
Middleware Architecture with Patterns and Frameworks
c©2003-2009, Sacha Krakowiak (version of February 27, 2009 - 12:58)
Creative Commons license (http://creativecommons.org/licenses/by-nc-nd/3.0/)

Chapter 11

Availability

For a system that provides a service, availability is defined as the ability of the system
to actually deliver the service. While several causes may hamper this ability, this chapter
concentrates on the methods of improving system availability in the face of failures. Fault
tolerance covers the concepts and tools that aim at achieving this goal.

The chapter starts with a review of the main concepts and techniques related to fault
tolerance. It specifically examines the case of distributed systems, with special emphasis
on group communication, which plays a central role in this area. It goes on with the
application of these techniques to two main problems: improving the availability of servers,
and improving the availability of data. It then examines the notions related to partial
availability, and concludes with two case studies.

11.1 Main Concepts and Terminology

A system is available if it is ready to correctly deliver the service that it is designed to
provide. Availability may be hindered by several causes, among which:

• failures, i.e., accidental events or conditions that prevent the system, or any of its
components, from meeting its specification;

• overload, i.e., excessive demand on the resources of the system, leading to service
degradation or disruption;

• security attacks, i.e., deliberate attempts at disturbing the correct operation of the
system, causing malfunction or denial of service.

In this chapter, we examine how availability can be maintained in the presence of
failures. Overload conditions are discussed in Chapter 12 and security attacks in Chapter
13.

This section presents a few elementary notions related to fault tolerance: availability
and reliability measures (11.1.1); basic terminology (11.1.2); models of fault tolerance
(11.1.3); availability issues for middleware (11.1.4). Section 11.2 examines the main aspects
of fault tolerance: error detection, error recovery, and fault masking. This presentation is



11-2 CHAPTER 11. AVAILABILITY

only intended to provide the minimal context necessary for this chapter, not to cover the
subject in any depth. For a detailed study, see Chapter 3 of [Gray and Reuter 1993].

11.1.1 Measuring Availability

The measure of availability applies to a system as a whole or to any of its individual
components (we use the general term “system” in the following). A system’s availability
depends on two factors:

• The intrinsic failure rate of the system, which defines the system’s reliability.

• The mean time needed to repair the system after a failure.

The reliability of a system is measured by the mean time that the system runs contin-
uously without failure. More precisely, consider a system being started (or restarted) at
some instant, and let f be the length of time till its first failure. This is a random variable
(since failures are mostly due to random causes). The mean (or expected value) of this
variable f is called the Mean Time To Failure (MTTF ) of the system.

Depending on the causes of the failures, the MTTF of a system may vary with time
(e.g., if failures are related to aging, the MTTF decreases with time, etc.). A current
assumption (not valid for all systems) is that of failures caused by a memoryless process:
the probability rate of failure per unit time is a constant, independent of the past history
of the system. In that case, the MTTF is also a constant1.

Likewise, the repair rate is measured by the expected value of the time needed to
restore the system’s ability to deliver correct service, after a failure has occurred. This is
called the Mean Time To Repair (MTTR). One also defines Mean Time Between Failures
(MTBF ) as MTTF +MTTR. In the rest of this section, we assume that both the MTTF
and the MTTR are constant over time.

Figure 11.1. Reliability vs Availability

Assume a failure mode (the fail-stop mode, see 11.1.3) in which the system is either
correctly functioning or stopped (and being repaired). Define the availability a of a system

1For a memoryless failure process, let p be the probability of failure per unit time. Then, if p ≪ 1,
MTTF ≈ 1/p.



11.1. MAIN CONCEPTS AND TERMINOLOGY 11-3

as the mean fraction of time that the system is ready to provide correct service. Then (see
Figure 11.1a), the relationship between availability and reliability is given by:

a = MTTF/(MTTF + MTTR) = MTTF/MTBF.

The distinction between reliability and availability is further illustrated in Figure 11.1b.

To emphasize the importance of the repair time, note that the unavailability rate of a
system is 1−a = MTTR/(MTTF+MTTR) ≈ MTTR/MTTF , because in most practical
situations MTTR ≪ MTTF . Thus reducing MTTR (aiming at quick recovery) is as
important as increasing MTTF (aiming at high reliability). This remark has motivated,
among others, the Recovery Oriented Computing initiative [ROC 2005].

In practice, since the value of a for a highly available system is a number close to 1, a
common measure of availability is the “number of 9s” (e.g., five nines means a = 0.99999,
a mean down time of about 5 minutes per year).

11.1.2 Failures, Errors and Faults

In order to clarify the concepts of dependability (a notion that covers several qualities,
including fault tolerance and security), and to define a standard terminology for this area,
a joint committee of the IEEE and the IFIP was set up in 1980 and presented its proposals
in 1982. A synthetic presentation of the results of this effort is given in [Laprie 1985]. A
more recent and more complete document is [Avižienis et al. 2004]. These definitions are
now generally accepted.

We briefly present the main notions and terms related to fault tolerance (a summary
is given in 10.1.3).

A system is subject to a failure whenever it deviates from its expected behavior. A
failure is the consequence of the system being in an incorrect state; any part of a system’s
state that fails to meet its specification is defined as an error. An error, in turn, may be
due to a variety of causes: from human mistake to malfunction of a hardware element to
catastrophic event such as flood or fire. Any cause that may lead to an error, and therefore
may ultimately occasion a failure, is called a fault.

The relationship between fault and error and between error and failure is only a poten-
tial one. A fault may exist without causing an error, and an error may be present without
causing a failure. For example, a programming error (a fault) may lead to the corruption
of an internal table of the system (an error); however the table being in an incorrect state
does not necessarily lead to a failure. This is because the incorrect values may never be
used, or because the internal redundancy of the system may be such that the error has no
consequence on the system’s behavior. A fault that does not cause an error is said to be
dormant ; likewise, an undetected error is said to be latent. If the failure does occur, the
time delay between the occurrence of the fault and the failure is called the latency. A long
latency makes it difficult to locate the origin of a failure.

In a complex system, a fault which affects a component may cause the system to fail,
through a propagation mechanism that may be summarized as follows (Figure 11.2).

Suppose component A depends on component B, i.e., the correct operation of A relies
on the correct provision of a service by B to A. A fault that affects B may cause an error
in B, leading to the failure of B. For A, the inability of B to deliver its service is a fault.



11-4 CHAPTER 11. AVAILABILITY

Figure 11.2. Error propagation

This fault may lead to an error in A, possibly causing the failure of A. If A is itself used
by another component, the error may propagate further, and eventually lead to the failure
of the whole system.

How to prevent the occurrence of failures? The first idea is to try to eliminate all
potential causes of faults. However, due to the nature and variety of possible faults (e.g.,
human mistakes, hardware malfunction, natural causes, etc.), perfect fault prevention is
impossible to achieve. Therefore, systems must be designed to operate in the presence of
faults. The objective is to prevent a fault from provoking a failure, and, if a failure does
occur, to recover from it as fast as possible. Methods for achieving this goal are presented
in 11.2.

11.1.3 Models for Fault Tolerance

Recall (see 1.4.2) that a model is a simplified representation of (part of) the real world,
used to better understand the object being represented. Models are specially useful in the
area of fault tolerance, for the following reasons:

• It is convenient to have a framework to help classify and categorize the faults and
failures, because of their wide variety.

• The tractability of several problems in fault tolerance strongly depends on the hy-
potheses on the structure and operation of the system under study. A model helps
to accurately formulate these assumptions.

We represent the system as a set of components which communicate through messages
over a communication system (see Chapter 4).

Here is a (simplified) classification of failures, in increasing degree of severity (see e.g.,
[Avižienis et al. 2004] for more details, and for a taxonomy of faults). The component
affected by the failure is referred to as “the component”.

• The simplest failure mode is called fail-stop. When such a failure occurs, the com-
ponent immediately stops working (and therefore stops receiving and sending mes-
sages). Thus, in the fail-stop mode, a component is either operating correctly or
inactive2.

2Since fail-stop is a simple, well understood behavior, a common technique is to force any failure to this
mode, by stopping a faulty component as soon as an error is detected, and by signaling the failure to the
users of the component. This technique is called fail-fast.



11.1. MAIN CONCEPTS AND TERMINOLOGY 11-5

• In omission failures, the component may fail to send and/or to receive some mes-
sages. Otherwise its behavior is normal. This failure mode may be useful to simulate
a malfunction of the communication system.

• Timing failures only affect the temporal behavior of the component (e.g., the time
needed to react to a message).

• In the most general failure mode, the behavior of the failed component is totally
unrestricted. For historical reasons [Lamport et al. 1982], this kind of failures is
called Byzantine. Considering Byzantine failures is useful for two reasons. From a
theoretical point of view, this failure mode is the most difficult to handle. From a
practical point of view, solutions devised for Byzantine failures may be used in the
most extreme conditions, e.g., for critical applications in a hostile environment, or
for systems subject to attacks.

The behavior of the communication system has a strong influence on fault tolerance
techniques. We consider two main issues: asynchrony and message loss.

Regarding asynchrony, recall (4.1.2) that a distributed system, consisting of nodes
linked by a communication system, may be synchronous or asynchronous. The system
is synchronous if known upper bounds exist for the transmission time of an elementary
message, and for the relative speed ratio of any two nodes. If no such bounds exist, the
system is asynchronous. Intermediate situations (partially synchronous systems) have also
been identified [Dwork et al. 1988]. Some form of synchrony is essential in a distributed
system, because it allows the use of timeouts to detect the failure of a remote node, assum-
ing the communication link is reliable (details in 11.4.1). In an asynchronous system, it is
impossible to distinguish a slow processor from a faulty one, which leads to impossibility
results for some distributed algorithms in the presence of failures (details in 11.3.3).

Regarding message loss, the main result [Akkoyunlu et al. 1975], often known as the
Generals’ paradox [Gray 1978], is the following. Consider the coordination problem be-
tween two partners, A and B, who seek agreement on a course of action (both partners
should perform the action, or neither). If the communication system linking A and B is
subject to undetected message loss, no terminating agreement protocol can be designed.
The communication protocols used in practice (such as TCP) do not suffer from this de-
fect, because they implicitly assume a form of synchrony. Thus the loss of a message
is detected by acknowledgment and timeout, and the message is resent till either it is
successfully received or the link is declared broken.

11.1.4 Working Assumptions

We are specifically interested in availability support at the middleware level. Middleware
sits above the operating system and networking infrastructure, and provides services to
applications. Thus we need to examine (a) the assumptions on the properties of the infras-
tructure; and (b) the availability requirements placed by applications on the middleware
layer.

Middleware most frequently uses the communication services provided by the network
transport level (4.3.2). The guarantees ensured by these services vary according to the
nature of the network (e.g., a cluster interconnect, a LAN, the global Internet, a wireless



11-6 CHAPTER 11. AVAILABILITY

network). However, for all practical purposes, we make the following assumptions in the
rest of this chapter:

• The communication system is reliable, i.e., any message is eventually delivered un-
corrupted to its destination, and the system does not duplicate messages or generate
spurious messages.

• The middleware system is partially synchronous, in the following sense: there exists
bounds on the transmission time of a message and on the relative speed of any two
processes, but these bounds are unknown a priori and only hold after some time.

This assumption is needed to escape the impossibility results (see 11.3.3) that hold
in asynchronous systems; its validity is discussed in 11.4.1.

Different assumptions may be needed in specific cases, e.g., message loss and network
partition in the case of wireless networks.

We assume a fail-stop (or fail-fast) failure mode for components, be they hardware or
software. Again, different assumptions may hold in specific situations. Since a system is
made of a (potentially large) number of components, a common situation is one in which
some part of the system is subject to failure. The goal is then to preserve the ability of
the system to deliver its service, possibly with a degraded quality. This issue is developed
in 11.8.

According to the “end to end principle” ([Saltzer et al. 1984], see also 4.2.2), some
functions, including those related to fault tolerance, are best implemented at the applica-
tion level, since the most accurate information about the application state and the goals to
be pursued is available at that level. The role of middleware with respect to fault tolerance
is to provide the tools to be used by the applications to achieve specified availability guar-
antees. To do so, the middleware layer uses the communication primitives of the transport
level, such as specified above. For example (see 11.4), the middleware layer uses reliable
point to point transmission to implement reliable broadcast and atomic broadcast, which
are in turn used to improve availability at the application level.

What are the main causes of failures in actual systems? Two landmark papers
are [Gray 1986], which analyzes failures in the Tandem fault-tolerant servers, and
[Oppenheimer et al. 2003], which investigates failures in large scale Internet services. Both
studies observe that system administration errors are the dominant cause of failure (about
40% for servers, 35% for Internet services). Most of these administration errors are related
to system configuration. Software failures account for about 25% in both studies. The part
of hardware is about 18% for servers, 5 to 10% for Internet services. The proportion of
network failures in Internet services depends on the nature of the application, in the range
of 15 to 20%, and may reach 60% for “read mostly” services. Contrary to the fail-stop
assumption, network failures tend to be gradual, and are less easily masked than hardware
or software failures.

11.2 Aspects of Fault Tolerance

Fault tolerance is based on a single principle, redundancy, which may take various forms:



11.2. ASPECTS OF FAULT TOLERANCE 11-7

• Information redundancy. Adding redundant information helps detecting, or even
correcting, errors in storage or in transmission. In particular, our assumption on re-
liable transmission is based on the use of error detecting or correcting codes, together
with sending retries, at the lower levels of the communication protocols.

• Temporal redundancy. This covers the use of replicated processing: the same action
is performed in several instances, usually in parallel, to increase the probability that
it will be achieved at least once in spite of failures. The application of this principle
is developed in 11.6.

• Spatial redundancy. This covers the use of replicated data: information is maintained
in several copies to reduce the probability of data loss or corruption in the presence
of failures. The application of this principle is developed in 11.7.

There are many ways to exploit these forms of redundancy, leading to several fault
tolerance techniques, which in turn can be combined to ensure system availability. The
main basic techniques can be categorized as follows.

Error detection is the first step of any corrective course related to fault tolerance. It
identifies the presence of an error (a system state that does not satisfy its specification),
and triggers the further operations. Error detection is further detailed in 11.2.1.

Error compensation (or fault masking) consists in providing the system with enough
internal redundancy so as to cancel the effects of an error, thus preventing the occurrence
of a fault from causing the system to fail. Masking is further detailed in 11.2.3.

If failure actually occurs, error recovery aims at restoring the system’s ability to deliver
correct service by eliminating the errors that caused the failure. Two main approaches
may be followed (more details in 11.2.2).

• Backward recovery consists in bringing the system back to a past state known to be
correct. This is a generally applicable technique, which relies on the periodic saving
of the (correct) system state (checkpointing).

