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Chapter 1

An Introduction to Middleware

This chapter is an introduction to middleware. It starts with a motivation for middleware
and an analysis of its main functions. It goes on with a description of the main classes
of middleware. Then follows a presentation of a simple example, Remote Procedure Call,
which introduces the main notions related to middleware and leads to a discussion of the
main design issues. The chapter concludes with a historical note outlining the evolution
of middleware.

1.1 Motivation for Middleware

Making software a commodity by developing an industry of reusable components was set
as a goal in the early days of software engineering. Evolving access to information and
to computing resources into a utility, like electric power or telecommunications, was also
an early dream of the creators of the Internet. While significant progress has been made
towards these goals, their achievement still remains a long term challenge.

On the way to meeting this challenge, designers and developers of distributed software
applications are confronted with more concrete problems in their day to day practice. In a
series of brief case studies, we exemplify some typical situations. While this presentation
is oversimplified for brevity’s sake, it tries to convey the essence of the main problems and
solutions.

Example 1: reusing legacy software. Companies and organizations are now building
enterprise-wide information systems by integrating previously independent applications,
together with new developments. This integration process has to deal with legacy ap-
plications, i.e. applications that have been developed before the advent of current open
standards, using proprietary tools, and running in specific environments. A legacy appli-
cation can only be used through its specific interface, and cannot be modified. In many
cases, the cost of rewriting a legacy application would be prohibitive, and the application
needs to be integrated “as is”.

The principle of the current solutions is to adopt a common, language-independent,
standard for interconnecting different applications. This standard specifies interfaces and
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exchange protocols for communication between applications. These protocols are imple-
mented by a software layer that acts as an exchange bus, also called a broker, between the
applications. The method for integrating a legacy application is to develop a wrapper, i.e.
a piece of software that serves as a bridge between the application’s primitive interface
and a new interface that conforms to the selected standard.
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Figure 1.1. Integrating legacy applications

A “wrapped” legacy application may now be integrated with other such applications
and with newly developed components, using the standard inter-applications protocols
and the inter-applications broker. Examples of such brokers are CORBA, message queues,
publish-subscribe systems; they are developed further in this book.

Example 2: mediation systems. An increasing number of systems are composed of
a collection of various devices interconnected by a network, where each individual de-
vice performs a function that involves both local interaction with the real world and re-
mote interaction with other devices of the system. Examples include computer networks,
telecommunication systems, uninterruptible power supply units, decentralized manufac-
turing units.

Managing such systems involves a number of tasks such as monitoring performance,
capturing usage patterns, logging alarms, collecting billing information, executing remote
maintenance functions, downloading and installing new services. Performing these tasks
involves remote access to the devices, data collection and aggregation, and reaction to
critical events. The systems that are in charge of these tasks are called mediation systems.

The internal communication infrastructure of a mediation system needs to cater for
data collection (data flowing from the devices towards the management components, as
well as for requests and commands directed towards the devices. Communication is often
triggered by an asynchronous event (e.g. the occurrence of an alarm or the crossing of a
threshold by a monitored value).

An appropriate communication system for such situations is a message bus, i.e. a
common channel to which the different communicating entities are connected (Figure
1.2). Communication is asynchronous and may involve a varying number of participants.
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Figure 1.2. Monitoring and controlling networked equipment

Different possibilities exist to determine the recipients of a message, e.g. members of a
predefined group or “subscribers” to a specific topic.

Example 3: component-based architectures. Developing applications by compos-
ing building blocks has proved much more difficult than initially thought. Current architec-
tures based on software components rely on a separation of functions and on well-defined,
standard interfaces. A popular organization of business applications is the so-called “three
tier architecture” in which an application is made up of three layers: between the presen-
tation layer devoted to client side user interface, and the database management layer
in charge of information management, sits a “business logic” layer that implements the
application-specific functionality. This intermediate layer allows the application specific
aspects to be developed as a set of “components”, i.e. composable, independently deploy-
able units.

This architecture relies on a support infrastructure that provides an environment for
components, as well as a set of common services, such as transaction management and
security. In addition, an application in a specific domain (e.g. telecommunications, finance,
avionics, etc.) may benefit from a set of components developed for that domain.

This organization has the following benefits.

• Allowing the developers to concentrate on application-specific problems, through the
provision of common services.

• Improving portability and interoperability by defining standard interfaces; thus a
component may be reused on any system supporting the standard interface, and
legacy code may be integrated by developing a wrapper that exports the standard
interface.
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Figure 1.3. An environment for component-based applications

• Improving scalability by separating the application and database management layers,
which may be separately upgraded to cater for an increase in load.

