. This scheme relies on the association of events with named
topics, or subjects. Topics essentially define a name space (3.1), which may be
organized according to the needs of a specific application or application domain.
The topics need not be disjoint, i.e. an event may be associated with several topics.
Like for any name space, a number of topic organizations may be defined, e.g. flat
space, hierarchy, graph, etc., and all the facilities associated with name manipulation



6-6 CHAPTER 6. COORDINATION AND EVENTS

(pattern matching using wildcards, etc.) may be used. The structure of the topic
space may conveniently mimic that of other currently used name spaces, e.g. file
systems or URLs.

A variation of the topic-based classification is type-based classification
[Eugster et al. 2000]. In this scheme, events are filtered according to their
type, which is a specific attribute. This implies that the publish-subscribe system
should be integrated in a typed programming language. Event notifications are then
defined as typed objects, with the benefits of typing (safety, compile time checking).
Note however that some languages allow dynamic type changes, which offsets these
benefits to favor flexibility.

2. Content-based classification. This classification scheme introduces an additional de-
gree of flexibility, since events are classified according to their run-time properties,
and not to a statically defined topic organization. The “contents” of an event is
the data structure used for notification, or meta-data associated with this struc-
ture. Event filtering is now an associative process, i.e. matching a specified template
against the contents. Depending on the organization of an event’s contents, the
template may take various forms, e.g. a string, one or several name-value pair(s),
etc.

Content-based classification is more general than topic-based classification, since the
latter may be implemented by means of the former while the reverse is not true. However,
implementing a scalable content-based filtering is a difficult task (see example in 6.3).

The Publish-Subscribe pattern has the potential of achieving the uncoupling of the
cooperating activities:

• due to the indirect interaction scheme, the activities have no knowledge of each other;
they do not directly interact for synchronization, and do not need to be active at
the same time; they may be dynamically created and removed, and may freely enter
or leave the application.

• due to the event filtering mechanism, the number of notifications is reduced: an
activity is only notified of the events that it considers relevant; content-based filtering
allows this selection to be dynamic.

However, actually achieving these potential benefits is strongly dependent on imple-
mentation. For instance a centralized implementation may reduce the mutual indepen-
dence of activities; or an inefficient implementation of a filtering algorithm may offset the
advantage of selectivity. Implementation issues are examined in Section 6.3.

A survey of various aspects of Publish-Subscribe is given in [Eugster et al. 2003].

6.2.3 Shared Dataspace

The Shared Dataspace pattern has been introduced in the Linda language
[Carriero and Gelernter 1989, Gelernter and Carriero 1992], under the name of generative
coordination. It defines a form of communication between uncoupled processes, through a
common, persistent information space organized as a set of tuples. In the original model, a



6.2. PATTERNS FOR COORDINATION 6-7

tuple is a record, i.e. an ordered set of typed fields. A process may insert a new tuple into
the space, lookup the space for a tuple matching a specified template (e.g. by specifying
the values of some fields) and then read the tuple and possibly remove it from the space.
Tuples are persistent, i.e. a tuple remains in the space until explicitly removed. This is a
pure pull model in the sense that changes in the tuple space are not explicitly notified to
processes. A process whose query fails remains blocked until a tuple matching the query
is inserted into the the space.

In the original model, processes are themselves elements of the tuple space. When a
process is created, it is inserted in the tuple space; after the process finishes execution, it
turns into a passive tuple, which is a representation of its state at the end of the execution.

This pattern has several limitations, which we present together with some proposed
remedies.

• There is a single dataspace. Multiple dataspaces are useful for improving modular-
ity, for exploiting locality, and for implementing isolation and protection. Various
forms of multiple dataspace organizations (independent, nested) have actually been
introduced in several implementations.

• When several tuples match its template, a query returns one of these tuples, and the
choice is nondeterministic. When several processes query the space with the same
template, there is no way for either of them to find all the tuples that match the
template.

This problem is solved by introducing an additional primitive, copy-collect, which
allows a process to get all the tuples that match a given template.

• The original model is based on a pure pull mode and therefore lacks reactivity. Sev-
eral implementations have added a notify primitive, which signals the introduction
of a tuple matching a template to interested processes.

The shared dataspace pattern is useful in applications in which the resolution of a
problem is partitioned among a number of “worker” processes, which use the tuple space
to allocate work and to share results. Another application area is resource discovery
(3.2.3), a form of trading in which resources are looked up according to various criteria,
and may be dynamically added and removed.

6.2.4 Extra-Functional Properties

Recall (2.1.3) that extra-functional properties are those which do not explicitly appear in
the interface of a service. Several such properties, listed below, are useful additions to a
coordination system.