• Forward recovery aims at reconstructing a correct state from the erroneous one.
This technique implies that the system state contains enough redundancy to allow
reconstruction, which makes it dependent from the specificities of the system. State
reconstruction may be imperfect, in which case the service may be degraded.

As a practical conclusion of this brief review, there is no single universal method to
ensure fault tolerance. The method chosen for each concrete case strongly depends on
its specific aspects. Therefore, it is important to make all assumptions explicit, and to
verify that the assumptions are indeed valid. For instance, fault masking by redundant
processing is only effective if the replicated elements are subject to independent faults.
Modularity is helpful for fault tolerance, since it restricts the range of analysis, and makes
error detection and confinement easier.

Achieving fault tolerance remains a difficult proposition, as illustrated by such “hor-
ror stories” as the Ariane 5 [Lions et al. 1996] and Therac 25 [Leveson and Turner 1993]
failures.



11-8 CHAPTER 11. AVAILABILITY

11.2.1 Error Detection

The goal of error detection is to identify the presence of an error, i.e., a system state that
deviates from its specification. The motivation is to prevent (if possible) the error to cause
the affected component(s) to fail, to avoid the propagation of the error to other parts of
the system, and to better understand the fault that caused the error, in order to prevent
further occurrences of the fault.

Two qualities are attached to error detection.

• Latency, the time interval between the occurrence of an error and its detection.

• Coverage, the ratio of detected errors to existing errors.

Error detection techniques depend on the nature of the error. For instance a fault in a
processor may cause it to deliver incorrect output, or to stop. In the first case, the output
needs to be analyzed by one of the techniques described below; in the second case, a failure
has occurred, and failure detection techniques are needed. Failure detection is the subject
of 11.4.1. Here we only examine the detection of errors in data.

A first category of methods uses redundancy. One common technique for detecting
errors in data transmission relies on error-detecting codes. For example, one extra (parity)
bit detects an error affecting one data bit. With more redundancy (error-correcting codes),
an error may even be corrected. A textbook on error correction is [Blahut 2003].

For data production (as opposed to transmission), errors may be detected by comparing
the results of replicated data sources. For example, bit by bit comparison of the output of
two identical processors, with identical inputs, allows error detection. One needs to make
sure that the replicated data sources have independent failure modes (e.g., separate power
supply, etc.). Techniques based on comparison have a high cost, but ensure low latency
and high coverage rate.

Another class of methods relies on plausibility checks. These methods are application
dependent. For instance, the values output by a process may be known to be in a certain
range, and this property may be checked. Alternatively, bounds may be known for the
variation rate in a series of output values. Plausibility checks are usually lest costly than
techniques based on redundancy. Their latency depends on the specific situation. Their
weak point is their coverage rate, which is often small, because plausibility usually entails
loose constraints.

Examples of the use of error detection techniques are presented in the case studies
(11.9).

11.2.2 Error Recovery

As noted in 11.2, backward recovery is a general technique, while forward recovery is
application-specific. In this section, we briefly examine the main aspects of backward
recovery.

Stated in general terms, the principle of backward recovery is to replace an erroneous
system state by a previously recorded correct state, an operation called rollback. The
process of state recording is known as checkpointing. The state is copied on stable storage,
a highly available storage medium.



11.2. ASPECTS OF FAULT TOLERANCE 11-9

The state of a distributed system consists of the local states of its components, together
with the state of the communication channels, i.e., the messages that were sent but not
yet delivered. This state must be consistent, i.e., it must be the result of an observation
that does not violate causality. To explain this notion, consider a system made up of two
components A and B, and suppose A sends a message m to B. If A registers its state
before sending m, and B registers its state after receiving m, the global checkpointed state
is inconsistent, because it records the receipt of a message that has not been sent.

There are two main techniques to construct a consistent state. In coordinated check-
pointing, the components of the system register their state in a coordinated way, by
exchanging messages, so as to ensure that the recorded state (including the state of
the communication channels) is consistent. A coordination algorithm is described in
[Chandy and Lamport 1985]. In uncoordinated checkpointing, components checkpoint
their state independently. If recovery is needed, a consistent state must be reconstructed
from these independent records, which implies that multiple records must be conserved
for each component.

Coordinated checkpointing is usually preferred, since it implies less frequent state sav-
ing (state recording on stable storage tends to be the major component of the cost). In
addition, a technique known as message logging allows a more recent state to be recon-
structed from a consistent checkpoint, by recording the messages sent by each process,
and replaying the receipt of these messages, starting from the recorded state. A survey of
checkpoint-based recovery is [Elnozahy et al. 2002].

Backward recovery is illustrated by two examples, which are further detailed in this
chapter.

• Process pairs, a technique introduced in the HP NonStop system (originally Tan-
dem [Bartlett 1981]). In this system, all hardware components (CPU, bus, memory
modules, controllers, disks) are replicated, and the operating system implements
highly available processes, by representing a process by a pair of processes running
on different processors. More details in 11.6.2.

• Micro-reboot, a technique used in multi-tier middleware [Candea et al. 2004]. This
technique is based on the empirical observation that a software failure of undeter-
mined origin is usually cured by rebooting the system (restarting from a “clean”
state). The difficulty is to determine the environment to be rebooted: it should be
large enough to repair the error, but as small as possible for efficiency. More details
in ??.

See [Bartlett and Spainhower 2004] for a review and a comparison of two highly avail-
able commercial systems using recovery (HP-Tandem NonStop and IBM zSeries).

11.2.3 Fault Masking

Fault masking (providing the system with enough internal redundancy to suppress the
effect of a fault) has been used for a long time to improve the availability of circuits,
through the technique of Triple Modular Redundancy (TMR). The circuit is organized in
successive stages (the output of stage i is the input of stage i + 1), and the components
of each stage are replicated in three instances, connected to a majority voter. The main



11-10 CHAPTER 11. AVAILABILITY

assumption is that the replicated components are highly reliable and fail independently3.
The voter compares the output of the three components. In the absence of failures, the
three outputs are identical. If one output differs from the other two, it is considered
faulty, and discarded. The probability of the three outputs being different (i.e., at least
two faulty components) is assumed to be negligible. Since the voter itself is a component
that may fail, it is also replicated in three instances. This system tolerates the failure of
one component at each stage.

Another instance of hardware fault masking using voting is the design of the Tandem
Integrity system, in which the voter compares the output of three replicas of the CPU,
thus masking the failure of one replica. In contrast with the Tandem NonStop system
(11.2.2), which relies on process pairs supported by a special purpose operating system,
Tandem Integrity can use any standard system, such as Unix.

A general method for ensuring fault masking is described in 11.3.1.

11.3 State Machines and Group Communication

A generic model that captures the notion of redundancy, based on state machines, is
described in 11.3.1. To use this model to actually implement fault tolerant systems,
one needs group communication protocols, whose specification and implementation are
respectively examined in 11.3.2 and 11.4.

11.3.1 The State Machine Model

A general model for a hardware or software system (or for a system component) is that of
a deterministic state machine (SM), executed by a process which receives requests on an
input channel and sends answers on an output channel. A number of such machines may
be assembled to make up a complex system.

The behavior of the state machine may be described as follows.

Call S0 the initial state of the SM and Sk its state after having processed the kth

request rk (k = 1, . . . ). The effect of the receipt of request ri is the following:

(a) Si = F (Si−1, ri)

(b) ai = G(Si−1, ri)

(c) the answer ai is sent on the output channel.

The functions F and G (the state transition function and the output function, respec-
tively) define the behavior of the SM.

In order to ensure consistency, causal order4 must be preserved for request transmission:
if send(r) and send(r′) are the events of sending two requests, and if send(r) happens
before send(r′), then r′ cannot be delivered to the SM unless r has been delivered.

A system implemented as an SM can be made tolerant to a number f of failures, by
the following method. The SM (together with the process that executes it) is replicated

3While this assumption is usually justified for hardware components, it needs to be reconsidered if the
failures are due to environmental conditions, such as high temperature, shared by all replicated components.

4Causal order is defined by the happened before relationship [Lamport 1978b], which subsumes local
order on a single site and “send before receive” order for message transmission between sites.



11.3. STATE MACHINES AND GROUP COMMUNICATION 11-11

in N copies (or replicas), where N = f +1 in the case of fail-stop failures, and N = 2f +1
in the case of Byzantine failures (in this latter case, a majority of correct processes is
needed). There are two main approaches to ensure that the system is available, as long as
the number of faulty replicas is less or equal to f .

• Coordinator-based replication. In this approach, also called primary-backup
[Schneider 1993], a particular replica is chosen as coordinator (or primary); the other
replicas are called back-ups. The requests are sent to the primary. The primary’s
task is (i) to process the requests and to send the replies; and (ii) to keep the back-
ups consistent. If the primary fails, one of the back-ups becomes the new primary.
As shown in 11.6, this technique relies on a particular communication protocol (re-
liable view-synchronous broadcast), which guarantees that, whenever the primary
fails, the new primary is in a state that allows it to correctly fulfill its function.

• Active replication. In this approach, also called replicated state machine
[Lamport 1978a, Schneider 1990], all replicas have the same role, and each request
is directly sent to each replica. Since the behavior of the SM is deterministic, a
sufficient condition for the N replicas to behave identically (i.e., to keep the same
state and to send the same replies) is that all replicas receive the same requests,
in the same order. Achieving fault tolerance with active replication therefore relies
on a particular communication protocol (causal totally ordered broadcast), which
is discussed in more detail in 11.3.2 and 11.4.2, together with other forms of group
communication.

These approaches define two basic patterns that are recurrent in fault tolerance tech-
niques. System implementations based on both approaches are described in more detail
in 11.6.

11.3.2 Group Communication

Since fault tolerance is based on replication, process groups play a central role in the
design of fault tolerant systems. For example, as seen in 11.2.3, a group of processes can
be organized as a reliable implementation of a single process, using the replicated state
machine approach. However, this places specific requirements on communication within
the group (in this case, totally ordered broadcast is required).

In this section, we introduce the main concepts and terminology of process groups
and we discuss the requirements of group communication and membership protocols. The
implementation of these protocols is subject to impossibility results, which are examined
in 11.3.3. Practical approaches to group communication are the subject of 11.4.

A process group is a specified set of processes (the members of the group), together
with protocols related to:

• Group communication (broadcast or multicast), i.e., sending a message to the mem-
bers of the group, with specified requirements.

• Group membership, i.e., changing the composition of the group. The system main-
tains knowledge about the current composition of the group, represented by a view
(a list of processes).



11-12 CHAPTER 11. AVAILABILITY

A global picture of group protocols is shown in Figure 11.3.

Figure 11.3. Group protocols

A typical API for group protocols includes the following primitives:

• broadcast(p,m). Process p broadcasts message m to the group.

• deliver(p,m). Message m is delivered to process p.

• view-chng(p, id, V ). Following a change in the group membership, a new view, V ,
identified by number id, is delivered to process p.

Additional primitives may be provided by specific systems (examples are given below).

Process groups are useful for implementing fault tolerant systems, and also for sup-
porting information sharing and collaborative work.

Group protocols are an important subject of ongoing research, because two of their
main aspects are still not well understood. First, specifying a group protocol is a non-
trivial task. Group protocol specification is the subject of [Chockler et al. 2001], who
note that most existing specifications (at the date of writing) are incomplete, incorrect, or
ambiguous. Second, implementing fault tolerant group protocols is often algorithmically
difficult, or, in some cases, impossible (see 11.3.3).

We now review the specifications of the most usual protocols.

Group communication protocols

In group communication primitives, a process (the sender) sends a message to a set of
destination processes (the receivers). There are two main forms of group communication
primitives, which differ by the definition of the receivers.

• Broadcast. The receivers are the processes of a single process set, which may be ex-
plicitly or implicitly defined, and which includes the sender. Examples: all members
of a process group; “all” processes of a system.

• Multicast. The receivers are the members of one or several process groups, which
may or not overlap. The sender may or not be part of the receivers.



11.3. STATE MACHINES AND GROUP COMMUNICATION 11-13

The main problems specific to multicast are related to overlapping destination groups.
We only consider here the case of broadcast.

The specifications of broadcast are discussed in detail in [Hadzilacos and Toueg 1993]
and [Chockler et al. 2001]. Assume a fail-stop failure mode (without repair) for processes,
and a reliable, asynchronous communication system. A process is said to be correct if it
does not fail.

The minimal requirement for a broadcast primitive is that it be reliable, which is an
“all or nothing” property: a message must be delivered to all of its correct receivers, or to
none. More precisely, if a message is delivered to one correct receiver, it must be delivered
to all correct receivers. A broadcast protocol that is not reliable is not of much practical
use. The value of reliability lies in the shared knowledge that it implies: when a broadcast
message is reliably delivered to a correct process, the process “knows” that this message
will be delivered to all correct processes in the destination set.

A much stronger requirement is that of total order. A totally ordered, or atomic,
broadcast is a reliable broadcast in which all receivers get the messages in the same order.
More precisely, if two messages, m1 and m2, are delivered to a correct process p in that
order, then m2 may not be delivered to another correct process q unless m1 has been first
delivered to q.

The two above requirements are independent of the order in which messages are being
sent. Another set of requirements involves the sending order:

FIFO broadcast : two messages issued by the same sender must be delivered to all
receivers in their sending order. More precisely, if a process has broadcast m1 before m2,
then m2 may not be delivered to a correct process q unless m1 has been first delivered to
q.

Causal broadcast : If the sending events of two messages are causally ordered (see
11.2.3), then the messages must be delivered to any receiver in their causal order. More
precisely, if the sending of m1 happened before the sending of m2, then m2 may not be
delivered to a correct process q unless m1 has been first delivered to q. FIFO is a special
case of causal broadcast.

These requirements are orthogonal to those of reliability and atomicity, which leads to
the main six forms of broadcast summarized on Figure 11.4.

Figure 11.4. Requirements for broadcast protocols (adapted from [Hadzilacos and Toueg 1993])

An additional requirement, again orthogonal to the previous ones, is uniformity. In a
uniform broadcast, we are also interested in the behavior of faulty processes. For example,
reliable uniform broadcast is specified as follows: if a message m is delivered to a (correct or
faulty) process, then it must be delivered to all correct processes. The motivation behind
this requirement is that the delivery of a message may trigger an irreversible action, and



11-14 CHAPTER 11. AVAILABILITY

a process may get a message and perform that action before failing.

The above specification assume that the group of processes is static, i.e., processes
cannot join or leave the group (they may only crash). The specification may be extended
to dynamic groups [Schiper 2006a], using the group membership service defined below.

Group membership protocols

Recall that a group (in the present context) is a set of processes, the members of the
group, together with an API for communication and membership. We now assume that
the composition of the group changes over time: members may leave the group, or fail; new
processes can join the group, and failed processes can be repaired and join the group again.
The aim of group membership protocols is to implement the join and leave operations, and
to keep the members of the group informed about the current membership, by delivering
a sequence of views.