Examples of specifications for such environments are Enterprise JavaBeans (EJB) and
the CORBA Component Model (CCM), which are developed further in this book.

Example 4: client adaptation through proxies. Users interact with Internet appli-
cations through a variety of devices, whose characteristics and performance figures span an
increasingly wide range. Between a high performance PC, a smart phone, and a PDA, the
variations in communication bandwidth, local processing power, screen capacity, ability
to display color pictures, are extremely large. One cannot expect a server to provide a
level of service that is adapted to each individual client’s access point. On the other hand,
imposing a uniform format for all clients would restrict their functionality by bringing it
down to the lowest common level (e.g. text only, black and white, etc.).

The preferred solution is to interpose an adaptation layer (known as a proxy) between
the clients and the servers. A different proxy may be designed for each class of client devices
(e.g. phones, PDAs, etc.). The function of the proxy is to adapt the communication flow to
and from the client to the client’s capabilities and to the state of the network environment.
To that end, the proxy uses its own storage and processing resources. Proxies may be
hosted by dedicated equipment, as shown on Figure 1.4, or by common servers.

Examples of adaptation include compressing the data to adjust for variable network
bandwidth; reducing the quality of images to adapt to restricted display capabilities;
converting colors to levels of gray for black and white displays; caching data to cater
for limited client storage capacity. A case study of the use of proxy-based adaptation is
described in [Fox et al. 1998].

In all of the above situations, applications use intermediate software that resides on top
of the operating systems and communication protocols to perform the following functions.

1. Hiding distribution, i.e. the fact that an application is usually made up of many
interconnected parts running in distributed locations.
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2. Hiding the heterogeneity of the various hardware components, operating systems and
communication protocols that are used by the different parts of an application.

3. Providing uniform, standard, high-level interfaces to the application developers and
integrators, so that applications can easily interoperate and be reused, ported, and
composed.

4. Supplying a set of common services to perform various general purpose functions, in
order to avoid duplicating efforts and to facilitate collaboration between applications.

These intermediate software layers have come to be known under the generic name
of middleware (Figure 1.5). A middleware system may be general purpose, or may be
dedicated to a specific class of applications.
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Figure 1.5. Middleware organization

Using middleware has many benefits, most of which derive from abstraction: hiding
low-level details, providing language and platform independence, reusing expertise and
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possibly code, easing application evolution. As a consequence, one may expect a reduction
in application development cost and time, better quality (since most efforts may be devoted
to application specific problems), and better portability and interoperability.

A potential drawback is the possible performance penalty linked to the use of multiple
software layers. Using middleware technologies may also entail a significant retraining
effort for application developers.

1.2 Categories of Middleware

Middleware systems may be classified according to different criteria, including the prop-
erties of the communication infrastructure, the global architecture of the applications, the
provided interfaces.

Communication properties. The communication infrastructure that underlies a mid-
dleware system is characterized by several properties that allow a first categorization.

1. Fixed vs variable topology. In a fixed communication system, the communicating
entities reside at fixed locations, and the configuration of the network does not change
(or such changes are programmed, infrequent operations). In a mobile (or nomadic)
communication system, some or all communicating entities may change location,
and entities may connect to or disconnect from the system, while applications are in
progress.

2. Predictable vs unpredictable characteristics. In some communication systems, bounds
can be established for performance factors such as latency or jitter. In many practical
cases, however, such bounds are not known e.g. because the performance factors
depend on the load on shared devices such as a router or a communication channel.
A synchronous communication system is one in which an upper bound is known for
the transmission time of a message; if such a bound cannot be predicted, the system
is said to be asynchronous1.

Usual combinations of these characteristics are defined as follows.

• Fixed, unpredictable. This is the most frequent case, both for local and wide area
networks (e.g. the Internet). Although an average message transmission time may be
estimated in many current situations, it is impossible to guarantee an upper bound.

• Fixed, predictable. This applies to environments developed for specially demanding
applications such as hard real time control systems, which use a communication pro-
tocol that guarantees bounded message transfer time through resource reservation.

• Variable, unpredictable. This is the case of communication systems that include mo-
bile (or nomadic) devices such as mobile phones or PDAs. Communication with such
devices use wireless technologies, which are subject to unpredictable performance

1In a distributed system, the term asynchronous usually indicates, in addition, that an upper bound is
not known for the ratio of processing speeds at different sites (a consequence of the unpredictable load on
shared processors).
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variations. So-called ubiquitous environments [Weiser 1993], in which a variety of
devices may temporarily or permanently connect to a system, are also part of this
category.