• Persistence. An event or a message may be transient, i.e. it is lost if no receiver
is ready to accept it, or it may be persistent, i.e. it is conserved by the system
until explicitly removed. Persistence is implemented in most coordination systems
because it favors uncoupling, since there is no synchronization constraint between a
sender and a receiver.



6-8 CHAPTER 6. COORDINATION AND EVENTS

• Ordering. Message ordering is discussed in ??. Imposing strong ordering constraints
goes against uncoupling. However, such guarantees as causal ordering are unavoid-
able whenever messages and events are used to maintain such constraints as consis-
tency of replicated information. Designing scalable ordering algorithms is a challeng-
ing task because it involves global synchronization, and because large scale commu-
nication systems such as the Internet do not provide any ordering guarantees. One
approach consists in partitioning the set of coordinating entities and trying to derive
global ordering properties from local ones by an adequate choice of the partition (see
e.g. [Laumay et al. 2001]).

• Transactions. Executing reactions to events as transactions may be required to
preserve application-specific invariants, or to prevent an observer from seeing an
inconsistent state of the system.

6.2.5 Comparing the Coordination Patterns

The Publish-Subscribe and Shared Dataspace patterns illustrate two dual ap-
proaches to coordination of loosely coupled entities. The first one is based on messages,
the second one on shared information. It is interesting to compare their expressive power.
The main result in this area has been proved in [Busi and Zavattaro 2001], and may be
summarized as follows.

• The Shared Dataspace model may be reduced to (i.e. simulated by) the Publish-

Subscribe model.

• The Publish-Subscribe model may not be reduced to the original Shared Datas-

pace model. However, the reduction becomes possible if the dataspace model is
extended with a primitive such as copy-collect (6.2.3).

Therefore the choice between the two forms of coordination is not mainly based on
expressive power, but on the adequation of the pattern to the main orientation of the
problem (event-driven vs. data-driven), and on the availability of efficient and scalable
implementations.

6.3 Event-based Communication

In this section, we examine the main implementation aspects of event-based communica-
tion based on the Publish-Subscribe pattern. Efficient implementation is critical for
achieving the benefits of uncoupling. The most important issue is scalability, with respect
to both the number of cooperating entities and geographical size.

We first examine three main aspects: organizing the mediator, implementing filtering,
implementing notification routing. Since the mediator implements the filtering and routing
algorithms, the issue of mediator organization is closely related to the design of these
algorithms. For presentation, we find it more convenient to discuss architectural aspects
first. In addition, some properties, such as fault tolerance and locality, directly depend on
the architecture and can be examined in that context.

This section concludes with a brief review of a few case studies.



6.3. EVENT-BASED COMMUNICATION 6-9

6.3.1 Event Mediator Architecture

We assume that the event system actually uses a mediator. In other words, we do not
consider systems using the Observer pattern, because the requirement of uncoupling
precludes direct access from the consumers to the producers1.

The mediator is the entity that receives events from publishers and delivers notification
to subscribers. Implementing the mediator as a single server has the usual drawbacks
of centralized architectures: the server is a single point of failure and a performance
bottleneck. This solution is limited to small scale system on local area networks.

Event mediators for large scale systems are therefore organized as multiple cooperating
servers. There are several ways of designing the server architecture.

1. The first solution is a hierarchical organization, in which the servers are organized
into a tree. Coordinating entities (publishers and subscribers) may be connected to
any server in the hierarchy. If a server does not have the information to process a re-
quest (the distribution of information among the servers depends on the algorithms),
it sends it to its parent server.

While the communication pattern is straightforward, this solution has two main
drawbacks: it puts a heavy load on the higher levels of the hierarchy, and it is
sensitive to server failures, since a failed server isolates all its descendants. The
usual remedy for these drawbacks, server replication, is not easily applicable because
the information update rate is typically high, and therefore replica consistency is
expensive to maintain.

2. The second solution is an acyclic peer to peer organization, in which the commu-
nication pattern between servers is an acyclic undirected graph. The main benefit
over the hierarchical organization is a better distribution of the load. The absence
of cycles in the communication pattern can again be exploited by the filtering and
notification algorithms (e.g. algorithms based on a spanning tree are easily imple-
mented).

3. The third, more general solution is a general peer to peer organization, using an
unrestricted graph communication pattern. This solution has no limitations and
may be used to improve fault tolerance by redundancy. However, the communication
graph has no special properties.