There are two versions of group membership protocols. The primary partition version
assumes that the sequence of views is totally ordered. This is the case if the process
group remains connected (i.e., all its members can communicate with each other), or if
one only considers a single partition in a disconnected group. In the partitionable version,
the sequence of views is partially ordered. This applies to a partitioned group, in which
several partitions are taken into account. We only consider the primary partition version.

As mentioned above, writing precise and consistent group membership protocol spec-
ifications is a surprisingly difficult task. Recall (1.4.2) that the required properties are
categorized into safety (informally: no undesirable event or condition will ever occur)
and liveness (informally: a desirable event or condition will eventually occur). These
requirements are summarized as follows (see [Chockler et al. 2001] for formal statements).

Recall that the group membership service delivers views to the members of the group.
A view is a list of processes that the service considers to be current members of the group.
When a view v is delivered to process p, p is said to install the view.

The safety properties include:

• Validity. A process which installs a view is part of that view (self-inclusion property).

• Total order. The set of views installed by the processes is totally ordered (thus one
may speak of the next view, of consecutive views, etc.).

• Initial view. There exists an initial view, whose members are explicitly defined.

• Agreement. The sequence of views installed by a process is a subsequence of con-
tiguous elements of the global sequence of views (consistency property).

• Justification. A change of view (installing a new view) must be motivated by one of
the following events: a process has joined the group, left the group, or failed.

• State transfer. The state of the group (i.e., the contents of a view) may be transferred
to the next view in the sequence, except if all processes have failed. “State transfer”
means that at least one process that installed the new view was included in the
predecessor of that view.



11.3. STATE MACHINES AND GROUP COMMUNICATION 11-15

Liveness is defined by the following property: any event associated with a given process
(join, leave, or failure) will eventually be visible in a further view (except if a process fails
after joining, in which case it may never install a view).

A recent proposal [Schiper and Toueg 2006] suggests to consider group membership as
a special case of a more general problem, set membership, in which the processes of the
group may add or remove elements of a set, and need to agree on the current composition of
the set. The members of the set are drawn from an arbitrary universe. Group membership
is the special case in which the members of the set are processes. This approach favors
separation of concerns (1.4.2), by identifying two separate issues: determining the set of
processes that are deemed to be operational, and ensuring agreement over the successive
values of that set. Different algorithms are needed to solve these two problems.

Virtual synchrony

One important aspect of group protocols is the connection between group member-
ship and communication through the notion of virtual synchrony, first introduced in
[Birman and Joseph 1987]. Virtual synchrony defines a broadcast protocol (view syn-
chronous broadcast) that is consistent with group membership, as implemented by the
view mechanism.

The specification of view synchronous broadcast extends the agreement condition de-
fined for group membership. The extended conditions are as follows.

• Agreement for view synchronous communication. Two properties hold:

– The (correct) members of the process group install the same sequence of totally
ordered views of the group.

– The (correct) members of the process group see the same sequence of delivered
messages between the installation of a view vi and that of the next view vi+1.

• Justification for view synchronous communication: any message delivered has actu-
ally been sent by some process .

• Liveness for view synchronous communication: any message sent by a correct process
is eventually delivered.

These conditions are illustrated by the examples shown in Figure 11.5. In all cases,
process p1 broadcasts a message to a group including itself and p2, p3, p4, all alive in view
vi. In case (a), there is no view change, and the system behaves correctly. In case (b), p1

crashes during broadcast, and the message is delivered to p3 and p4 but not to p2. This
violates virtual synchrony, since the surviving processes in view vi+1 have not received the
same set of messages. This also happens in case (c), for a different reason: although the
message eventually gets to p4, it is only delivered after p4 has installed the new view; p4

is inconsistent in the meantime. Finally, virtual synchrony is respected in case (d), since
the surviving processes in view vi+1 have received the same set of messages when the view
is installed.

One common use of virtual synchrony is illustrated by the example of a replicated
database. Each replica is under the control of a manager process, and updates are (atom-
ically) broadcast to all managers. If this broadcast does not respect virtual synchrony,



11-16 CHAPTER 11. AVAILABILITY

Figure 11.5. Virtual synchrony

one ore more replica(s) will become inconsistent after a view change following the crash
of one of the managers. Virtual synchrony ensures that a reader can consult any of the
replicas; it may get an out of date version (one that has not yet received the last update),
but not an inconsistent one. Data replication is discussed in more detail in 11.7. Another
application of virtual synchrony (fault tolerant servers) is presented in 11.6.2.

There is a close relationship between group membership and group communication.
Actually, each of these services can be implemented on top of the other one. In most
usual implementations, the group membership layer lies beneath the group communication
protocol stacks. In [Schiper 2006a], a different approach is proposed, in which atomic
broadcast is the basic layer, and group membership is implemented above this layer. The
claimed advantage is simplicity, and better efficiency in most practical situations.

Both group membership and atomic broadcast can be expressed in terms of an agree-
ment protocol, consensus, which we now examine.

11.3.3 Consensus and Related Problems

Consensus is a basic mechanism for achieving agreement among a set of processes. It
can be shown that both the total order broadcast and the virtually synchronous group
membership protocols are equivalent to consensus. The specifications and implementations
of consensus therefore play a central role in the understanding of fault tolerant distributed
algorithms. It has been proposed [Guerraoui and Schiper 2001] that a generic consensus
service be provided as a base for building group membership and group communication
protocols.

Consensus Specification

Given a set of processes {pi} linked by a communication system, consensus is specified as
follows. Initially, each process pi proposes a value vi. If the algorithm terminates, each
process pi decides a value di. The following conditions must hold:



11.3. STATE MACHINES AND GROUP COMMUNICATION 11-17

• Agreement. No two correct processes decide different values.

• Integrity. Each process decides at most once (i.e., if it decides, the decision may not
be modified).

• Validity. A decided value must be one of those proposed (this condition eliminates
trivial solutions, in which the processes decide some predetermined value).

• Termination. If at least one correct process starts the algorithm, all correct processes
decide in finite time.

A process is correct if it does not fail.
Solving consensus in the absence of failures is a simple task. It may be done in two

ways, corresponding to the patterns identified in 11.3.1.

1. One process is defined as the coordinator (or primary). On the primary’s request,
each process sends its proposed value to the primary. After it has received all values,
the primary chooses one of them as the decided value, and sends it to all processes.
When it receives a value from the primary, each process decides that value.

2. Each process sends its proposed value to every process (including itself). Once
a process has received proposed values from all the pis, it applies a deterministic
decision algorithm (the same one for all processes) to choose a value among those
received, and it decides that value.

In both cases, if we assume reliable communication, the algorithm terminates. This is
true even if communication is asynchronous, although the termination time is not bounded
in that case.

The two above approaches are the base of the algorithms used to solve consensus in
the presence of failures. In that case, achieving consensus becomes much more complex,
and in many cases intractable, as discussed below.

We now present (without proof) a few important results on the tractability of the
problems associated with group protocols. The main impossibility results concern asyn-
chronous systems and are linked to the impossibility of “perfect” failure detection in such
systems. We then discuss the main approaches to the solution of agreement problems,
which are the base of group protocols.

Limits of Group Protocol Algorithms

Reliable broadcast can be implemented in an asynchronous system, using a “flooding”
algorithm. When a process receives a message, it transmits the message to all its neighbors
(the processes to which it is connected by a direct link), and then delivers the message to
itself. To broadcast a message, the sender sends it to itself, and follows the above rule. This
algorithm implements the specification of reliable broadcast; in addition, it is uniform, i.e.,
if a message is delivered to a (correct or faulty) process, then it is delivered to all correct
processes. Uniformity is guaranteed by the fact that a process delivers a message to itself
only after having sent it to its neighbors. Since the system is asynchronous, there is no
upper bound on the delivery time of a message.



11-18 CHAPTER 11. AVAILABILITY

This algorithm can be extended to achieve FIFO and causal reliable broadcast
[Hadzilacos and Toueg 1993].

The central impossibility result, often known as FLP from its authors’ names Fischer,
Lynch, and Paterson [Fischer et al. 1985], is the following: in an asynchronous system,
there is no deterministic algorithm that achieves consensus in finite time if one process (at
least) may fail. Recall the assumptions: the failure mode is fail-stop, and communication is
reliable. This impossibility extends to totally ordered broadcast and to view-synchronous
group membership, since these algorithms are equivalent to consensus.

With the same assumptions, it has been demonstrated [Chandra et al. 1996b] that
group membership cannot be solved in an asynchronous system.

How to live with these limitations? Three main tracks have been explored.

• Use randomization. The FLP result only applies to deterministic algorithms. Ran-
domized algorithms have been devised to achieve consensus in an asynchronous sys-
tem (see a review in [Aspnes 2003]).

• Relax the asynchrony assumption. Various forms of “partial synchrony” have been
investigated [Dwork et al. 1988]. We use that specified in 11.1.4.

• Use an imperfect algorithm, i.e., one that may fail, but which is the best possible in
some sense. Two main approaches have been proposed: the Paxos algorithm, and
unreliable failure detectors. They are examined below.

Most practical approaches to group protocols combine the use of one of the above
algorithms and a partial synchrony assumption. They are discussed in Section 11.4.

The Paxos consensus protocol

The first approach to solving consensus is known as the Paxos protocol. The failure
hypotheses are weaker than indicated above: the network may lose messages, and the
processes may fail by crashing, and subsequently recover. Paxos was introduced in
[Lamport 1998]; an equivalent protocol was included in the replicated storage system of
[Oki and Liskov 1988]. A pedagogical description may be found in [Lampson 2001].

The protocol works roughly as follows. The system goes through a sequence of views. A
view defines a period during which one selected process, the primary, attempts to achieve
agreement (using the same principle as the primary-based algorithm described in 11.3.2 in
the absence of failures). After a view is started as the result of a view change, the protocol
works in two phases. In the first phase, the primary queries the participants for their state
(i.e., their replies in past views). Then the primary selects an “acceptable” value (in a sense
defined later), and proposes that value5. If a majority agrees on that value, consensus is
achieved, and the decision is propagated to the participants. Thus the protocol succeeds
if the primary and a majority of processes live for a sufficiently long time to allow two
and a half rounds of exchanges between the primary and the other processes. If either a
majority cannot be gathered or the primary fails before agreement is reached or progress

5When the protocol is started by a client’ request (as opposed to a view change), the value is that
proposed by the client



11.3. STATE MACHINES AND GROUP COMMUNICATION 11-19

is “too slow”, a new primary is elected6, and a new view is started. The view change
protocol is the choice of a new primary, followed by the first phase described above. The
“normal” protocol achieves safety (agreement on a value), while the view change protocol
guarantees liveness (i.e., progression).

Figure 11.6. The Paxos consensus protocol

Paxos does not require that a single primary should be present at a time. Several views
(and therefore several primaries) may coexist, depending on how the election process was
started upon detecting failure to agree. However, Paxos imposes a total order on views,
allowing processes to reject the values proposed by any primary that is not in the most
recent view. A key point is that Paxos restricts the primary’s choice of acceptable values: if
a majority has once agreed on a value in some view (and a decision has not been reached in
that view because of failures), only that value may be proposed in subsequent views. This
stability property ensures that no two different values may be decided, a safety property.

The actual working of Paxos is much more subtle than shown in the above rough
description (see references above). In addition, a number of optimizations may be made,
which complexify the description. Paxos is not guaranteed to ensure agreement in finite
time (since FLP still holds), but it is extremely robust in the presence of failures and
unknown delays.

One practical use of Paxos is consistency management in replicated storage systems
(11.7). See [Oki and Liskov 1988] for an early application, and [Chandra et al. 2007] for
a recent one.

Unreliable failure detectors

The idea of unreliable failure detectors [Chandra and Toueg 1996] is based on the following
intuitive remark: the intractability of consensus in asynchronous systems is linked to
the impossibility of telling a faulty process from a slow one, i.e., to the impossibility of
building a “perfect” failure detector. This leads to the following questions: (i) what are the
properties of a perfect failure detector? and (ii) is consensus solvable with an “imperfect”
failure detector, and, if so, what properties are required from such a detector?

6The election protocol may be very simple, as long as it selects one primary per view. Conflicts between
coexisting views are solved as explain later.



11-20 CHAPTER 11. AVAILABILITY

A failure detector is a device that can be used as an oracle: it delivers upon request the
list of processes that it suspects of being faulty. In a distributed system, a failure detector
is itself a distributed program, made up of cooperating components, one on each site. To
use the detector, a process consults the local failure detector component.

Two properties have been identified for a perfect failure detector: strong completeness,
i.e., every faulty process is eventually suspected by every correct process; and strong
accuracy, i.e., no correct process is ever suspected by any correct process. Thus, there is a
time after which the list delivered by a perfect detector contains all the faulty processes,
and only those processes.

These properties can be weakened7, allowing several classes of imperfect (or unreliable)
detectors to be defined. Weak accuracy means that some correct process is never suspected
by any correct process. Both strong and weak accuracy may be eventual ; in that case,
there exists a time after which the indicated property holds.

One may then define the following classes8 of detectors by their properties:

• Perfect (P ): strong completeness, strong accuracy.

• Strong (S): strong completeness, weak accuracy.

• Eventually Perfect (⋄P ): strong completeness, eventually strong accuracy.

• Eventually Strong (⋄S): strong completeness, eventually weak accuracy.

The detectors other than P are unreliable, i.e., they can make false suspicions.
The most important result [Chandra and Toueg 1996] is the following: in an asyn-

chronous system with fail-stop failures, consensus can be solved using a detector in any
of the classes P , S, ⋄P , ⋄S. Moreover [Chandra et al. 1996a], ⋄S is the weakest detector
allowing consensus.

More precisely, the solutions to the consensus problem among n processes, using failure
detectors, have the following properties.

• With P : allows up to n − 1 failures, needs f + 1 rounds, where f is the number of
failures tolerated.

• With S: allows up to n − 1 failures, needs n rounds.

• With ⋄S: allows up to ⌈n/2⌉ − 1 failures, needs a finite (but unbounded) number of
rounds.

The consensus algorithm for a ⋄S detector is based on the principle of the rotating
coordinator. The coordinator tries to achieve agreement among a majority of processes,
based on the proposed values. This may fail, because the coordinator may be falsely
suspected or may crash. The function of coordinator rotates among the processes. Even-
tually (as guaranteed by the properties of ⋄S), a correct process that is never suspected

7We do not need to consider weak completeness (every faulty process is eventually suspected by some

correct process), because a weakly complete detector is easily converted into a strongly complete one, by
making each process reliably broadcast the list of suspected processes.