With current communication technologies, the category (variable, predictable) is void.
The unpredictability of the communication system’s characteristics imposes an additional
load to middleware in order to guarantee specified performance levels. Adaptability, i.e.
the ability to react to variations in communication performance, is the main quality re-
quired in this situation.

Architecture and interfaces. The overall architecture of a middleware system may
be classified according to the following properties.

1. Managed entities. Middleware systems manage different kinds of entities, which differ
by their definition, properties, and modes of communication. Typical examples of
managed entities are objects, agents, and components (generic definitions of these
terms are given in Chapters 5, 6, and 7, respectively, and more specific definitions
are associated with particular systems).

2. Service provision structure. The entities managed by a middleware system may have
predefined roles such as client (service requester) and server (service provider), or
publisher (information supplier) and subscriber (information receiver). Alternatively,
all entities may be at the same level and a given entity may indifferently assume
different roles; such organizations are known as peer to peer.

3. Service provision interfaces. Communication primitives provided by a middleware
system may follow the synchronous or asynchronous paradigm (unfortunately, these
terms are overloaded, and their meaning here is different from that associated with
the basic communication system). In synchronous communication, a client process
sends a request message to a remote server and blocks while waiting for the reply.
The remote server receives the request, executes the requested operation and sends
a reply message back to the client. Upon receipt of the reply, the client resumes
execution. In asynchronous communication, the send operation is non-blocking, and
there may or not be a reply. Remote procedure calls or remote method invocations
are examples of synchronous communication, while message queues and publish-
subscribe systems are examples of asynchronous communication.

The various combinations of the above properties give rise to a wide variety of systems
that differ through their visible structure and interfaces, and are illustrated by case studies
throughout the book. In spite of this variety, we intend to show that a few common
architectural principles apply to all these systems.

1.3 A Simple Instance of Middleware: Remote Procedure

Call

We now present a simple middleware system, Remote Procedure Call (RPC). We do not
intend to cover all the details of this mechanism, which may be found in all distributed
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systems textbooks, but to introduce a few patterns that will be found repeatedly in other
middleware architectures, as well as some design issues.

1.3.1 Motivations and Requirements

Procedural abstraction is a key concept of programming. A procedure, in an imperative
language, may be seen as a “black box” that performs a specified task by executing an
encapsulated sequence of code (the procedure body). Encapsulation means that the pro-
cedure may only be called through an interface that specifies its parameters and return
values as a set of typed holders (the formal parameters). When calling a procedure, a
process specifies the actual parameters to be associated with the holders, performs the
call, and gets the return values when the call returns (i.e. at the end of the execution of
the procedure body).

The requirements of remote procedure call may be stated as follows. On a site A,
consider a process p that executes a local call to a procedure P (Figure 1.6 a). Design a
mechanism that would allow p to perform the same call, with the execution of P taking
place on a remote site B (Figure 1.6 b), while preserving the semantics (i.e. the overall
effect) of the call. We call A and B the client site and the server site, respectively, because
RPC follows the client-server, or synchronous request-response, communication paradigm.

process p site A

(a) Local call (b) Remote call 

P(x,y)
process p site A

interface

site B

P(x,y)

interface

P(x,y)

interface

network

Figure 1.6. Remote procedure call: overview

By preserving the semantics between local and remote call, procedural abstraction is
preserved; portability is improved because the application is independent of the underly-
ing communication protocols. In addition, an application may easily be ported, without
changes, between a local and a distributed environment.

However, preserving semantics is no easy task, for two main reasons.

• the failure modes are different in the local and distributed cases; in the latter, the
client site, the server site and the network may fail independently;

• even in the absence of failures, the semantics of parameter passing is different (e.g.
passing a pointer as a parameter does not work in the distributed case because the
calling process and the procedure execute in distinct address spaces).

Concerning parameter passing, the usual solution is to use call by value for parameters
of simple types. Fixed-size structures such as arrays or records can also be dealt with.
In the general case, passing by reference is not supported, although solutions exist such
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as specific packing and unpacking routines for pointer-based structures. The technical
aspects of parameter passing are examined in Section 1.3.2.