These organizations are discussed in more detail in [Carzaniga et al. 2001].
As usual, hybrid solutions combining the advantages of the above “pure” commu-

nication schemes are found in practice. An interesting solution is a clustered servers
organization in which inter-cluster communication follows an acyclic pattern, while intra-
cluster communication is unrestricted. This organization ke the advantage of acyclicity
for inter-cluster (global) communication and has the following additional benefits.

• Exploiting locality. In many applications, the coordinated entities are grouped ac-
cording to organizational or geographic criteria, and the communications within a

1An example of an event model using direct access is the Java Distributed Event model used in Jav-

aBeans, a system essentially used in a centralized environment.



6-10 CHAPTER 6. COORDINATION AND EVENTS

group are more frequent than those between groups. Server clusters can be organized
so as to reflect this structure, making intra-group communication more efficient.

• Improving fault tolerance. Server availability is increased by using some nodes of a
cluster as replicas. Replica consistency must only be maintained within a cluster.

• Allowing efficient causal delivery. Causal delivery of notifications is discussed in 6.2.4.
As shown in [Laumay et al. 2001], partitioning the servers in acyclically connected
clusters allows a scalable implementation of causal delivery.

6.3.2 Event Filtering

Event filtering (or matching) is the process of finding the subscriptions that match a
published event, so as to select the recipients of notification. The problem is different for
the two forms of subscription described in 6.2.2.

• For topic-based subscription, the topics are statically known, before the event is
published. The problem reduces to looking up an element in a (possibly distributed)
table. A structured organization of the topics (e.g. hierarchical) allows for faster
search. In any case, scalable lookup algorithms based on hash-coding are known.

• For content-based subscription, the situation is different, because the contents associ-
ated with an event is only known at publication time. Designing scalable algorithms
for this case is still a research issue.

Here we only consider content-based subscription. A naive algorithm would match the
contents of a publish message against all registered subscriptions, and would therefore run
in linear time with respect to the number of subscriptions. For Internet-scale systems, this
is considered inefficient, and the goal is to design sub-linear matching algorithms.

Such an algorithm, used in the Gryphon system [Gryphon 2003], is described in
[Aguilera et al. 1999]. It is based on pre-processing of subscriptions. The motivation
is that the rate of change of subscriptions is slow with respect to the rate of event publish-
ing, which makes pre-processing feasible. Pre-processing creates a matching tree, in which
each node describes a test on some subscription attribute, and the edges outgoing from
this node represents the results of this test. The leaves of the tree represent individual
subscriptions. Thus an event is matched against successive nodes of the tree, starting from
the root, by performing the prescribed tests. Several paths are possible, i.e. an event may
match several subscriptions.

The matching algorithm is used on each server, in a multi-server mediator system. The
problem of routing events in the network of servers is examined in the next section.

6.3.3 Notification Diffusion

In the trivial case in which there is no filtering (or a subscription that matches all events),
the problem of routing reduces to multicasting a notification to all subscribers. This
problem is adequately solved, even on a large scale, by protocols such as IP Multicast (see
Chapter 4).



6.3. EVENT-BASED COMMUNICATION 6-11

The solution is again easy for topic-based subscription. A multicast group is associated
with each different topic; new subscribers join the relevant groups, and events published
under a topic are notified to the associated group, again using a group multicast protocol.

With content-based subscription, in a publish-subscribe system implemented as a net-
work of servers (6.3.1), the question is how to best exploit the topology of the network.
There are two extreme solutions, assuming that each publisher or subscriber sends its
request to one server in the network.

• Propagating each subscription to all servers, and performing the matching at the
server on which the event is published. This produces a list of matching subscribers,
to which a notification is multicast.

• Registering each subscription on the server that receives it, and propagating all
published events to all servers. Matching is then performed on the servers on which
subscriptions have been received.

The first solution is acceptable in small scale systems (recall that the rate of subscrip-
tions is usually much lower that that of event production). Neither solution scales well,
however. Therefore more elaborate solutions have been proposed.

In Gryphon, a server which receives an event uses the matching tree pre-computed
from subscriptions (6.3.2), in order to selectively propagate notifications to its neighbors
(on a spanning tree covering the network of servers). The notifications are only sent on
those links that are part of a path to at least one matching subscriber. The algorithm is
described in [Banavar et al. 1999].

Siena uses routing algorithms based on two general requirements, inspired by the design
principles of IP Multicast: a) to route notifications in one copy as far as possible (i.e. to
start replicating it only as close as possible to its destinations); and b) to apply filtering
as close as possible to the event sources. Thus a subscription sets up a routing path to
be used later to propagate notifications, in the form of a tree that connects the subscriber
to all servers in the network. Notifications that match the subscription are then routed
to the subscriber following the routing path in the reverse direction. This may be again
optimized if event sources give advance information, in the form of advertisements, on the
classes of events that they will publish.