8A detector belongs to a given class if it has the properties specified for that class. In the following, we
often use the term “detector C” to denote a detector of class C, where C is one of P , ... ⋄S.



11.4. PRACTICAL ASPECTS OF GROUP COMMUNICATION 11-21

will become coordinator, and will achieve agreement, provided that a majority of correct
processes exists.

None of the above detectors may be implemented in an asynchronous system by a
deterministic algorithm (if this were the case, it would contradict the FLP result). Imple-
mentations under a partial synchrony assumption are described in 11.4.1.

Paxos and unreliable failure detectors are two different approaches to solving consensus.
A detailed comparison of these approaches is still an open issue. The interest of Paxos is
that it ensures a high degree of tolerance to failures, (including message loss), and that it
may be extended to Byzantine failures. The interest of unreliable failure detectors is that
they allow a deep understanding of the origins of the difficulty of achieving consensus, and
that they provide guidelines for actual implementations (see 11.4.1).

11.4 Practical Aspects of Group Communication

In this section, we examine the actual implementation of group protocols. We start by
discussing implementation issues for failure detectors (11.4.1). We then look at atomic
broadcast (11.4.2) and group membership (11.4.3). We conclude with a discussion of
group protocols for large scale systems (11.4.4).

11.4.1 Implementing Failure Detectors

We first present the basic assumptions and mechanisms that underlie the implementations
of failure detectors. We then discuss the quality factors of these detectors, and conclude
with a few practical considerations.

Basic Mechanisms of Failure Detection

Recall (11.3.3) that none of the failure detectors P , S, ⋄P , ⋄S may be implemented by
a deterministic algorithm in an asynchronous system. The approach usually taken in
practice is to relax the asynchrony assumption, by considering a particular form of partial
synchrony : assume that bounds exist for the message transmission time and for the speed
ratio between processes, but that these bounds are unknown a priori, and hold only after a
certain time. This assumption is realistic enough in most common situations, and it allows
the use of timeouts for implementing failure detectors. Recall that the failure model for
processes is fail-stop, without recovery.

Failure detection relies on an elementary mechanism that allows a process q to deter-
mine if a process p is correct or faulty, assuming an estimated upper bound ∆p,q is known
for the transmission time9 of a message between p and q. Two variants of this mechanism
have been proposed (Figure 11.7).

• Pull, also called ping. Process q periodically sends a request “are you alive?” to
process p, which answers with a message “I am alive”. If no answer is received after
2∆p,q, q suspects p of having crashed.

9also assume, for simplicity, that ∆p,q = ∆q,p



11-22 CHAPTER 11. AVAILABILITY

• Push, also called heartbeat. Process p periodically sends to q (and possibly to other
processes) a message “I am alive”. Assume that p and q have synchronized clocks,
and that q knows the times ti at which p sends its message. If, for some i, q has
not received the heartbeat message from p by time ti + ∆p,q, q suspects p of having
crashed.

Figure 11.7. Principle of ping and heartbeat

The above description only gives the general principle, and various details need to be
filled in. In particular, how is ∆p,q estimated? One common technique is to dynamically
determine successive approximations to this upper bound for each process, by starting
with a preset initial value. If the value is found to be too small (because a heartbeat
message arrives after the deadline), it is increased (and the falsely suspected process is
removed from the suspects’ list). With the partial synchrony assumption, this technique
ensures convergence towards the eventual upper bound.

Another important design choice for a failure detection algorithms is the communica-
tion pattern between the processes. Two main patterns have been considered.

• Complete exchange (or all-to-all communication). Every process communicates with
every other one. For n processes, the number of messages is thus of the order of
n2 per run (more precisely nC, where C is the number of faulty processes in the
considered run).

• Exchange over a logical (or virtual) ring. Each process only communicates with
some10 of his successors or predecessors on the ring. The number of messages is now
linear in n.

In addition, hierarchical patterns (with separate intra-group and inter-group commu-
nication) have been introduced for large scale systems (see 11.4.4).

Various combinations of the design choices indicated above (ping or heartbeat, deter-
mining the starting point for the watchdog timers, estimating an upper bound for the
communication delay, choosing a communication pattern) have been proposed. A sum-
mary of some proposals follows.

In their seminal paper on unreliable failure detectors, [Chandra and Toueg 1996] pro-
pose an implementation of a failure detector ⋄P , assuming partial synchrony (as specified

10Typically, if an upper bound f is known for the number of tolerated failures, a process needs to
communicate with its f + 1 successors to ensure it will reach a correct process.



11.4. PRACTICAL ASPECTS OF GROUP COMMUNICATION 11-23

at the beginning of this section). This implementation uses heartbeat, all-to-all communi-
cation, and adaptive adjustment of the transmission time bound, as described above. The
main drawback of this implementation is its high communication cost (quadratic in the
number of processes).

To reduce the number of messages, [Larrea et al. 2004] propose implementations of ⋄P
and ⋄S using a logical ring, a ping scheme for failure detection, and again an adaptive
adjustment of the transmission time bound. Each process q monitors (i.e., “pings”) a
process p, called the “target” of q; initially, this target is succ(q), the successor of q on the
ring. If q suspects p, it adds it to its suspects lists, and its new target becomes succ(p);
if q stops suspecting a process r, it also stops suspecting all processes between r and its
current target, and r becomes its new target. The drawback of this algorithm is that
each process only maintains a “local” (partial) suspects list. To build the global list (the
union of all local lists), each local list needs to be broadcast to all processes. While this
transmission may be optimized by piggybacking the local list on top of ping messages, this
delays the detection, by a process q, of faulty processes outside q’s own local list. Several
variations of this scheme, still based on a logical ring but using heartbeat instead of ping,
are proposed in [Larrea et al. 2007].

[Mostefaoui et al. 2003] take a different approach, by changing the assumptions on the
communication system. They do not assume partial synchrony, but introduce assumptions
involving an upper bound f on the number of faulty processes. These assumptions amount
to saying that there is at least one correct process that can monitor some process (i.e.,
receive responses to its ping messages to that process).

There does not appear to exist a “best” failure detector, due to the wide range of
situations, and to the variety of cost and quality metrics. The quality metrics are discussed
below.

Quality Factors of Failure Detectors

A comprehensive investigation of the quality of service (QoS) factors of failure detectors
is presented in [Chen et al. 2002]. This work was motivated by the following remarks:

• The properties of failure detectors (11.3.3) are specified as eventual. While this
quality ensures long term convergence, it is inappropriate for applications that have
timing constraints. The speed of detection is a relevant factor in such situations.

• By their nature, unreliable failure detectors make false suspicions. In practical situ-
ations, one may need a good accuracy (reducing the frequency and duration of such
mistakes).

[Chen et al. 2002] propose three primary QoS metrics for failure detectors. The first
one is related to speed, while the other two are related to accuracy. They also define
additional quality metrics, which may be derived from the three primary ones.

The primary metrics are defined as follows, in the context described at the beginning of
11.4.1, i.e., a system composed of two processes p and q, in which q monitors the behavior
of p, and q does not crash (we only give informal definitions; refer to the original paper
for precise specification).



11-24 CHAPTER 11. AVAILABILITY

• Detection time. This is the time elapsed between p’s crash and the instant when q
starts suspecting p permanently.

• Mistake recurrence time. This is the time between two consecutive mistakes (a
mistake occurs when q starts falsely suspecting p). This is analogous to the notion
of MTTF as defined in 11.1.1 (although the “failure” here is a faulty behavior of
the detector).

• Mistake duration. This is the time that it takes to the failure detector to correct a
mistake, i.e., to cease falsely suspecting a correct process. This is analogous to the
notion of MTTR as defined in 11.1.1.

Since the behavior of the system is probabilistic, the above factors are random variables.
More precisely, they are defined by assuming the system has reached a steady state, i.e.,
a state in which the influence of the initial conditions has disappeared11. Note that these
metrics are implementation-independent: they do not refer to a specific mechanism for
failure detection.

[Chen et al. 2002] present a heartbeat-based algorithm, and show that it can be config-
ured to reach a specified QoS (as defined by the above primary factors), if the behavior of
the communication system is known in terms of probability distributions for message loss
and transmission time. The algorithm makes a best effort to satisfy the QoS requirements,
and detects situations in which these requirements cannot be met. Configuration consists
in choosing values for the two parameters of the detector: η, the time between two suc-
cessive heartbeats, and δ, the time shift between the instants at which p sends heartbeats
and the latest instants12 at which q expects to receive them before starting to suspect p.
If the behavior of the communication system varies over time, the algorithm may be made
adaptive by periodically reevaluating the probability distributions and re-executing the
configuration algorithm.

Concluding Remarks

The results discussed above rely on several assumptions. Are these assumptions valid in
practice?

Concerning the partial synchrony assumption, observation shows that a common be-
havior for a communication system alternates between long “stable” phases, in which there
is a known upper bound for transmission times, and shorter “unstable” phases, in which
transmission times are erratic. This behavior is captured by the partial synchrony model,
since an upper bound for the transmission time eventually holds at the end of an unstable
phase.

Concerning reliable communication, the “no message loss” assumption is justified for
LANs and WANs, in which message retransmission is implemented in the lower layer
protocols. It is questionable in mobile wireless networks.

11In practice, steady state is usually reached quickly, typically after the receipt of the first heartbeat
message in a heartbeat-based detector

12The basic algorithm assumes that the clocks of p and q are synchronized; it can be extended, using
estimation based on past heartbeats, to the case of non-synchronized clocks.



11.4. PRACTICAL ASPECTS OF GROUP COMMUNICATION 11-25

Concerning the fail-stop failure model, the assumption of crash without recovery is
overly restrictive. In practice, failed components (hardware or software) are repaired after
a failure and reinserted into the system. This behavior can be represented in two ways.

• Using dynamic groups. A recovered component (represented by a process) can join
the group under a new identity.

• Extending the failure model. A crash failure model with recovery has been investi-
gated in [Aguilera et al. 2000].

In all cases, recovery protocols assume that a form of reliable storage is available.
Concerning the basic failure detection mechanisms, both heartbeat and ping are used,

since they correspond to different tradeoffs between efficiency (in terms of number of
messages) and accuracy. Heartbeat seems to be the most common technique. Since ping
uses more messages, it is usually associated with a specific organization of the interprocess
links, such as a tree or a ring, which reduces the connectivity.

11.4.2 Implementing Atomic Broadcast

A large number of atomic broadcast and multicast algorithms have been published.
[Défago et al. 2004] give an extensive survey of these algorithms and propose a taxon-
omy based on the selection of the entity used to build the order. They identify five classes,
as follows.

• Fixed sequencer. The order is determined by a predefined process, the sequencer,
which receives the messages to be broadcast and resends them to the destination
processes, together with a sequence number. The messages are delivered in the
order of the sequence numbers. This algorithm is simple, but the sequencer is a
bottleneck and a single point of failure.

• Moving sequencer. Same as above, but the role of sequencer rotates among the
processes. The advantage is to share the load among several processes, at the price
of increased complexity.

• Privilege-based. This class of algorithms is inspired by the mutual exclusion technique
using a privilege in the form of a token, which circulates among the processes. A
process can only broadcast a message when it holds the token. To ensure message
ordering, the token holds the sequence number of the next message to be broadcast.
This technique is not well suited for dynamic groups, since inserting or removing a
process involves a restructuring of the circulating pattern of the token. Also, special
care is needed to ensure fairness (such as specifying a limit to the time that a process
holds the token).

• Communication History. The delivery order is determined by the senders, but is im-
plemented by delaying message delivery at the destination processes. Two methods
may be used to determine the order: causal time-stamping, using a total order based
on the causal order, and deterministic merge of the message streams coming from
each process, each message being independently (i.e., non causally) timestamped by
its sender.



11-26 CHAPTER 11. AVAILABILITY

• Destinations Agreement. The delivery order is determined through an agreement
protocol between the destination processes. Here again, there are several variants.
One variant uses a sequence of consensus runs to reach agreement over the sequence
of messages to be delivered. Another variant uses two rounds of time-stamping: a
local time-stamp is attached to each message upon receipt, and a global time-stamp
is determined as the maximum of all local timestamps, thus ensuring unique ordering
(ties between equal timestamps are resolved using process numbers).

In addition, [Défago et al. 2004] describe a few algorithms that are hybrid, i.e., that
mix techniques from more than one of the above classes.

Two delicate issues are (i) the techniques used to make the algorithms fault-tolerant;
and (ii) the performance evaluation of the algorithms. This latter aspect often relies on
local optimization (e.g., using piggybacking to reduce the number of messages, or exploit-
ing the fact that, on a LAN, messages are most often received in the same order by all
processes). Therefore, the algorithms are difficult to compare with respect to performance.

Regarding fault tolerance, two aspects need to be considered: failures of the commu-
nication system, and failures of the processes.

Many algorithms assume a reliable communication system. Some algorithms tolerate
message loss, using either positive or negative acknowledgments. For example, in a fixed
sequencer algorithm, a receiving process can detect a “hole” in the sequence numbers, and
request the missing messages from the sequencer. As a consequence, the sequencer needs
to keep a copy of a message until it knows that the message has been delivered everywhere.

Concerning process failures, most of the proposed algorithms rely on a group member-
ship service, itself based on a failure detector. Others directly use a failure detector, either
explicitly, or implicitly through a consensus service. The relationship between atomic
broadcast, group membership and consensus is briefly discussed in the next section.

11.4.3 Implementing Virtually Synchronous Group Membership

There are three main approaches to group membership implementation.

• Implementing group membership over a failure detector (itself implemented by one
of the techniques described in 11.4.1). This is the most common approach. An
example using it is described below.

• Implementing group membership over atomic broadcast (itself implemented by one
of the techniques described in 11.4.2). [Schiper 2006a] gives arguments in favor of
this approach.

• Implementing both atomic broadcast and group membership over a consensus service
(itself usually based on a failure detector). See [Guerraoui and Schiper 2001].

We illustrate the first approach (using a failure detector to implement virtual syn-
chronous group membership) with the example of JavaGroups [Ban 1998], itself derived
from the Ensemble protocol stack [van Renesse et al. 1998]. The protocol uses the coor-
dinator pattern and is based on the notion of stable messages. A message is said to be



11.5. FAULT TOLERANCE ISSUES FOR TRANSACTIONS 11-27

stable when it is known to having been delivered to every member of the current view of
the group. Otherwise, it is unstable13.

