Preface

In a distributed computing system, middleware is defined as the software layer that lies
between the operating system and the applications on each site of the system. Its role is to
make application development easier, by providing common programming abstractions, by
masking the heterogeneity and the distribution of the underlying hardware and operating
systems, and by hiding low-level programming details.

Stimulated by the growth of network-based applications, middleware technologies are
taking an increasing importance. They cover a wide range of software systems, including
distributed objects and components, message-oriented communication, and mobile appli-
cation support. Although new acronyms seem to appear almost every month in the area of
middleware, these software systems are based on a few principles and paradigms that have
been identified over the years, refined through experience, and embodied in working code.
The aim of this book is to contribute to the elaboration and transmission of this body of
knowledge for the benefit of designers and developers of future middleware systems. We
believe that design patterns and software frameworks are adequate vehicles for achieving
this goal.

This book approaches middleware systems from an architectural point of view. Ar-
chitecture is the art of organizing parts into a whole to fulfill a function, in the presence
of constraints. Architects and city planners [Alexander et al. 1977] have introduced the
notion of a design pattern to describe, in an articulated way, the structures, the representa-
tions and the techniques used to respond to specific requirements in a given context. This
notion has been adopted by software architects [Gamma et al. 1994], and is now central in
software design. As experience builds up, new patterns are elaborated, and an expanding
body of literature is devoted to the presentation and discussion of patterns for a variety of
situations (see e.g., [Buschmann et al. 1995], [Schmidt et al. 2000] for a review of patterns
applicable to distributed systems).

Design patterns allow software architects to reuse proven designs. Likewise, software
frameworks [Johnson 1997] allow software developers to reuse working code. A software
framework is a program skeleton that may be directly reused, or adapted according to
well-defined rules, to solve a family of related problems. A framework usually implements
a design pattern, and often uses several patterns in combination. Although the notion of a
software framework is language-independent, it has mostly been used with object-oriented
languages. In this context, a framework is a set of classes that may be adapted for specific
environments and constraints, using well-defined rules of usage (e.g., overloading specified
methods, etc.). As emphasized in [Schmidt and Buschmann 2003], patterns, frameworks,
and middleware play a complementary role for improving the process of designing, building

-1-2 PREFACE

and documenting the increasingly complex applications of today.

The organization of this book is directed by architectural considerations, not by cat-
egories of middleware. For each function that a middleware system should fulfill, we
summarize the main design issues and we present possible solutions in terms of design
patterns. Some of these patterns are well established, and widely documented in the
literature; others are more recent and are only described in research papers.

While the emphasis of this book is on design principles and paradigms of middle-
ware systems, we think it important that these principles and paradigms be illustrated
by real life examples of working code. We believe in the tenet of literate programming
[Knuth 1992]: programs should be intended for reading as well as for execution. Therefore
each chapter contains a discussion of a software framework related to the problem under
study. These frameworks are mostly borrowed from software developed by ObjectWeb,
a consortium of academic and industrial partners dedicated to the development of open
source middleware. The actual source code, together with its documentation and prepared
examples, is available from the ObjectWeb! site.

Although this book touches on various aspects of distributed systems, it is not
intended as an introduction to distributed systems principles. These are covered
in several textbooks such as [Coulouris et al. 2005, Tanenbaum and van Steen 2006,
Verissimo and Rodrigues 2001].

This book addresses two audiences: students of last-year undergraduate and introduc-
tory postgraduate courses, and designers and developers of middleware systems. For the
students, this book may complement a course on distributed systems or a course on soft-
ware engineering. The prerequisites are a basic knowledge of networking and distributed
systems principles, and some practice in programming distributed applications. Familiar-
ity with the Java language is required to follow the examples.

Acknowledgments [am indebted to my colleagues, former colleagues, and students of
Project Sardes? for many fruitful exchanges on the subject matter of this book. Interaction
with colleagues and participants of the ICAR? series of summer schools also provided
motivation and feedback.

References

[Alexander et al. 1977] Alexander, C., Ishikawa, S., and Silverstein, M. (1977). A Pattern Lan-
guage: Towns, Buildings, Construction. Oxford University Press. 1216 pp.

[Buschmann et al. 1995] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M.
(1995). Pattern-Oriented Software Architecture, Volume 1: A System of Patterns. John Wiley
& Sons. 467 pp.

[Coulouris et al. 2005] Coulouris, G., Dollimore, J., and Kindberg, T. (2005). Distributed Systems -
Concepts and Design. Addison-Wesley, 4th edition. 928 pp.

[Gamma et al. 1994] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns:
Elements of Reusable Object Oriented Software. Addison-Wesley. 416 pp.

Thttp://www.objectweb.org/
http://sardes.inrialpes.fr/
3http://sardes.inrialpes.fr/past-events /summer-schools/past-summer-schools. html#schools

REFERENCES -1-3

[Johnson 1997] Johnson, R. E. (1997). Frameworks=(Components+Patterns): How frameworks
compare to other object-oriented reuse techniques. Communications of the ACM, 40(10):39-42.

[Knuth 1992] Knuth, D. E. (1992). Literate Programming. Center for the Study of Language and
Information, Stanford University - Lecture Notes, No 27. 368 pp.

[Schmidt and Buschmann 2003] Schmidt, D. C. and Buschmann, F. (2003). Patterns, frameworks,
and middleware: Their synergistic relationships. In 25th International Conference on Software
Engineering, pages 694704, Portland, Oregon.

[Schmidt et al. 2000] Schmidt, D. C., Stal, M., Rohnert, H., and Buschmann, F. (2000). Pattern-
Oriented Software Architecture, Volume 2: Patterns for Concurrent and Networked Objects.
John Wiley & Sons. 666 pp.

[Tanenbaum and van Steen 2006] Tanenbaum, A. S. and van Steen, M. (2006). Distributed Sys-
tems: Principles and Paradigms. Prentice Hall, 2nd edition. 686 pp.

[Verissimo and Rodrigues 2001] Verissimo, P. and Rodrigues, L. (2001). Distributed Systems for
Systems Architects. Kluwer Academic Publishers. 623 pp.