6.3.4 Examples

Currently not available.
The examples should include:
Gryphon [Banavar et al. 1999] [Aguilera et al. 1999]
Siena [Carzaniga et al. 2001] [Rosenblum and Wolf 1997]
Infobus [Oki et al. 1993] JEDI [Cugola et al. 2001]



6-12 CHAPTER 6. COORDINATION AND EVENTS

6.4 Message Queuing

6.4.1 Message Queuing Principles

We now consider a coordination mechanism based on message queuing. With respect to
the general paradigm of message passing as presented in Chapter 4, the specific feature
of this mechanism is indirect communication: messages are not directly sent to receivers,
but to named queues, from which the receivers can retrieve them. As a consequence:

• There is no need for synchronization between senders and receivers. The receiver of
a message need not be active when the message is sent, and the sender need not be
active when the message is received.

• Messages are persistent; a message is conserved by the system until explicitly re-
moved from a queue.

These properties favor uncoupling between senders and receivers.
A message queue is a named, persistent container, in which messages are placed and

conserved until they are removed. Message queuing achieves a function similar to that of
topic-based subscription, i.e. organizing messages according to specified centers of interest.

Q1

Q2

Q3

Q4

p1

p2

p3

p4

p5

messages
put(message, queue)

get(message, queue)

(empty)

Figure 6.3. Message queuing

A message queuing system provides primitives to put messages in queues and to retrieve
messages from queues (Figure 6.3). The latter operation is provided in many variants: it
may be blocking or non blocking, and it may remove the message from the queue or leave
it there (e.g. to be read by another receiver).

In its pure form, a message queuing system is pull only; it may be augmented with
notifications, i.e. a receiver may subscribe to a queue name, and be notified when a new
message is put into the designated queue.

6.4.2 Message Queuing Implementation

The main design principle of message queuing implementation is location transparency:
senders and receivers see the message queues as logical entities, and the mapping of the



6.5. COORDINATION THROUGH SHARED OBJECTS 6-13

queues to physical locations is invisible. This is consistent with the above mentioned
analogy between message queues and topic-based publish-subscribe.

A message queuing system may be implemented by a central server that manages the
queues, or (more usually) by a network of message brokers.

6.4.3 Examples

Currently not available.

6.5 Coordination through Shared Objects

Currently not available.

6.6 Active Objects and Agents

Currently not available.

6.7 Web Services Coordination

Currently not available.

6.8 Case Study: Joram, a Message-Oriented Middleware

Currently not available.

6.9 Historical Note

Asynchronous events are the earliest coordination mechanism, since the first systems were
developed at a low level, directly using the hardware interface, and relied on the hardware
interrupt mechanism. In the absence of high-level structures and primitives, these systems
were fragile and error prone; due to the transient nature of interrupts, many errors were
difficult to reproduce and therefore hard to correct.

As a consequence, the first attempts towards higher level coordination mechanisms
aimed at masking the transient and asynchronous nature of interrupts, through such de-
vices as “wake-up waiting switch” and other forms of interrupt memorization. In the
mid-1960s, the concepts of sequential process and synchronization were established and
led to the invention of semaphores and monitors.

Apart from low-level interrupt handling, which was still used in real-time set-
tings, message passing remained the main asynchronous coordination device in the
1970s. Messages and processes were recognized to have a similar expressive power
[Lauer and Needham 1979]. However, most efforts were directed towards the development
of tools based on synchronous communication. Attempts towards developing asynchronous



6-14 CHAPTER 6. COORDINATION AND EVENTS

communication models, (e.g. [Hewitt 1977] in the context of artificial intelligence), did not
meet wide application needs at that time.

In the 1980s, the emergence of new application domains favored the use of asynchronous
models based on an event-reaction scheme: graphical user interfaces (GUI), tool integration
in software development environments [Reiss 1990], triggers in databases. This period was
also marked by a better understanding of the notions of event ordering, causal dependence,
and fault tolerance. In the mid 1980’s, research on distributed objects introduced the
notion of a shared distributed information space. Coordination based on shared dataspaces
[Gelernter 1985] was also developed at that time, in a different context.

In the early 1990s, the fast development of local area networks (LANs) stimulated
the development of coordination tools based on these networks, such as publish-subscribe
systems [Oki et al. 1993] and message queues. In the late 1990s, new application needs
such as system administration and networking equipment supervision increased the need
for scalable asynchronous coordination. The current challenge is to develop efficient and
reliable event distribution systems that can be deployed on the global Internet and that
can be augmented with additional properties such as event ordering and transactional
processing.