A view change is triggered by one of the following events (11.3.2): a process joins the
group, leaves the group, or crashes (this latter event is observed by a failure detector).
The coordinator is notified when any of these events occurs. It then initiates a view
change by broadcasting a flush message to the group. When a process receives the
flush message, it stops sending messages (until it has installed the new view), and sends
all the messages it knows to be unstable to the coordinator, followed by a flush ok

message. When it has received all flush ok replies, the coordinator broadcasts all the
unstable messages (messages are uniquely identified within a view, by a sequence number,
to avoid duplicates). Recall that the underlying communication system is reliable, so that
the messages will reach their destination if the sender is correct. When all messages have
become stable, the coordinator broadcasts a view message, which contains the list of the
members of the new view. When a process receives this message, it installs the new view.

In order to detect failures, the processes are organized in a logical ring, and each process
pings its successor (as described in 11.4.1). If a process (other than the coordinator) crashes
during this view change protocol, a notification is sent to the coordinator, which starts a
new view change. If the coordinator crashes, its predecessor in the ring (which detected
the crash) becomes the new coordinator, and starts a new view change.

The reliable message transmission layer uses both a positive (ack) and negative (nak)
acknowledgment mechanism. Negative acknowledgment is based on the sequential number-
ing of messages, and is used when the received sequence number differs from the expected
one. For efficiency, the default mode is nak for ordinary messages. The ack mode is used
for sending view changes (the view message).

This protocol does not scale well (the group size is typically limited to a few tens of
processes). A hierarchical structure based on a spanning tree allows a better scalability.
The processes are partitioned into local groups; in each local group, a local coordinator (the
group controller) broadcasts the flush and view messages within the group. The controllers
cooperate to ensure global message diffusion. This allows efficient communication for
groups of several hundred processes.

Other communication toolkits include Appia [Appia ] and Spread [Spread ].

11.4.4 Large Scale Group Protocols

This section still unavailable

11.5 Fault Tolerance Issues for Transactions

11.5.1 Transaction Recovery

This section still unavailable.

13Typically, a message that was broadcast by a process that failed during the broadcast may be unstable



11-28 CHAPTER 11. AVAILABILITY

11.5.2 Atomic Commitment

This section still unavailable.

11.6 Implementing Available Services

In this section and the next one, we examine how available systems can be built using
replication. This section deals with available services, while section 11.7 discusses available
data. Both cases involve replicated entities, which raises the issue of keeping these entities
mutually consistent. We examine consistency conditions in 11.6.1.

Recall (2.1) that a service is a contractually defined behavior, implemented by a com-
ponent and used by other components. In the context of this discussion, we use the term
server to designate the component that implements a service (specified by its provided
interface), together with the site on which it runs. Making a service highly available is
achieved by replicating the server. Two main approaches are used, corresponding to the
two patterns identified in 11.3.1, assuming fail-stop failures: the primary-backup protocol
(11.6.2) and the active replication protocol (11.6.3). These protocols are discussed in detail
in [Guerraoui and Schiper 1997].

The case of Byzantine failures is the subject of 11.6.4.

11.6.1 Consistency Conditions for Replicated Objects

Defining consistency conditions for replicated data is a special case of the more general
problem of defining consistency for concurrently accessed data. This problem has been
studied in many contexts, from cache coherence in multiprocessors to transactions. Defin-
ing a consistency condition implies a trade-off between strong guarantees and efficient
implementation. Therefore, a number of consistency models have been proposed, with
different degrees of strictness.

Consider a set of shared data that may be concurrently accessed by a set of processes,
which perform operations on the data. Operations may be defined in different ways,
according to te application context. In a shared memory, operations are elementary reads
and writes. In a database system, operations are transactions (see Chapter 9). In a
(synchronous) client-server system (see Chapter 5), an operation, as viewed by the server,
starts when the server receives a client’s request, and ends when the server sends the
corresponding reply to the client.

A commonly used consistency requirement for concurrently accessed data is sequential
consistency [Lamport 1979], which specifies that a set of operations, concurrently executed
by the processes, has the same effect as if the operations had been executed in some
sequential order, compatible with the order seen at each individual process. In the context
of transactions, this requirement is usually called serializability (9.2.1).

A stronger requirement, known as linearizability [Herlihy and Wing 1990], is used for
shared objects. A shared object may be seen as a server that receives requests from client
processes to perform operations. A partial order is defined on the operations, as follows:
operation O1 precedes operation O2 (on the server) if the sending of the result of O1

precedes the receipt of the request of O2. An execution history (a sequence of operations



11.6. IMPLEMENTING AVAILABLE SERVICES 11-29

on the object) is said to be linearizable if (i) it is equivalent to a legal sequential execution
(legal means “satisfying the specification of the object”); and (ii) the sequential order
of the operations is compatible with their ordering in the initial history. Linearizability
thus extends sequential consistency, specified by condition (i). Intuitively, linearizability
may be interpreted as follows: each operation appears to take effect instantaneously, at
some point in time between its invocation and its termination; and the order of operations
respects their “real time” order.

Linearizability thus appears to be more intuitive that sequential consistency, since it
preserves the order of (non overlapping) operations. In addition, contrary to sequential
consistency, it has a compositional property (a combination of separate linearizable imple-
mentations of objects is linearizable).

When dealing with replicated data, the above requirements are transposed as follows.
The requirement corresponding to sequential consistency is one-copy serializability (1SR).
This concept, introduced in database systems [Bernstein et al. 1987], captures two no-
tions: (i) replication is invisible to the clients, thus maintaining the illusion that there
exists a single (virtual) copy of a replicated object; and (ii) the operations performed on
these virtual copies (actually implemented by operations on replicas) are sequentially con-
sistent. Linearizability is likewise extended to replicated objects (in addition to one-copy
serializability, the order in which the operations appear to be executed is compatible with
the global ordering of operations).

The above criteria define strong consistency, in the sense that they maintain the illusion
of a single object.

In weak consistency, by contrast, individual replicas are considered, and they may
diverge, with some specified restrictions. Conflicts appear if these restrictions run the
risk of been violated. Conflicts must be resolved (e.g., by preventing or by delaying an
operation, etc.). The usual weak consistency condition is eventual convergence, also called
uniformity : if no operations are performed after a certain time, all replicas must eventually
converge to be identical.

Consider a service implemented by a set of replicated servers, following either of the
patterns described in 11.3.1. Then a sufficient condition for linearizability is that (i) if
a request is delivered to one correct replica, it must be delivered to all correct replicas;
and (ii) if two requests are delivered to two correct replicas, they must be executed in the
same order on both. Two schemes satisfying this condition are described in the next two
subsections.

11.6.2 Primary-Backup Server Protocol

In the primary-backup scheme, all requests are sent to the primary, whose identity is known
to the clients. In normal operation (i.e., if the primary is up), a request is processed as
follows (Figure 11.8):

1. The primary executes the request, yielding a reply r and a new state S.

2. The primary multicasts r and S to all the backups. Each correct backup changes its
state to S, stores r, and replies to the primary with an ack message.



11-30 CHAPTER 11. AVAILABILITY

3. The primary waits for all the acks issued by the backups that it knows to be correct.
It then sends the reply to the client, and waits for the next request.

Each request, and the corresponding reply, is uniquely identified by the client’s identity
and a unique sequence number for that client.

This scheme satisfies the linearizability condition, since a total ordering of the requests
is imposed by the primary, and this order is followed by the backups14.

Figure 11.8. Primary-backup replication (adapted from [Guerraoui and Schiper 1997]

We now examine the case of failure. If a backup fails, there is nothing to be done,
except that the primary needs to be informed of the failure (this is imposed by step 3
above: the primary does not wait for an ack from a failed backup).

If the primary fails, a new primary must be selected among the backups, and its
identity should be make known to both the clients and the remaining backups. The
simplest arrangement is to specify a fixed (circular) ordering among all replicas. The new
primary is the first correct replica that follows the failed primary in this ordering, which
is known to both the servers and the clients. A client detects the failure of the primary
by means of a timeout.

The key point of the recovery protocol is to ensure that the new primary can start
operating with no request loss or duplication. The action to perform depends on the
precise stage at which the failure occurred.

1. If the primary failed before multicasting the reply and new state of a request, no
backup is aware of the request. Eventually, the client will time out, and resend the
request to the new primary.

2. If the primary failed after the multicast, but before sending the reply to the client,
the new primary will have updated its state; after the view change, it will be aware
of its new role and it will send the stored reply to the client.

3. If the primary failed after having sent the reply, the client will receive a duplicated
reply from the new primary. It will detect the duplication through the unique iden-
tification, and ignore the redundant reply.

14The backups do not actually execute the requests, but their state evolves as if they did.



11.6. IMPLEMENTING AVAILABLE SERVICES 11-31

A virtually synchronous group membership protocol answers all the demands of the
above protocol. The primary uses reliable, view synchronous multicast to send the request
and new state to the backups. This guarantees that there is no intermediate situation
between the cases 1 and 2 of the recovery protocol (i.e., all the correct backups get the
message, or none). A view change is triggered by the failure of a replica (including the
primary). Thus the primary knows which backups it should expect an ack from, while
each backup knows the new primary after a failure of the current one.

When a failed replica is reinserted after repair, it triggers a view change and takes the
role of a backup. Before it can actually act in that role (i.e., be able to become a primary),
it needs to update its state, by querying another correct backup. In the meantime, any
incoming messages from the primary should be batched for further processing.

The primary-backup replication scheme resists to n − 1 failures if there are n replicas
(primary included). If n = 2 (single backup), a frequent case, the protocol is simplified:
there is no need to wait for an ack from the backup, and the primary sends the reply to
both the client and the backup as soon as the work is done. This case was described in
[Alsberg and Day 1976].

An early application of primary-backup replication is the process pair mechanism
[Bartlett 1981] used in the Tandem NonStop system, a highly available computer system
[Bartlett and Spainhower 2004]. A (logical) process is implemented by a pair of processes
(the primary and the backup), running on different processors. A request directed to the
logical process goes through a redirection table, which sends it to the process that is the
current primary. After completion of a request, the primary commands the backup to
checkpoint the request and the process state. When the primary (or its processor) fails,
the backup process takes over, and the redirection table is updated. When the failed
primary recovers, it becomes the backup.

11.6.3 Active Replication

Active server replication follows the replicated state machine approach described in 11.3.1.
A client sends its request to all the replicas, which have the same status. Each (correct)
replica does the required work and sends the reply to the client. The client accepts the
first reply that it gets, and discards the others, which are redundant. The client is not
aware of any failures as long as at least one replica is up; thus, like primary-backup, active
replication with n servers resists to n − 1 failures.

As noted in 11.3.1, the requests need to be processed in the same order on all replicas,
if the execution of a request modifies the state of the server. Therefore the client needs to
use totally ordered (atomic) multicast to send its requests.

When a failed replica is reinserted after repair, it needs to update its state. To do
so, it atomically multicasts a query for state to the group of replicas (including itself),
and uses the first reply to restore its state. Atomic multicast ensures total order between
requests for state and client requests. Thus all queried replicas reply with the same value
of the state, and the reinserted replica, R, does not lose or duplicate requests, by using
the following procedure. Let t be the instant at which R receives its own query for state.
Client requests received by R before t are discarded; requests received between t and the
first receipt of the state are batched for further processing.



11-32 CHAPTER 11. AVAILABILITY

Figure 11.9. Active replication (adapted from [Guerraoui and Schiper 1997]

We now compare the primary-backup and active replication approaches. The main
points to note are the following.

• Active replication consumes more resources, since the servers are dedicated to the
processing of the requests. With the primary-backup scheme, backups may be used
for low-priority jobs.

• Active replication has no additional latency in the case of failures, since there is no
recovery protocol. In contrast, the view synchronous failure detection mechanism
used in the primary-backup scheme may suffer from false failure detections, which
add latency.

• Active replication is transparent for the clients, as long as one server is up. In
contrast, clients need to detect the failure of the primary.

• Active replication, being based on the replicated state machine model, implies that
the replicated servers behave in a deterministic way. There is no such constraint for
the primary-backup scheme.

• Primary-backup uses view-synchronous group membership, while active replication
uses totally ordered broadcast. In an asynchronous system with fail-stop failures,
both communication protocols are equivalent to consensus. Thus the algorithmic
difficulty is the same for both replication schemes.

The standard server replication scheme is primary-backup. Active replication is used
in critical environments, when low latency and minimal client involvement are required.

11.6.4 Byzantine Fault Tolerance for Replicated Services

In the Byzantine failure mode, the failed component may have an arbitrary behavior.
There are two main reasons to consider Byzantine failures: theoretical (this is the most
general failure mode); and practical (the fail-stop hypothesis is not always verified; Byzan-
tine failures cover the case of malicious attacks; and some critical applications require the
highest possible degree of fault tolerance).



11.6. IMPLEMENTING AVAILABLE SERVICES 11-33

Early research on Byzantine failures has considered the problem of reliable broadcast.
The main results are the following (f is the maximum number of faulty processes).

• With synchronous communication [Lamport et al. 1982], reliable broadcast is pos-
sible if the number of processes is at least 3f + 1. The algorithm requires f + 1
rounds, and its cost (in terms of number of messages) is exponential in the number
of processes. More generally, consensus can be achieved with the same degree of
redundancy.

• With asynchronous communication [Bracha and Toueg 1985], a weak form of reliable
broadcast can be achieved if the number of processes is at least 3f + 1: if the sender
is correct, all correct processes deliver the value that was sent; if the sender is faulty,
either all correct processes deliver the same (unspecified) value, or the algorithm
does not terminate, and no correct process delivers any value.

In both cases the minimum redundancy degree is 3f + 1. In synchronous systems, this
factor may be reduced to 2f + 1 if messages can be authentified.

For a long period, research on Byzantine failures did not have much practical impact,
since the algorithms were considered too expensive. The situation has changed in recent
years, and several practical fault tolerance protocols dealing with Byzantine failures have
been proposed. Here is a brief summary of these efforts.

[Castro and Liskov 2002] introduced Practical Byzantine Fault Tolerance (PBFT), a
form of state machine replication (11.3.1) using an extension of the Paxos consensus pro-
tocol to achieve agreement on a total order for requests among all non-faulty replicas. In
order to tolerate f failures, the protocol uses 3f + 1 replicas. We give an outline of the
protocol below; see the references fo a detailed description.

Like in classic Paxos (11.3.3), the protocol goes through a sequence of views. In each
view, a single primary starts an agreement protocol; if the primary fails, a new view is
created, with a new primary. Safety is achieved by the agreement protocol, while liveness
depends on view change. All messages are authentified to prevent corruption, replay and
spoofing (which could be possible under the Byzantine fault assumption).

The agreement protocol has three phases: pre-prepare, prepare, and commit. The role
of the first two phases is to totally order the requests within a view. The role of the last
two phases is to ensure that requests that commit (i.e., are executed and provide a result)
are totally ordered across views.