Concerning the behavior of RPC in the presence of failures, there are two main diffi-
culties, at least if the underlying communication system is asynchronous (in the sense of
unpredictable). First, it is usually impossible to know upper bounds on message transmis-
sion time; therefore a network failure detection method based on timeouts runs the risk of
false detections. Second, it is difficult to distinguish between the loss of a message and the
failure of a remote processor. As a consequence, a recovery action may lead to a wrong
decision such as re-executing an already executed procedure. Fault tolerance aspects are
examined in Section 1.3.2.

1.3.2 Implementation Principles

The standard implementation of RPC [Birrell and Nelson 1984] relies on two pieces of
software, the client stub and the server stub (Figure 1.7). The client stub acts as a local
representative of the server on the client site; the server stub has a symmetrical role. Thus
both the calling process (on the client side) and the procedure body (on the server side)
keep the same interface as in the centralized case. The client and server stubs rely on a
communication subsystem to exchange messages. In addition, they use a naming service
in order to help the client locate the server (this point is developed in section 1.3.3).

procedure
call interface

communication
interface

client stub server stub

communication
subsystem

procedure
call interface

communication
subsystem

communication
interface

name service

client server

network

Figure 1.7. Remote procedure call: main components

The functions of the stubs are summarized below.

Process management and synchronization. On the client side, the calling process
(or thread, depending on how the execution is organized) must be blocked while waiting
for the procedure to return.

On the server side, the main issue is that of parallel execution. While a procedure
call is a sequential operation, the server may be used by multiple clients. Multiplexing
the server resources (specially if the server machine is a multiprocessor or a cluster) calls
for a multithreaded organization. A daemon thread waits for incoming messages on a
specified port. In the single thread solution (Figure 1.8 (a)), the daemon thread executes
the procedure; there is no parallel execution on the server side. In the second scheme
(Figure 1.8 (b)), a new worker thread is created in order to execute the procedure, while
the daemon returns to wait on the next call; the worker thread exits upon completion. In
order to avoid the overhead due to thread creation, an alternate solution is to manage a
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fixed-size pool of worker threads (Figure 1.8 (c)). Worker threads communicate with the
daemon through a shared buffer using the producer-consumer scheme. Worker threads
are waiting for new work to arrive; after executing the procedure, a worker thread returns
to the pool, i.e. tries to get new work to do. If all worker threads are busy when a call
arrives, the execution of the call is delayed until a thread becomes free.
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Figure 1.8. Remote procedure call: thread management on the server side

A discussion of the thread management patterns, illustrated by Java threads, may be
found in [Lea 1999].

All these synchronization and thread management operations are performed by the
stubs and are invisible to the client and server main programs.

Parameter marshalling and unmarshalling. Parameters and results need to be
transmitted over the network. Therefore they need to be put in a serialized form, suitable
for transmission. In order to ensure portability, this form should be standard and indepen-
dent of the underlying communication protocols as well as of the local data representation
conventions (e.g. byte ordering) on the client and server machines. Converting data from
a local representation to the standard serialized form is called marshalling ; the reverse
conversion is called unmarshalling.

A marshaller is a set of routines, one for each data type (e.g. writeInt, writeString,
etc.), that write data of the specified type to a sequential data stream. An unmarshaller
performs the reverse function and provides routines (e.g. readInt, readString, etc.) that
extract data of a specified type from a sequential data stream. These routines are called
by the stubs when conversion is needed. The interface and organization of marshallers
and unmarshallers depend on the language used, which specifies the data types, and on
the standard representation format.

Reacting to failures. As already mentioned, failures may occur on the client site, on
the server site, and in the communication network. Taking potential failures into account is
a three step process: formulating failure hypotheses; detecting failures; reacting to failure
detection.

The usual failure hypotheses are fail-stop for nodes (i.e. either the node operates
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correctly, or it stops), and message loss for communication (i.e. either a message arrives
uncorrupted, or it does not arrive at all, assuming that message corruption is dealt with
at the lower levels of the communication system). Failure detection mechanisms are based
on timeouts. When a message is sent, a timeout is set at an estimated upper bound of the
expected time for receipt of a reply. If the timeout is triggered, a recovery action is taken.

Such timeouts are set both on the client site (after sending the call message) and on
the server site (after sending the reply message). In both cases, the message is resent after
timeout. The problem is that an upper bound cannot be safely estimated; a call message
may be resent in a situation where the call has already been executed; the call might then
be executed several times.