References

[Aguilera et al. 1999] Aguilera, M. K., Strom, R. E., Sturman, D. C., Astley, M., and Chandra,
T. D. (1999). Matching events in a content-based subscription system. In Symposium on Prin-
ciples of Distributed Computing (PODC), pages 53–61.

[Banavar et al. 1999] Banavar, G., Chandra, T. D., Mukherjee, B., Nagarajarao, J., Strom, R. E.,
and Sturman, D. C. (1999). An efficient multicast protocol for content-based publish-subscribe
systems. In Proceedings of the 19th IEEE International Conference on Distributed Computing
Systems (ICDCS’99), pages 262–272, Austin, Texas.

[Busi and Zavattaro 2001] Busi, N. and Zavattaro, G. (2001). Publish/subscribe vs. shared datas-
pace coordination infrastructures. In In Proc. of IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE’01), pages 328–333. IEEE
Press.

[Carriero and Gelernter 1989] Carriero, N. and Gelernter, D. (1989). Linda in context. Commu-
nications of the ACM, 32(4):444–458.

[Carzaniga et al. 2001] Carzaniga, A., Rosenblum, D. S., and Wolf, A. L. (2001). Design and
evaluation of a wide-area event notification service. ACM Transactions on Computer Systems
(TOCS), 19(3):332–383.

[Ciancarini 1996] Ciancarini, P. (1996). Coordination Models and Languages as Software Integra-
tors. ACM Computing Surveys, 28(2):300–302.

[Cugola et al. 2001] Cugola, G., Nitto, E. D., and Fuggetta, A. (2001). The JEDI Event-Based
Infrastructure and Its Application to the Development of the OPSS WFMS. IEEE Transactions
on Software Engineering, 27(9):827–850.

[Eugster et al. 2003] Eugster, P. Th., Felber, P., Guerraoui, R., and Kermarrec, A.-M. (2003). The
Many Faces of Publish/Subscribe. ACM Computing Surveys, 35(2):114–131.



REFERENCES 6-15

[Eugster et al. 2000] Eugster, P. Th., Guerraoui, R., and Sventek, J. (2000). Type-Based Pub-
lish/Subscribe. Tech. Report DSC ID 2000-029, École Polytechnique Fédérale de Lausanne,
Laboratoire de Programmation Distribuée.

[Gamma et al. 1994] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns:
Elements of Reusable Object Oriented Software. Addison-Wesley. 416 pp.

[Gelernter 1985] Gelernter, D. (1985). Generative Communication in Linda. ACM Transactions
on Programming Languages and Systems, 7(1):80–112.

[Gelernter and Carriero 1992] Gelernter, D. and Carriero, N. (1992). Coordination languages and
their significance. Communications of the ACM, 35(2):97–107.

[Gryphon 2003] Gryphon (2003). The Gryphon System. http://www.research.ibm.com/gryphon/.

[Hewitt 1977] Hewitt, C. (1977). Viewing Control Structures as Patterns of Passing Messages.
Artificial Intelligence, 8(3):323–364.

[Lauer and Needham 1979] Lauer, H. C. and Needham, R. M. (1979). On the Duality of Operating
Systems Structures. In Proc. Second International Symposium on Operating Systems, IRIA, Oct.
1978, volume 13 of ACM Operating Systems Review, pages 3–19.

[Laumay et al. 2001] Laumay, Ph., Bruneton, É., De Palma, N., and Krakowiak, S. (2001). Pre-
serving Causality in a Scalable Message-Oriented Middleware. In Middleware 2001, IFIP/ACM
International Conference on Distributed Systems Platforms, Heidelberg.

[Oki et al. 1993] Oki, B., Pfluegl, M., Siegel, A., and Skeen, D. (1993). The Information Bus – An
Architecture for Extensible Distributed Systems. In Proceedings of the 14th ACM Symposium on
Operating Systems Principles, volume 27 of Operating Systems Review, pages 58–68, Asheville,
NC (USA).

[Reiss 1990] Reiss, S. P. (1990). Connecting Tools Using Message Passing in the Field Program
Development Environment. IEEE Software, 7(4):57–66.

[Rosenblum and Wolf 1997] Rosenblum, D. S. and Wolf, A. L. (1997). A Design Framework for
Internet-Scale Event Observation and Notification. In Jazayeri, M. and Schauer, H., editors,
Proceedings of the Sixth European Software Engineering Conference (ESEC/FSE 97), volume
1301 of Lecture Notes in Computer Science, pages 344–360. Springer–Verlag.