In the pre-prepare phase, the primary proposes a sequence number n for a request
and multicasts it to the backups in a pre-prepare message. If a backup accepts this
message (based on cryptographic check and uniqueness of n within the current view),
it enters the prepare phase by multicasting a prepare message, still including n, to all
replicas (including the primary). If a replica has received 2f prepares matching the pre-

prepare for a request r from different backups, it marks the request as prepared. The
following predicate is true: no two non-faulty replicas can have prepared requests with
the same n and different contents15 (meaning different encrypted digests).

15The proof of this property goes as follows: from the definition of prepared, at least f + 1 non faulty
replicas must have sent a pre-prepare or prepare message for request r. If two correct replicas have
prepared requests with different contents, at least one of these senders has sent two conflicting prepares or
pre-prepares; but this is not possible, since these replicas are non faulty.



11-34 CHAPTER 11. AVAILABILITY

Figure 11.10. The PBFT protocol, normal case (adapted from [Castro and Liskov 1999])

When it has a prepared request, a replica multicasts a commit message to the other
replicas, thus starting the commit phase. A replica accepts this message if it is properly
signed and the view in the message matches the view known as current by the replica.
The commit phase ensures that the request is prepared at f +1 or more replicas. The key
point here is that this condition can be checked by a local test at some replica16 (see the
original paper for a proof of this property).

After it has committed a request, a replica executes the work specified in the request
and sends the result to the client. The client waits for f + 1 matching replies. Since at
most f replicas can be faulty, the result is correct.

A view change protocol detects the failure of the primary (by a timeout mechanism,
which implies partial synchrony), and chooses a new primary. The new primary determines
the status of pending requests and resumes normal operation.

This work has shown that Byzantine fault tolerance can be achieved at acceptable cost,
and has stimulated further research with the goal of improving the performance of the
protocol. Two main paths have been followed: improving throughput, by increasing the
number of replicas and using quorums [Cowling et al. 2006, Abd-El-Malek et al. 2005];
improving latency, by reducing the number of phases through speculation (optimistic ex-
ecution) [Kotla et al. 2007]. A generic, modular approach, which aims at combining the
advantages of previous protocols, is presented in [Guerraoui et al. 2008].

11.7 Data Replication

Data replication is motivated by two concerns.

• Availability. Maintaining several copies of data on different systems increases the
probability of having at least one available copy in the face of processor, system, or
network failures.

• Performance. Replication allows parallel access to the systems hosting the replicas,
thus increasing the global throughput for data access. Distributing replicas over a

16The local test verifies the following predicate: the replica has a prepared request, and has accepted
2f + 1 matching commits (possibly including its own) from different replicas.



11.7. DATA REPLICATION 11-35

network allows a client to access a replica close to its location, thus reducing latency.
Both factors favor scalability.

In this section, we use the term object to designate the unit of replication, as chosen
by the designer of the replication system. An object may be defined at the physical level
(e.g., a disk block), or at the logical level (e.g., a file, or an item in a database). Unless
otherwise specified, we assume that replication is based on logical objects.

The counterpart (and main challenge) of data replication is that the replicas of an
object need to be kept consistent (as discussed in 11.6.1). Maintaining consistency has
an impact on both performance and availability. Designing a data replication system thus
involves a trade-off between these three properties.

The issue of data replication has been considered in two different contexts: dis-
tributed systems and databases. The main motivation of replication is availability for
distributed systems, and performance for databases. The two communities have tradition-
ally taken different approaches: database tend to closely integrate replication with data
access protocols, while distributed systems use generic tools such as group communication.
In recent years, efforts have been made towards a unified approach to data replication.
[Wiesmann et al. 2000b] analyze the solutions developed in the two communities and com-
pare them using a common abstract framework. This trend towards convergence has led
to the emergence of a middleware-based approach to database replication, in which repli-
cation is controlled by a middleware layer located between the clients and the database
replicas, and separate from the data access protocols. Separating these two concerns
simplifies development and maintenance, and allows using techniques developed for dis-
tributed systems, such as group communication protocols. [Cecchet et al. 2008] examine
the state of the art and the main challenges of middleware-based database replication.

In an often cited paper, [Gray et al. 1996] discuss the trade-off between consistency
and performance in replicated databases. They distinguish between two approaches:

• Eager replication, also called pessimistic approach: keeping all replicas synchronized,
by updating the replicas inside one atomic transaction (i.e., no access is permitted
until all replicas are updated).

• Lazy replication, also called optimistic approach: performing update at one replica,
and thereafter asynchronously propagating the changes to the other replicas.

Hybrid methods, combining eager and lazy replication, have also been proposed.

Eager replication maintains strong consistency (in the sense defined in 11.6.1), but it
delays data access, and does not scale. In practice, its use is limited to sites located on a
local area network, under moderate load. Lazy replication scales well, and may be used
with unreliable communication networks. Lazy replication only ensures weak consistency,
in the sense that a read may return an out of date value; in addition, an update operation
runs the risk of being aborted in order to preserve consistency.

In both eager and lazy replication, a read operation may usually be performed at
any site holding a replica. Regarding updates, a distinction may be made between two
approaches, which correspond to the two patterns identified in 11.3.1:



11-36 CHAPTER 11. AVAILABILITY

• Update primary (or single-master). For each object, one replica is designated as the
primary copy, or master. All updates are made on the master, which is responsible
for propagating them to the other replicas.

• Update anywhere (or multi-master). An update operation may originate at any
replica. Potential conflicts must be resolved by an agreement protocol between the
involved replicas.

This distinction is orthogonal to that between eager and lazy replication; thus both
eager and lazy replication may be implemented using either “update primary” or “update
anywhere”.

In this section, we present an overview of data replication techniques, illustrated by
examples from both databases and distributed systems. Section 11.7.1 deals with strongly
consistent replication. Section 11.7.2 examines weakly consistent replication. Section
11.7.3 presents a brief conclusion on data replication.

11.7.1 Strongly Consistent (Eager) Replication

Eager replication preserves a strong form of consistency, usually one-copy serializability,
as defined in 11.6.1. Another consistency criterion (snapshot isolation), weaker than 1SR,
is discussed later in this section.

[Wiesmann et al. 2000a] propose a classification of eager replication techniques for
databases using transactions to access data. In addition to the distinction between pri-
mary copy and update everywhere, they identify two other criteria: (i) linear or constant
interaction, according to whether the updates are propagated operation by operation, or
in a grouped action at the end of a transaction; and (ii) voting or non voting, according to
whether the different replicas execute or not a coordination phase at the end of a trans-
action. They conclude that linear interaction suffers from excessive overhead (due to the
large number of update propagation messages), and that constant interaction should be
preferred. Voting is needed if the order in which operations are performed on the replicas
is non-deterministic.

We now examine the main techniques used to ensure eager replication.

Eager Update Anywhere

The basic protocol for eager replication is read one-write all (ROWA). An update operation
on an object is performed on all the nodes holding a replica of the object; a read operation
is only done on the local copy (or on the closest node holding a replica).

The drawback of this technique is that a failure of a node blocks update operations on
the objects that have a replica on that node. Two solutions have been proposed to avoid
this problem.

• Update only the available replicas, i.e., those located on non-failed, accessible nodes
(read one-write all available, or ROWAA [Bernstein et al. 1987]). When a failed
node recovers, it needs to update the replicas that it holds before being able to
process requests.



11.7. DATA REPLICATION 11-37

• Use a quorum-based protocol [Gifford 1979, Thomas 1979], which requires that a
minimum number of sites (a read or write quorum) be available for both read and
write operations. The basic protocol requires that r + w > N , where r is the read
quorum, w is the write quorum, and N the number of replicas. This guarantees that
a read quorum and a write quorum always intersect; therefore, if the most recently
updated copy is selected for a read, it is guaranteed to be up to date. The additional
condition w > N/2 only allows an update if a majority of sites are available; this
prevents divergence of replicas in case of a network partition. The protocol may
be refined by assigning different weights to the replicas (N is now the sum of the
weights).

If transactions are supported, a 2PC protocol (9.4) is needed if transactions contain
writes, and 1SR is ensured by a concurrency control algorithm.

[Jiménez-Peris et al. 2003] compare ROWAA and quorum-based protocols. They con-
clude that ROWAA is the best solution in most practical situations, specially in terms of
availability. Quorums may be of interest in the case of extreme loads.

For both methods, scalability is limited (a few tens of nodes), specially if the update
rate is high. For database systems using locks to ensure concurrency control, a strong
limiting factor for scalability if the probability of deadlocks, which may in some cases
grow as N3, N being the number of replicas [Gray et al. 1996].

Several approaches, often used in combination, have been proposed to overcome the
limitations of ROWAA.

• Using group communication protocols to propagate update to replicas, with order
guarantees, in order to reduce the probability of conflicts, and to allow increased
concurrency.

• Replacing the 1SR condition by a weaker one, snapshot isolation (SI), see 9.2.3.
Within a transaction, the first write creates a new version of the updated object17.
Subsequent reads and writes access this version, while reads not preceded by a write
return the last committed version of the object being read. Concurrent writes on the
same object by two transactions are not allowed (one of the transactions must abort).
Thus reads are neither blocking nor being blocked, and are therefore decoupled from
writes, which increases concurrency.

• Taking advantage of cluster architectures.

We illustrate these approaches with a brief review of three examples.

1) Database State Machine. The database state machine [Pedone et al. 2003] is the
transposition of the replicated state machine model (11.3.1) to databases. It uses atomic
multicast to order updates. The entire database is replicated on several sites. A transaction
is processed at a single site (e.g., the nearest). The identity of the objects that are read and
written by the transaction (readset and writeset, respectively) is collected, as well as the
values of the updates. When the transaction issues a commit command, it is immediately

17This is similar to the copy-on-write technique used in shared virtual memory systems.



11-38 CHAPTER 11. AVAILABILITY

committed if it is read only. If the transaction contains writes, the writesets, readsets
and updates are atomically multicast to all sites holding a replica of the database. When
a site receives this information for a transaction T , it certifies T against all transactions
that conflict with T (as known to the the site). All sites execute the same certification
protocol (based on concurrency control rules) and get the transaction data in the same
order. Therefore, all sites will make the same decision for T (commit or abort). If the
transaction commits, its updates are performed at all sites (this is called the deferred
update technique). The certification test described in [Pedone et al. 2003] guarantees
1SR. The database state machine approach avoids distributed locking, which improves
scalability.

The database state machine is an abstract model, which has only been evaluated by
simulation. It may be considered as a basis for the development of actual protocols (for
instance, the Postgres-R(SI) protocol described below is based on the same principles,
with a relaxed consistency condition).

2) Postgres-R(SI): Group Communication and Snapshot Isolation. Postgres-
R(SI) [Wu and Kemme 2005] is a system implementing SI, and based on group commu-
nication. A transaction can be submitted at any replica. It executes on that replica, and
collects all its write operations in a writeset. When the transaction commits, it multicasts
its writesets to all replicas, using uniform atomic (totally ordered) multicast. All replicas
execute the operations described in the writesets they receive, in the order the writesets
were delivered, which is the same for all replicas. This protocol uses less messages than
ROWAA, and allows for increased concurrency, since a transaction may commit locally,
without running a 2PC protocol. We do not describe the concurrency control algorithm.

Site failures are detected by the group communication protocol. The group continues
working with the available sites. When a site restarts after a failure, it must run a recovery
protocol to update its state, by applying the writesets that it missed (these are recovered
from a log on a correct site). During this recovery process, the writesets generated by
current transactions are buffered for further execution.

3) C-JDBC: Cluster-based Replicated Database. Clusters of workstations have
been developed as an alternative to high-end servers. In addition to being easily extensible
at a moderate cost, they allow a potentially high degree of parallelism, together with high
performance communication. One proposal to exploit these features for data replication
at the middleware level is Clustered JDBC, or C-JDBC [Cecchet et al. 2004]. C-JDBC is
a front-end to one or several totally or partially replicated databases hosted on a cluster
and accessible through the Java Database Connectivity (JDBC) API. It presents a single
database view (a virtual database) to the client applications.

C-JDBC is a software implementation of the concept of RAIDb (Redundant Array of
Inexpensive Databases), which is a counterpart of the existing RAIDs (Redundant Array
of Inexpensive Disks). Like RAIDs, RAIDbs come in different levels, corresponding to
various degrees of replication and error checking.

C-JDBC is composed of a JDBC driver, which exports the interface visible to the client
applications, and a controller, which handles load balancing and fault tolerance, and acts
as a proxy between the C-JDBC driver and the database back-ends.



11.7. DATA REPLICATION 11-39

Operations are synchronous, i.e., the controller waits until it has a response from all
back-ends involved in an operation before it sends a response to a client. To reduce
latency for the client, C-JDBC also implements early response, i.e., the controller returns
the response as soon as a preset number of back-ends (e.g., one, or a majority) has executed
an operation. In that case, the communication protocol ensures that the operations are
executed in the same order at all involved back-ends.

C-JDBC does not use a 2PC protocol. If a node fails during the execution of an
operation, it is disabled. After repair, a log-based recovery protocol restores an up to date
state.

The controller is a single point of failure in C-JDBC. To improve availability, the
controller may be replicated18. To ensure mutual consistency, the replicated controllers
use totally ordered group communication to synchronize write requests and transaction
demarcation commands.

A system inspired by C-JDBC is Ganymed [Plattner and Alonso 2004], which imple-
ments snapshot isolation in order to reduce the probability of conflicts. Ganymed uses
a primary copy approach, and the controller ensures that updates are done in the same
order at the backup replicas.

In conclusion, update anywhere for eager replication may be summarized as follows.
ROWAA is a simple protocol for non-transactional operations. If transactions are used,
the traditional technique based on ROWAA is hampered by the deadlock risks of dis-
tributed locking and by the cost of distributed commitment. Alternative approaches for
transactions involve the use of atomic multicast to propagate updates, and a weakening
of the one-copy serializability condition.

Eager Primary Copy

In the primary copy replication technique, one particular site holding a replica of an object
is designated as the primary for that object (note that different subsets of data may have
different primary sites); the other sites holding replicas are backups. A transaction which
updates an object is executed at the primary for that object. A the end of the transaction,
the updates are propagated to the backups in a single operation, which groups the changes
in FIFO order. If the technique is non-voting, the primary commits the transaction. If
it uses voting (in practice, applying a 2PC protocol), the primary and the backups must
wait till the conclusion of the vote. Some remarks are in order.

• If there are several primaries, the situation is close to that of an update anywhere
technique19 described above. In the non-voting scheme, the communication protocol
must guarantee total order for the updates at the backup sites. In a voting scheme,
no order guarantee is needed, but the transaction runs the risk of being aborted; a
weak order guarantee (such as FIFO) reduces the risk of abort.

18This is called “horizontal” replication, in contrast with “vertical” replication, which consists in building
a tree of controllers to support a large number of back-ends.

19For that reason, some primary copy systems disallow transactions that update objects with different
primary sites.