The net result is that it is usually impossible to guarantee the so-called “exactly once”
semantics, meaning that, after all failures have been repaired, the call has been executed
exactly one time. Most systems guarantee an “at most once” semantics (the call is either
executed, or not at all, but partial or multiple executions are precluded). The “at least
once” semantics, in which the call is executed one or more times, is acceptable when the
call is idempotent, i.e. the effect of two calls in succession is identical to that of a single
call.

The overall organization of RPC, not showing the aspects related to fault tolerance, is
described on Figure 1.9
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Figure 1.9. Remote procedure call: overall flow of control

1.3.3 Developing Applications with RPC

In order to actually develop an application using RPC, a number of practical issues need
to be settled: how are the client and the server linked together? how are the client and
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server stubs constructed? how are the programs installed and started? These issues are
considered in turn below.

Client-Server Binding. The client needs to know the server address and port number
to which the call should be directed. This information may be statically known, and
hardwired in the code. However, in order to preserve abstraction, to ensure a flexible
management of resources, and to increase availability, it is preferable to allow for a late
binding of the remote execution site. Therefore, the client must locate the server site prior
to the call.

This is the function of a naming service, which is essentially a registry that associates
procedure names (and possibly version numbers) with server addresses and port numbers.
A server registers a procedure name together with its IP address and the port number at
which the daemon process is waiting for calls on that procedure. A client consults the
naming service to get the IP address and port number for a given procedure. The naming
service is usually implemented as a server of its own, whose address and port number are
known to all participant nodes.

Figure 1.10 shows the overall pattern of interaction involving the naming service.

Client
Client
stub

Server
Server

stub

call P(x, y)

Naming
service

register (P, IP address, port)
lookup (P)

return  (IP address, port)

P(x, y)

Figure 1.10. Remote procedure call: locating the server

The problem of binding the server to the client is easily solved by including the address
and port number of the client in the call message.

Stub generation. As seen in Section 1.3.2, the stubs fulfill a set of well-defined func-
tions, part of which is generic (e.g. process management) and part of which depends on
the specific call (e.g. parameter marshalling and unmarshalling). Considering this fixed
pattern in their structure, stubs are obvious candidates for automatic generation.

The call-specific parameters needed for stub generation are specified in a special nota-
tion known as an Interface Definition Language (IDL). An interface description written in
IDL contains all the information that defines the interface of the procedure call: it acts as
a contract between the caller and the callee. For each parameter, the description specifies
its type and mode of passing (e.g. by value, by copy-restore, etc.). Additional information
such as version number and mode of activation may also be specified.

Several IDLs have been defined (e.g. Sun XDR, OSF DCE). The stub generator is
associated with a specific common data representation format associated with the IDL;
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Figure 1.11. Remote procedure call: stub generation

it inserts the conversion routines provided by the corresponding marshallers and unmar-
shallers. The overall development cycle of an application using RPC is shown on Figure
1.11 (the notation is that of Sun RPC).

Application Deployment. Deployment is the process of installing the program pieces
that make up a distributed application on their respective sites and of starting their
execution when needed. In the case of RPC, the installation is usually done by executing
prepared scripts that call the tools described in Figure 1.11, possibly using a distributed
file system to retrieve the source files. As regards activation, the constraints are that the
server needs to be activated before the first call of a client, and that the naming service
must be activated before the server. These activations may again be performed by a script;
the server may also be directly activated by a client (in that case, the client needs to be
allowed to run a remote script on the server’s site).

1.3.4 Summary and Conclusions

A number of useful lessons can be learned from this simple case.

1. Complete transparency (i.e. the property of preserving the behavior of an applica-
tion while moving from a centralized to a distributed environment) is not achiev-
able. While transparency was an ideal goal in the early days of middleware, good
engineering practice leads to recognize its limits and to accept that distributed ap-
plications should be considered as such, i.e. distribution aware, at least for those
aspects that require it, like fault tolerance or performance. This point is discussed
in [Waldo et al. 1997].

2. Several useful patterns have emerged. Using local representatives to organize the
communication between remote entities is one of the most common patterns of
middleware (the Proxy design pattern). Another universal pattern is client-server
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matching through a naming service acting as a registry (the Broker architectural
pattern). Other patterns, perhaps less apparent, are the organization of server ac-
tivity through thread creation or pooling, and the reaction to failures through the
detection-reaction scheme.

3. Developing a distributed application, even with an execution scheme as conceptu-
ally simple as RPC, involves an important engineering infrastructure: IDL and stub
generators, common data representation and (un)marshallers, fault tolerance mech-
anisms, naming service, deployment tools. Designing this infrastructure in order to
simplify the application developers’ task is a recurring theme of this book.