11-40 CHAPTER 11. AVAILABILITY

• In a non-voting protocol, a read operation is only guaranteed to deliver an up to
date result if it is performed at the primary (or if the primary does not commit
before all backups have been updated). Otherwise, the situation is the same as in
lazy replication (11.7.2).

• If a primary fails, the recovery process is different for voting and non-voting tech-
niques. With the voting technique, a backup is always ready to become primary
(this is called hot standby). With the non-voting technique, the backup may have
pending updates, and needs to install them before becoming primary (this is called
cold standby).

In conclusion, primary copy for eager replication is essentially used in two modes: (i)
backup copies are used for reads, in which case a voting protocol must be used; or (ii)
backups are used for recovery only, in which case all operations are done on the primary.

An early example of this latter use is Tandem’s Remote Data Facility [Lyon 1990], in
which there is a single backup, and updates are immediately propagated, thus ensuring
hot standby.

11.7.2 Loosely Consistent (Lazy) Replication

Lazy replication trades consistency for efficiency; fault tolerance is less of a priority than
in eager replication. After recovery from a failure, some updates may have been lost.
Lazy replication may be implemented using the primary copy or the update anywhere
techniques. In both cases, the main consistency criterion is eventual convergence (as
defined in 11.6.1).

Lazy Primary Copy

With the lazy primary copy (or single master) technique, all updates are done on a des-
ignated site, the primary20. All operations commit immediately. Updates are propagated
asynchronously to the backup sites, using either a push or a pull method. Read operations
may be done either on the primary or on the backups; in the latter case, an out of date
value may be returned, which is acceptable in many applications. Some systems allow a
given degree of freshness to be specified for reads, e.g., in terms of maximum age.

Since all updates are done on a single site, potential conflicts between concurrent
updates are easily detected and may be avoided by delaying or aborting some operations.

Because of its simplicity, lazy primary copy is the most commonly used technique in
commercial database systems. Its main drawback is that the primary site is a single point
of failure. If the primary fails, a backup is selected as the new primary, but some updates
may have been lost.

One technique that attempts to avoid the loss of updates is to keep a log of updates in
stable (failure-resistant) storage. This technique is used by the Slony-I system [Slony-I ],
which supports several back-ups, possibly organized as a cascade. This technique attempts
to approximate hot standby, while keeping the benefits of primary copy update.

20In some systems, different objects may have different primary sites.



11.8. PARTIAL AVAILABILITY 11-41

Lazy Update Anywhere

Lazy update anywhere (or multi-master) techniques are intended to be more efficient than
those based on primary copy, by increasing concurrency. The counterpart is that conflicts
may occur between concurrent updates at different sites; such conflicts must be detected
and resolved. For these systems, fault tolerance is not the primary concern.

[Saito and Shapiro 2005] is an extensive survey of lazy (optimistic) update anywhere
replication approaches, mostly for non-database application. They distinguish between
state-transfer and operation-transfer systems. In the former, the replicas of an object are
updated by copying their contents. In the latter, the operations are propagated to the
replicas and executed there.

For state-transfer systems, Thomas’s write rule [Thomas 1979] ensures uniformity. Re-
call (9.2.3) that this rule is based on timestamps; a replica of an object is updated when
it detects (e.g., by periodic inspection) a peer holding a more recent copy of the object.
Conflicts between concurrent updates are resolved by the “last writer wins” policy.

For operation transfer systems, the situation is analogous to that described in 11.7.1:
a sufficient condition for consistency is that the updates be applied at each replica in
the same order. This order may be imposed by the sender, through atomic broadcast,
or determined by the receivers, using time-stamp vectors. As above, one can use the
semantics of the application to loosen the constraint on the order of updates (for example,
non-interfering updates may be applied in any order).

11.7.3 Conclusion on Data Replication

Several issues need to be considered for data replication: implemented by a middleware
layer or integrated in the application, eager vs lazy update, what consistency guarantees?

Eager replication, which gives strong consistency guarantees, is gaining favor as new
designs allow improved performance, specially on clusters. Lazy replication is mandatory
in systems that are highly dynamic or have network reliability or connectivity problems,
such as MANETs (mobile ad-hoc networks). Such systems also rely on probabilistic tech-
niques (gossip protocols), such as described in 11.4.4.

In practice, essentially for performance reasons, many commercial database systems use
primary-based, lazy update replication, integrated within the database kernel. Availability
relies on hot standby solutions.

Solutions based on middleware-based systems are investigated. Current efforts are
based on group protocols, and tend to favor the eager, update anywhere approach, with
snapshot isolation. There is still a gap between current research and actual practice (see
[Cecchet et al. 2008]).

11.8 Partial Availability

This section still unavailable.



11-42 CHAPTER 11. AVAILABILITY

11.9 Case Studies

This section still unavailable.

11.10 Historical Note

Fault tolerance has always been a primary concern in computing systems. In the early days,
attention was mainly focused on unreliable hardware. Error detecting and correcting codes
were used to deal with unreliable memory and communication links. Backup techniques
(saving drum or disk contents on magnetic tapes) were used for data preservation, with
the risk of data loss in the intervals between backups. Later on, disk mirroring techniques
improved the situation, but their use was limited by their high relative cost. To deal with
processor failures, Triple Modular Redundancy was introduced for critical applications.
Software reliability only started receiving attention by the end of the 1960s.

The 1970s are a period of fast progress for computing systems availability. The first
International Symposium on Fault Tolerant Computing (FTCS) takes place in 1971; it is
still mostly devoted to hardware aspects, but software based techniques are beginning to
develop. An early attempt at a purely software approach to fault tolerance is the concept
of recovery block [Randell 1975], based on redundant programming of critical routines.
The design of the SIFT aircraft control system [Wensley et al. 1976] is a large scale effort,
mainly using software methods, to build a reliable critical application.

The Tandem highly available systems (1976) mark a breakthrough. While previous
fault tolerance techniques were essentially application specific, the Tandem NonStop sys-
tem [Bartlett 1981] introduces a generic approach combining hardware and software repli-
cation (most notably, process pairs). However, process checkpointing is a source of over-
head. The Stratus systems (1980) eliminates overhead by a purely hardware approach, at
the expense of quadruple redundancy (2 duplexed pairs of processors, the processors of
each pair working in lockstep and performing a continuous consistency check).

One of the first available server systems based on the primary-backup approach (with
a single backup) is described in [Alsberg and Day 1976]. The replicated state machine
paradigm is introduced in [Lamport 1978a], and further refined in [Schneider 1990]. The
atomic commitment problem, and its first solution (2PC), are presented in [Gray 1978].
One of the first impossibility results (widely known as “the Generals’ paradox” from
[Gray 1978]), related to unreliable communication, is published in [Akkoyunlu et al. 1975].
An influential paper on data availability is [Lampson and Sturgis 1979], which introduces
the notion of stable storage. Algorithms for database replication are studied, and the
concepts of quorum and majority voting are introduced [Gifford 1979, Thomas 1979].

The 1980’s and early 90’s are marked by a sustained effort to ground the design and
construction of fault tolerant systems on a sound fundamental base. Computing systems
become distributed; the first Symposium on Reliable Distributed Systems (SRDS) takes
place in 1981. As a consequence, communication aspects take an increasing importance.
Group communication is identified as an essential ingredient of fault tolerant distributed
computing, and the central role of agreement protocols (consensus and atomic commit-
ment) is recognized:



11.10. HISTORICAL NOTE 11-43

• Paxos [Lamport 1998], an efficient consensus algorithm, is published in 1989, but its
significance will only be fully recognized much later.

• Unreliable failure detectors are introduced in [Chandra and Toueg 1991]; this paper
also gives a consensus-based implementation of atomic broadcast.

• The atomic commitment problem is further explored; a non-blocking solution is pro-
posed in [Skeen 1981]; further advances are described in [Babaoǧlu and Toueg 1993].
Advances in fault-tolerant database systems are described in [Bernstein et al. 1987].

The notion of virtual synchrony, which associates group membership and communica-
tion, appears in [Birman and Joseph 1987].

Byzantine agreement (a problem that was already identified during the design of
the SIFT system) is explored, and its impossibility for 3f processes with f faults is
proven [Lamport et al. 1982]. A number of other impossibility results, including FLP
[Fischer et al. 1985] are discovered; a review of these results is in [Lynch 1989].

The first mention of gossip-based communication appears in [Demers et al. 1987], in a
replicated database context, but the idea will only be put to wider practical use a decade
later.

The main advance in hardware-based availability in this period is the invention of the
RAIDs [Patterson et al. 1988]. As hardware becomes more reliable, the increasing role of
software and administration faults is recognized [Gray 1986].

[Cristian 1991] describes the state of the art in fault-tolerant distributed systems at
the end of this period.

The mid and late 1990’s see the development of distributed systems: cluster computing,
distributed transactions, database replication, fault-tolerant middleware. Group commu-
nication is now well understood ([Hadzilacos and Toueg 1993] present a survey of this area,
which clarifies the concepts and terminology), and used in practical systems. The interplay
between theory and practice in the areas of group communication and replication, and its
evolution over time, is analyzed in [Schiper 2003, Schiper 2006b].

The 2000’s are dominated by two main trends: the rise of Internet computing and
services, and the increasing use of mobile devices and ad hoc networking.

An analysis of Internet services failures [Oppenheimer et al. 2003] confirms the trends
identified in [Gray 1986]: it shows the decreasing importance of hardware faults, and the
dominating role of management related failure causes, such as wrong configuration. A
consequence of large scale is the fact that all elements of a system cannot be expect to be
fully operational at any point in time. Partial availability is bound to be the rule. The
importance of fast failure detection and recovery is emphasized, as illustrated, for example,
by project ROC [ROC 2005].

As the size and dynamism of computing systems increases, there is a need
for new communication paradigms. Probabilistic methods, such as gossip based
broadcast, appear as a promising path in large scale systems communication (see
[Kermarrec and van Steen 2007]).

Concerning the interplay between theory and practice, the treatment of Byzantine
failures receives an increasing attention. Byzantine failures are shown to be tractable in
practice with an acceptable cost, as illustrated by the experiments described in 11.6.4



11-44 CHAPTER 11. AVAILABILITY

References

[Abd-El-Malek et al. 2005] Abd-El-Malek, M., Ganger, G. R., Goodson, G. R., Reiter, M. K., and
Wylie, J. J. (2005). Fault-Scalable Byzantine Fault-Tolerant Services. In Proceedings of the 20th
ACM Symposium on Operating Systems Principles (SOSP’05), pages 59–74. Operating Systems
Review, 39(5), December 2005.

[Aguilera et al. 2000] Aguilera, M. K., Chen, W., and Toueg, S. (2000). Failure detection and
consensus in the crash-recovery model. Distributed Computing, 13(2):99–125.

[Akkoyunlu et al. 1975] Akkoyunlu, E. A., Ekanadham, K., and Huber, R. V. (1975). Some con-
straints and tradeoffs in the design of network communications. SIGOPS Operating Systems
Review, 9(5):67–74.

[Alsberg and Day 1976] Alsberg, P. A. and Day, J. D. (1976). A principle for resilient sharing of
distributed resources. In Proceedings of the 2nd International Conference on Software Engineer-
ing (ICSE’76), pages 627–644, San Francisco, California, USA.

[Appia ] Appia. Appia comunication framework. http://appia.di.fc.ul.pt.

[Aspnes 2003] Aspnes, J. (2003). Randomized protocols for asynchronous consensus. Distributed
Computing, 16(2-3):165–175.

[Avižienis et al. 2004] Avižienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. (2004). Basic
Concepts and Taxonomy of Dependable and Secure Computing. IEEE Transactions on Depend-
able and Secure Computing, 1(1):11–33.

[Babaoǧlu and Toueg 1993] Babaoǧlu, Ö. and Toueg, S. (1993). Non-Blocking Atomic Commit-
ment. In Mullender, S., editor, Distributed Systems, pages 147–168. Addison-Wesley.

[Ban 1998] Ban, B. (1998). Design and Implementation of a Reliable Group Communication
Toolkit for Java. Technical Report, Dept. of Computer Science, Cornell University, Septem-
ber 1998. http://www.jgroups.org/.

[Bartlett 1981] Bartlett, J. F. (1981). A NonStop Kernel. In Proceedings of the Eighth ACM
Symposium on Operating Systems Principles (SOSP ’81), pages 22–29, New York, NY, USA.
ACM.

[Bartlett and Spainhower 2004] Bartlett, W. and Spainhower, L. (2004). Commercial Fault tol-
erance: A Tale of Two Systems. IEEE Transactions on Dependable and Secure Computing,
1(1):87–96.

[Bernstein et al. 1987] Bernstein, P. A., Hadzilacos, V., and Goodman, N. (1987). Concurrency
Control and Recovery in Database Systems. Addison-Wesley. 370 pp.

[Birman and Joseph 1987] Birman, K. P. and Joseph, T. A. (1987). Exploiting virtual synchrony
in distributed systems. In Proceedings of the Eleventh ACM Symposium on Operating Systems
Principles (SOSP’87), pages 123–138.

[Blahut 2003] Blahut, R. (2003). Algebraic Codes for Data Transmission. Cambridge University
Press. 482 pp.

[Bracha and Toueg 1985] Bracha, G. and Toueg, S. (1985). Asynchronous consensus and broadcast
protocols. Journal of the ACM, 32(4):824–840.

[Candea et al. 2004] Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., and Fox, A. (2004).
Microreboot – A Technique for Cheap Recovery. In Proceedings of the Sixth Symposium on
Operating Systems Design and Implementation (OSDI’04), pages 31–44, San Francisco, CA,
USA.



REFERENCES 11-45

[Castro and Liskov 1999] Castro, M. and Liskov, B. (1999). Practical byzantine fault tolerance.
In Proceedings of the Third Symposium on Operating Systems Design and Implementation
(OSDI’99), pages 173–186, New Orleans, Louisiana.

[Castro and Liskov 2002] Castro, M. and Liskov, B. (2002). Practical byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer Systems, 20(4):398–461. Based on
work published in Usenix OSDI’99 (173–186) and OSDI’00 (273–288).

[Cecchet et al. 2008] Cecchet, E., Ailamaki, A., and Candea, G. (2008). Middleware-based
Database Replication: The Gaps between Theory and Practice. In SIGMOD’08: Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data, June 9–12 2008,
Vancouver, Canada.

[Cecchet et al. 2004] Cecchet, E., Marguerite, J., and Zwaenepoel, W. (2004). C-JDBC: Flexible
Database Clustering Middleware. In Proc. USENIX Annual Technical Conference, Freenix Track,
Boston, MA, USA.