Regarding RPC as a tool for structuring distributed applications, we may note a num-
ber of limitations.

• The structure of the application is static; there is no provision for dynamic creation
of servers or for restructuring an application.

• Communication is restricted to a synchronous scheme. There is no provision for
asynchronous, event driven, communication.

• The data managed by the client and server programs are not persistent, i.e. they
do not survive the processes that created them. Of course, these data may be saved
in files, but the save and restore operations must be done explicitly: there is no
provision for automatic persistence.

In the rest of this book, we introduce other schemes that do not suffer from these
limitations.

1.4 Issues and Challenges in Middleware Design

In this section, we first discuss the main issues of middleware organization, which define the
structure of the rest of the book. We then identify a few general requirements that favor
a principled design approach. We conclude by listing a few challenges for the designers of
future middleware systems.

1.4.1 Design Issues

The function of middleware is to mediate interaction between the parts of an application,
or between applications. Therefore architectural issues play a central role in middleware
design. Architecture is concerned with the organization, overall structure, and communi-
cation patterns, both for applications and for middleware itself. Architectural issues are
the subject of Chapter 2. In addition to a discussion of basic organization principles, this
chapter presents a set of basic patterns, which are recurring in the design of all categories
of middleware.

Besides architectural aspects, the main problems of middleware design are those per-
taining to various aspects of distributed systems. A brief summary follows, which defines
the plan of the rest of the book.
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Naming and binding are central in middleware design, since middleware may be defined
as software that binds pieces of application software together. Naming and binding are
the subject of Chapter 3.

Any middleware system relies on a communication layer that allows its different pieces
to interoperate. In addition, communication is a function provided by middleware itself
to applications, in which the communicating entities may take on different roles such as
client-server or peer to peer. Communication is the subject of Chapter 4.

Middleware allows different interaction modes (synchronous invocations, asynchronous
message passing, coordination through shared objects) embodied in different patterns. The
main paradigms of middleware organization using distributed objects, mainly in client-
server mode, are examined in Chapter 5. The paradigms based on asynchronous events
and coordination are the subject of Chapter 6.

Software architecture deals with the structural description of a system in terms of
elementary parts. The notions related to composition and components are now becoming
a key issue for middleware, both for its own organization and for that of the applications
it supports. Software composition is the subject of Chapter 7.

Data management brings up the issues of persistence (long term data conservation and
access procedures) and transactions (accessing data while preserving consistency in the
face of concurrent access and possible failures). Persistence is the subject of Chapter 8,
and transactions are examined in Chapter 9.

Administration is a part of the application’s life cycle that is taking an increasing
importance. It involves such functions as configuration and deployment, monitoring, and
reconfiguration. Administration middleware is the subject of Chapter 10.

Quality of Service includes various properties of an application that are not explicitly
formulated in its functional interfaces, but that are essential for its users. Three spe-
cific aspects of QoS are reliability and availability, performance (specially for time-critical
applications), and security. They are respectively covered in Chapters 11, 12, and 13.

1.4.2 Architectural Guidelines

In this section, we briefly discuss a few considerations derived from experience. They are
generally applicable to software systems, but are specially relevant to middleware, due to
its dual function of mediator and common services provider.

Models and Specifications

A model is a simplified representation of (part of) the real world. A given real object may
be represented by different models, according to the domain of interest and to the accuracy
and degree of detail of the representation. Models are used to better understand the object
being represented, by explicitly formulating relevant hypotheses, and by deriving useful
properties. Since no model is a perfect representation of the reality, care must be taken
when transposing the results derived from a model to the real world. A discussion of the
use (and usefulness) of models for distributed systems may be found in [Schneider 1993].

Models (with various degrees of formality) are used for various aspects of middleware,
including naming, composition, fault tolerance, and security.
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Models help in the formulation of rigorous specifications. When applied to the behavior
of a system, specifications fall into two categories:

• Safety (informally: no undesirable event or condition will ever occur).

• Liveness (informally: a desirable event or condition will eventually occur).

For example, in a communication system, a safety property is that a delivered message
is not corrupted (i.e., it is identical to the message sent), while an example of liveness is
that a message sent will eventually be delivered to its destination. Liveness is often more
difficult to ensure than safety. Specifications of concurrent and distributed systems are
discussed in [Weihl 1993].

Separation of Concerns

In software engineering, separation of concerns refers to the ability to isolate independent,
or loosely related, aspects of a design and to deal with each of them separately. The
expected benefits are to allow the designer and developer to concentrate on one problem
at a time, to eliminate artificial interactions between orthogonal concerns, and to allow
independent variation of the requirements and constraints associated with each separate
aspect. Separation of concerns has deep implications both on the architecture of mid-
dleware and on the definition of roles for the division of the design and implementation
tasks.

Separation of concerns may be viewed as a “meta-principle” that can take a number
of specific forms, of which four examples follow.

• The principle of encapsulation (2.1.3) separates the concerns of the user of a software
component from those of its implementor, through a common interface definition.

• The principle of abstraction allows a complex system to be decomposed into levels
(2.2.1), each level providing a view that hides irrelevant details which are dealt with
at lower levels.

• Separation between policy and mechanism [Levin et al. 1975] is a widely used prin-
ciple, specially in the area of resource management and protection. This separation
brings flexibility for the policy designer, while avoiding overspecification of the mech-
anisms. It should be possible to change a policy without having to reimplement the
mechanisms.

• The principle of orthogonal persistence (8.2) separates the issue of defining the life-
time of data from other aspects such as the type of the data or the properties of
their access programs.

These points are further developed in Chapter 2.
In a more restricted sense, separation of concerns attempts to deal with aspects whose

implementation, in the current state of the art, is scattered among various parts of a
software system, and tightly interwoven with other aspects. The goal is to allow a sep-
arate expression of aspects that are considered independent and, ultimately, to be able
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to automate the task of producing the code dealing with each aspect. Examples of such
aspects are those related to “extra-functional” properties (see 2.1.2) such as availability,
security, persistence, and those dealing with common functions such as logging, debugging,
observation, transaction management, which are typically implemented by pieces of code
scattered in many parts of an application.

Separation of concerns also helps identifying specialized roles in the design and de-
velopment process, both for applications and for the middleware itself. By focusing on a
particular aspect, the person or team that embodies a role can better apply his expertise
and improve the efficiency of his work. Examples of roles associated with various aspects
of component software may be found in Chapter 7.

Evolution and Adaptation

Software systems operate in a changing environment. Sources of change include evolving
requirements resulting from the perception of new needs, and varying execution conditions
due to the diversity of communication devices and systems, which induce unpredictable
variations of quality of service. Therefore both applications and middleware need to be
designed for change. Responding to evolving requirements is done by program evolution.
Responding to changing execution conditions is done by dynamic adaptation.

In order to allow evolution, the internal structure of the system must be made acces-
sible. There is an apparent contradiction between this requirement and the principle of
encapsulation, which tends to hide implementation details.

There are several ways to deal with this problem. Pragmatic techniques, often based
on interception (2.3.4), are widely used for commercial middleware. A more systematic
approach is to use reflection. A reflective system [Smith 1982, Maes 1987] is one that pro-
vides a representation of itself, in order to enable inspection (answering questions about
the system) and adaptation (modifying the behavior of the system). To ensure consistency,
the representation must be causally connected to the system, i.e. any change of the system
must be reflected in its representation, and vice versa. Meta-object protocols provide such
an explicit representation of the basic mechanisms of a system and a protocol to examine
and to modify this representation. Aspect-oriented programming, a technology designed
to ensure separation of concerns, is also useful for implementing dynamic evolution capa-
bilities. These techniques and their use in middleware systems are reviewed in Chapter
2.

1.4.3 Challenges

The designers of future middleware systems face several challenges.

• Performance. Middleware systems rely on interception and indirection mechanisms,
which induce performance penalties. Adaptable middleware introduces additional
indirections, which make the situation even worse. This problem may be alleviated by
various optimization methods, which aim at eliminating the unnecessary overheads
by such techniques as inlining, i.e. injecting the middleware code directly into the
application. Flexibility must be preserved, by allowing the effect of the optimizations
to be reversed if needed.
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• Large scale. As applications become more and more interconnected and interdepen-
dent, the number of objects, users and devices tends to increase. This poses the
problem of the scalability of the communication and object management algorithms,
and increases the complexity of administration (for example, does it even make sense
to try to define and capture the “state” of a very large system?). Large scale also
complexifies the task of preserving the various forms of Quality of Service.

• Ubiquity. Ubiquitous (or pervasive) computing is a vision of the near future, in
which an increasing number of devices embedded in various physical objects will be
participating in a global information network. Mobility and dynamic reconfiguration
will be dominant features, requiring permanent adaptation of the applications. Most
of the architectural concepts applicable to systems for ubiquitous computing are still
to be elaborated.