[Chandra et al. 2007] Chandra, T. D., Griesemer, R., and Redstone, J. (2007). Paxos made live:
an engineering perspective. In Proceedings of the Twenty-sixth ACM Symposium on Principles
of Distributed Computing (PODC’07), pages 398–407, New York, NY, USA. ACM.

[Chandra et al. 1996a] Chandra, T. D., Hadzilacos, V., and Toueg, S. (1996a). The weakest failure
detector for solving consensus. Journal of the ACM, 43(4):685–722.

[Chandra et al. 1996b] Chandra, T. D., Hadzilacos, V., Toug, S., and Charron-Bost, B. (1996b).
On the Impossibility of Group Membership. In Proc. ACM Symposium on Principles of Dis-
tributed Computing (PODC).

[Chandra and Toueg 1991] Chandra, T. D. and Toueg, S. (1991). Unreliable failure detectors
for reliable distributed systems. In Proceedings of the 10th ACM Symposium on Principles of
Distributed Computing (PODC), pages 325–340.

[Chandra and Toueg 1996] Chandra, T. D. and Toueg, S. (1996). Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2):225–267. A preliminary version appeared
in [Chandra and Toueg 1991].

[Chandy and Lamport 1985] Chandy, K. M. and Lamport, L. (1985). Distributed snapshots:
determining global states of distributed systems. ACM Transactions on Computer Systems,
3(1):63–75.

[Chen et al. 2002] Chen, W., Toueg, S., and Aguilera, M. K. (2002). On the quality of service of
failure detectors. IEEE Transactions on Computers, 51(5):561–580.

[Chockler et al. 2001] Chockler, G. V., Keidar, I., and Vitenberg, R. (2001). Group Communica-
tion Specifications: a Comprehensive Study. ACM Computing Surveys, 33(4):427–469.

[Cowling et al. 2006] Cowling, J., Myers, D., Liskov, B., Rodrigues, R., and Shrira, L. (2006).
HQ Replication: A Hybrid Quorum Protocol for Byzantine Fault Tolerance. In Proceedings
of the Seventh Symposium on Operating Systems Design and Implementation (OSDI’06), pages
177–190, Seattle, WA, USA.

[Cristian 1991] Cristian, F. (1991). Understanding fault-tolerant distributed systems. Communi-
cations of the ACM, 34(2):56–78.

[Défago et al. 2004] Défago, X., Schiper, A., and Urbán, P. (2004). Total Order Broadcast and
Multicast Algorithms: Taxonomy and Survey. ACM Computing Surveys, 36(4):372–421.



11-46 CHAPTER 11. AVAILABILITY

[Demers et al. 1987] Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis,
H., Swinehart, D., and Terry, D. (1987). Epidemic algorithms for replicated database mainte-
nance. In Proceedings of the Sixth ACM Symposium on Principles of Distributed Computing
(PODC ’87), pages 1–12, New York, NY, USA. ACM.

[Dwork et al. 1988] Dwork, C., Lynch, N., and Stockmeyer, L. (1988). Consensus in the presence
of partial synchrony. Journal of the ACM, 35(2):288–323.

[Elnozahy et al. 2002] Elnozahy, E. N. M., Alvisi, L., Wang, Y.-M., and Johnson, D. B. (2002).
A survey of rollback-recovery protocols in message-passing systems. ACM Computing Surveys,
34(3):375–408.

[Fischer et al. 1985] Fischer, M. J., Lynch, N. A., and Paterson, M. S. (1985). Impossibility of
distributed consensus with one faulty process. Journal of the ACM, 32(2):374–382.

[Gifford 1979] Gifford, D. K. (1979). Weighted voting for replicated data. In Proceedings of the
7th ACM Symposium on Operating Systems Principles (SOSP’79), pages 150–162.

[Gray 1978] Gray, J. (1978). Notes on data base operating systems. In Operating Systems, An
Advanced Course, pages 393–481, London, UK. Springer-Verlag.

[Gray 1986] Gray, J. (1986). Why Do Computers Stop and What Can Be Done About It? In
Symposium on Reliability in Distributed Software and Database Systems, pages 3–12.

[Gray et al. 1996] Gray, J., Helland, P., O’Neil, P., and Shasha, D. (1996). The dangers of repli-
cation and a solution. In SIGMOD’96: Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, pages 173–182.

[Gray and Reuter 1993] Gray, J. and Reuter, A. (1993). Transaction Processing: Concepts and
Techniques. Morgan Kaufmann. 1070 pp.

[Guerraoui et al. 2008] Guerraoui, R., Quéma, V., and Vukolić, M. (2008). The next 700 BFT
protocols. Technical Report LPD-2008-08, École Polytechnique Fédérale de Lausanne, School
of Computer and Communication Sciences, Lausanne, Switzerland.

[Guerraoui and Schiper 1997] Guerraoui, R. and Schiper, A. (1997). Software-Based Replication
for Fault Tolerance. IEEE Computer, 30(4):68–74.

[Guerraoui and Schiper 2001] Guerraoui, R. and Schiper, A. (2001). The generic consensus service.
IEEE Transactions on Software Engineering, 27(1):29–41.

[Hadzilacos and Toueg 1993] Hadzilacos, V. and Toueg, S. (1993). Fault-Tolerant Broadcasts and
Related Problems. In Mullender, S., editor, Distributed Systems, pages 97–168. Addison-Wesley.

[Herlihy and Wing 1990] Herlihy, M. P. and Wing, J. M. (1990). Linearizability: a correctness
condition for concurrent objects. ACM Transactions on Programming Languages and Systems,
12(3):463–492.

[Jiménez-Peris et al. 2003] Jiménez-Peris, R., Patiño-Mart́ınez, M., Alonso, G., and Kemme, B.
(2003). Are quorums an alternative for data replication? ACM Transactions on Database
Systems, 28(3):257–294.

[Kermarrec and van Steen 2007] Kermarrec, A.-M. and van Steen, M., editors (2007). Gossip-
Based Computer Networking, volume 41(5), Special Topic of ACM Operating Systems Review.

[Kotla et al. 2007] Kotla, R., Alvisi, L., Dahlin, M., Clement, A., and Wong, E. (2007). Zyzzyva:
speculative Byzantine fault tolerance. In Proceedings of the 21st ACM Symposium on Operating
Systems Principles (SOSP’07), pages 45–58. Operating Systems Review, 41(6), December 2007.

[Lamport 1978a] Lamport, L. (1978a). The Implementation of Reliable Distributed Multiprocess
Systems. Computer Networks, 2:95–114.



REFERENCES 11-47

[Lamport 1978b] Lamport, L. (1978b). Time, Clocks, and the Ordering of Events in a Distributed
System. Communications of the ACM, 21(7):558–56.

[Lamport 1979] Lamport, L. (1979). How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Transactions on Computers, 9(C-28):690–691.

[Lamport 1998] Lamport, L. (1998). The Part-time Parliament. ACM Transactions on Computer
Systems, 16(2):133–169. First appeared as DEC-SRC Research Report 49, 1989.

[Lamport et al. 1982] Lamport, L., Shostak, R. E., and Pease, M. C. (1982). The Byzantine
Generals Problem. ACM Transactions on Programming Languages and Systems, 4(3):382–401.

[Lampson 2001] Lampson, B. (2001). The ABCDs of Paxos. In Proc. ACM Symposium on Prin-
ciples of Distributed Computing (PODC).

[Lampson and Sturgis 1979] Lampson, B. W. and Sturgis, H. E. (1979). Crash recovery in a
distributed data storage system. Technical report, Xerox PARC (unpublished), 25 pp. Partially
reproduced in: Distributed Systems – Architecture and Implementation, ed. Lampson, Paul, and
Siegert, Lecture Notes in Computer Science 105, Springer, 1981, pp. 246–265 and pp. 357–370.

[Laprie 1985] Laprie, J.-C. (1985). Dependable Computing and Fault Tolerance: Concepts and
Terminology. In Proceedings of the 15th IEEE International Symposium on Faul-Tolerant Com-
puting (FTCS-15), pages 2–11.

[Larrea et al. 2004] Larrea, M., Fernández, A., and Arévalo, S. (2004). On the Implementation of
Unreliable Failure Detectors in Partially Synchronous Systems. IEEE Transactions on Comput-
ers, 53(7):815–828.

[Larrea et al. 2007] Larrea, M., Lafuente, A., Soraluze, I., and nas, R. C. (2007). Designing Effi-
cient Algorithms for the Eventually Perfect Failure Detector Class. Journal of Software, 2(4):1–
11.

[Leveson and Turner 1993] Leveson, N. and Turner, C. S. (1993). An Investigation of the Therac-
25 Accidents. IEEE Computer, 26(7):18–41.

[Lions et al. 1996] Lions, J.-L. et al. (1996). Ariane 5 Flight 501 Failure Report by the Inquiry
Board. http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html.

[Lynch 1989] Lynch, N. (1989). A hundred impossibility proofs for distributed computing. In
Proceedings of the 8th ACM Symposium on Principles of Distributed Computing (PODC), pages
1–28, New York, NY. ACM Press.

[Lyon 1990] Lyon, J. (1990). Tandem’s remote data facility. In Proceedings of IEEE Spring Com-
pCon, pages 562–567.

[Mostefaoui et al. 2003] Mostefaoui, A., Mourgaya, E., and Raynal, M. (2003). Asynchronous
Implementation of Failure Detectors. In International Conference on Dependable Systems and
Networks (DSN’03), pages 35–360, Los Alamitos, CA, USA. IEEE Computer Society.

[Oki and Liskov 1988] Oki, B. M. and Liskov, B. H. (1988). Viewstamped Replication: A New
Primary Copy Method to Support. Highly-Available Distributed Systems. In Proceedings of the
Seventh annual ACM Symposium on Principles of Distributed Computing (PODC’88), pages
8–17, New York, NY, USA. ACM.

[Oppenheimer et al. 2003] Oppenheimer, D., Ganapathi, A., and Patterson, D. A. (2003). Why do
Internet services fail, and what can be done about it? In 4th USENIX Symposium on Internet
Technologies and Systems (USITS ’03).



11-48 CHAPTER 11. AVAILABILITY

[Patterson et al. 1988] Patterson, D. A., Gibson, G., and Katz, R. H. (1988). A case for redundant
arrays of inexpensive disks (raid). In SIGMOD’88: Proceedings of the 1988 ACM SIGMOD
International Conference on Management of Data, pages 109–116, New York, NY, USA. ACM.

[Pedone et al. 2003] Pedone, F., Guerraoui, R., and Schiper, A. (2003). The Database State Ma-
chine Approach. Journal of Distributed and Parallel Databases and Technology, 14(1):71–98.

[Plattner and Alonso 2004] Plattner, C. and Alonso, G. (2004). Ganymed: scalable replication
for transactional web applications. In Proceedings of the 5th ACM/IFIP/USENIX international
conference on Middleware (Middleware’04), pages 155–174, Toronto, Canada. Springer-Verlag
New York, Inc.

[Randell 1975] Randell, B. (1975). System structure for software fault tolerance. In Proceedings of
the International Conference on Reliable software, pages 437–449, New York, NY, USA. ACM.

[ROC 2005] ROC (2005). The Berkeley/Stanford Recovery-Oriented Computing (ROC) Project.
http://roc.cs.berkeley.edu.

[Saito and Shapiro 2005] Saito, Y. and Shapiro, M. (2005). Optimistic replication. ACM Comput-
ing Surveys, 37(1):42–81.

[Saltzer et al. 1984] Saltzer, J. H., Reed, D. P., and Clark, D. D. (1984). End-to-end arguments
in system design. ACM Transactions on Computer Systems, 2(4):277–288.

[Schiper 2003] Schiper, A. (2003). Practical impact of group communication theory. In et al.,
A. S., editor, Future Directions in Distributed Computing (FuDiCo’02), volume 2584 of Lecture
Notes in Computer Science, pages 1–10. Springer-Verlag.

[Schiper 2006a] Schiper, A. (2006a). Dynamic Group Communication. Distributed Computing,
18(5):359–374.

[Schiper 2006b] Schiper, A. (2006b). Group communication: From practice to theory. In SOFSEM
2006: Theory and Practice of Computer Science, number 3831 in Lecture Notes in Computer
Science, pages 117–136. Springer-Verlag.

[Schiper and Toueg 2006] Schiper, A. and Toueg, S. (2006). From Set Membership to Group Mem-
bership: A Separation of Concerns. IEEE Transactions on Dependable and Secure Computing,
13(2):2–12.

[Schneider 1990] Schneider, F. B. (1990). Implementing Fault-Tolerant Services Using the State
Machine Approach: A Tutorial. ACM Computing Surveys, 22(4):299–319.

[Schneider 1993] Schneider, F. B. (1993). The Primary-Backup Approach. In Mullender, S., editor,
Distributed Systems, chapter 8, pages 199–216. ACM Press Books, Addison-Wesley.

[Skeen 1981] Skeen, D. (1981). Non-blocking commit protocols. In SIGMOD’81: Proceedings of
the 1981 ACM-SIGMOD International Conference on Management of Data, pages 133–142,
Orlando, FL, USA.

[Slony-I ] Slony-I. Enterprise-level replication system. http://slony.info/.

[Spread ] Spread. The Spread toolkit. http://www.spread.org/.

[Thomas 1979] Thomas, R. H. (1979). A majority consensus approach to concurrency control for
multiple copy databases. ACM Transactions on Database Systems, 4(2):180–209.

[van Renesse et al. 1998] van Renesse, R., Birman, K., Hayden, M., Vaysburd, A., and Karr, D.
(1998). Building adaptive systems using Ensemble. Software–Practice and Experience, 28(9):963–
979.



REFERENCES 11-49

[Wensley et al. 1976] Wensley, J. H., Green, M. W., Levitt, K. N., and Shostak, R. E. (1976). The
design, analysis, and verification of the SIFT fault tolerant system. In Proceedings of the 2nd
International Conference on Software Engineering (ICSE ’76), pages 458–469, Los Alamitos,
CA, USA. IEEE Computer Society Press.

[Wiesmann et al. 2000a] Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., and Alonso, G.
(2000a). Database replication techniques: a three parameter classification. In Proceedings of
19th IEEE Symposium on Reliable Distributed Systems (SRDS’00), Nürenberg, Germany. IEEE
Computer Society.

[Wiesmann et al. 2000b] Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., and Alonso, G.
(2000b). Understanding replication in databases and distributed systems. In Proceedings of
20th International Conference on Distributed Computing Systems (ICDCS’2000), pages 264–
274, Taipei, Taiwan. IEEE Computer Society Technical Commitee on Distributed Processing.

[Wu and Kemme 2005] Wu, S. and Kemme, B. (2005). Postgres-R(SI): Combining Replica Control
with Concurrency Control based on Snapshot Isolation. In IEEE International Conference on
Data Engineering (ICDE), Tokyo, Japan.