• Management. Managing large applications that are heterogeneous, widely distributed
and in permanent evolution raises many questions, such as consistent observation,
security, tradeoffs between autonomy and interdependence for the different subsys-
tems, definition and implementation of resource management policies.

1.5 Historical Note

The term “middleware” seems to have appeared around 1990, but middleware sys-
tems existed long before that date. Messaging systems were available as products in
the late 1970s. The classical reference on Remote Procedure Call implementation is
[Birrell and Nelson 1984], but RPC-like, language-specific constructs were already in use
by then (the original idea of RPC appeared in [White 1976]2 and an early implementation
was proposed in [Brinch Hansen 1978]).

Starting in the mid-1980s, a number of research projects developed middleware
support for distributed objects, and elaborated the main concepts that influenced
later standards and products. Early efforts are Cronus [Schantz et al. 1986] and
Eden [Almes et al. 1985]. Later projects include Amoeba [Mullender et al. 1990], AN-
SAware [ANSA ], Arjuna [Parrington et al. 1995], Argus [Liskov 1988], Chorus/COOL
[Lea et al. 1993], Clouds [Dasgupta et al. 1989], Comandos [Cahill et al. 1994], Emerald
[Jul et al. 1988], Gothic [Banâtre and Banâtre 1991], Guide [Balter et al. 1991], Network
Objects [Birrell et al. 1995], SOS [Shapiro et al. 1989], and Spring [Mitchell et al. 1994].

The Open Software Foundation (OSF), later to become the Open Group
[Open Group ], was created in 1988 in an attempt to unify the various versions of the Unix
operating system. While this goal was never reached, the OSF specified a software suite,
the Distributed Computing Environment (DCE) [Lendenmann 1996], which included such
middleware components as an RPC service, a distributed file system, a distributed time
service, and a security service.

The Object Management Group (OMG) [OMG ] was created in 1989 in order to de-
fine standards for distributed object middleware. Its first effort led to the CORBA 1.0

2an extended version of Internet RFC 707.
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specification in 1991 (the latest version, as of 2003, is CORBA 3). Later developments in-
clude standards for modeling (UML, MOF) and components (CCM). The Object Database
Management Group (ODMG) [ODMG ] defines standards applicable to object databases,
bridging the gap between object-oriented programming languages and persistent data man-
agement.

The Reference Model for Open Distributed Processing (RM-ODP) [ODP 1995a],
[ODP 1995b] was jointly defined by two standards bodies, ISO and ITU-T. Its contribu-
tion is a set of concepts that define a generic framework for open distributed computing,
rather than a specific standard.

The definition of the Java programming language by Sun Microsystems in 1995 led the
way to several middleware developments such as Java Remote Method Invocation (RMI)
[Wollrath et al. 1996] and the Enterprise JavaBeans (EJB) [Monson-Haefel 2002]. These
and others are integrated in a common platform, J2EE [J2EE ].

Microsoft developed the Distributed Component Object Model (DCOM)
[Grimes 1997], a middleware based on composable distributed objects, and an im-
proved version, COM+ [Platt 1999]. Its next offering is .NET [.NET ], a software
platform for distributed applications development and Web services provision.

The first scientific conference entirely dedicated to middleware took place in 1998
[Middleware 1998]. Current research issues include adaptive and reflective middleware,
and middleware for mobile and ubiquitous systems.
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[Birrell and Nelson 1984] Birrell, A. D. and Nelson, B. J. (1984). Implementing remote procedure
calls. ACM Transactions on Computer Systems, 2(1):39–59.

[Birrell et al. 1995] Birrell, A. D., Nelson, G., Owicki, S., and Wobber, E. (1995). Network objects.
Software–Practice and Experience, 25(S4):87–130.

[Brinch Hansen 1978] Brinch Hansen, P. (1978). Distributed Processes: a concurrent programming
concept. Communications of the ACM, 21(11):934–941.

[Cahill et al. 1994] Cahill, V., Balter, R., Harris, N., and Rousset de Pina, X., editors (1994). The
COMANDOS Distributed Application Platform. ESPRIT Research Reports. Springer-Verlag.
312 pp.

[Dasgupta et al. 1989] Dasgupta, P., Chen, R. C., Menon, S., Pearson, M. P., Ananthanarayanan,
R., Ramachandran, U., Ahamad, M., LeBlanc, R. J., Appelbe, W. F., Bernabéu-Aubán, J. M.,
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