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Chapter 12

Resource Management and

Quality of Service

In a general sense, Quality of Service (QoS) is defined as a set of quality requirements (i.e.,
desirable properties) of an application, which are not explicitly formulated in its functional
interfaces (1.4.1). In that sense, QoS includes fault tolerance, security, performance, and
a set of “ilities” such as availability, maintainability, etc. In a more restricted meaning
(considered in this chapter), QoS characterizes the ability of an application to satisfy
performance-related constraints. This specific meaning of QoS is specially relevant in areas
such as multimedia processing, real-time control, or interactive services for end users.

Performance control is achieved through resource management, the main theme of this
chapter. We examine the main abstractions and patterns for managing resources, including
the use of feedback control methods.

12.1 Introducing Resource Management

The function of a computing system is to provide services to its users. Each service is
specified by a contract between a service provider and a service requester. This contract
defines both the functional interface of the service and some extra-functional aspects,
collectively known as Quality of Service (QoS), which include performance, availability,
security, and need to be accurately specified for each application or class of applications.
The part of the contract that defines QoS is called a Service Level Agreement (SLA). The
technical expression of an SLA usually consists of a set of Service Level Objectives (SLO),
each of which defines a precise objective for one of the specific aspects covered by the
SLA. For instance, for an SLA on the performance of a web server, an SLO can specify
a maximum response time to be achieved for 95% of the requests submitted by a certain
class of users.

12.1.1 Motivation and Main Definitions

In order to perform its function, a computing system uses various resources such as pro-
cessors, memory, communication channels, etc. Managing these resources is an important
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function, and there are several strong reasons for performing it accurately:

• Maintaining quality of service. Various indicators related to QoS in user applications,
specially performance factors, are directly influenced by resource allocation decisions.

• Resource accounting. The users of a shared facility should be charged according to
their actual resource consumption. Therefore any consumed resource must be traced
back to a user activity.

• Service differentiation and resource pricing. The resource management system may
allow users to pay for improved service. The system should guarantee this differen-
tiated form of service, and the pricing scheme should adequately reflect the added
value thus acquired.

• Detecting and countering Denial of Service (DoS). A DoS attack aims at preventing
useful work from being done, by undue massive acquisition of resources such as CPU
time, memory, or network bandwidth.

• Tracking and eliminating performance bugs. Without accurate monitoring of re-
source usage, a runaway activity might invisibly consume large amounts of resources,
leading to performance degradation in user applications; or a regular activity may
reserve unnecessary resources, thus hampering the progress of other activities.

In the traditional view of a computing system, resource allocation, i.e., the sharing
of a common set of resources between applications contending for their use, was a task
performed by the operating system, and user applications had little control over this
process. This situation has changed due to the following causes:

• The increasing number of applications subject to strong constraints in time and
space, e.g., embedded systems and applications managing multimedia data.

• The growing variability of the environment and operating conditions of many appli-
cations, e.g., those involving mobile communications.

• The trend towards more open systems, and the advent of open middleware.

Thus an increasing part of resource management is being delegated to the upper levels,
i.e., to the middleware layers and to the applications themselves. In this chapter, we
examine some aspects of resource allocation in these upper levels. We start by recalling a
few basic definitions (see also 10.1.1).

The term resource applies to any identifiable entity (physical or virtual) that is used by
a system for service provision. The entity that actually implements service provision, using
resources, is called a resource principal. Examples of physical resources are processors,
memory, disk storage, routers, network links, sensors. Examples of virtual resources are
virtual memory, network bandwidth, files and other data (note that virtual resources
are abstractions built on top of physical resources). Examples of resource principals are
processes in an operating system, groups of processes dedicated to a common task (possibly
across several machines), various forms of “agents” (computational entities that may move
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or spread across the nodes of a network). One may define a hierarchy of principals: for
example, a virtual machine provides (virtual) resources to the applications it supports,
while requesting (physical or even virtual) resources from a hypervisor.

A general principle that governs resource management is the separation between poli-
cies and mechanisms, an instance of separation of concerns (1.4.2). A policy defines overall
goals for resource allocation, and the algorithms or rules of usage best suited to reach these
goals. Such algorithms are implemented using mechanisms, which are defined at a low level,
with direct access to the individual resources. These mechanisms must be neutral with
respect to policies; i.e., several policies may be implemented using the same set of mecha-
nisms, and the design of a mechanism should not preclude its use by different policies. An
example of a general policy is to ensure that a given resource (e.g., CPU time) is allocated
to a set of processes so that each process gets a share of that resource proportional to
a predefined ratio. This policy may be implemented by various mechanisms, e.g., round
robin with priorities or lottery scheduling (12.3.2). Conversely, these mechanisms may be
used to implement different policies, e.g., including time-varying constraints.

12.1.2 Goals and Policies

The role of resource management is to allocate resources to the service providers (princi-
pals), subject to the requirements and constraints of both service providers and resource
providers. The objective of a service provider is to respect its SLA, the contract that binds
it to service requesters (clients). The objective of a resource provider is to maximize the
utilization rate of its resources, and possibly the revenue it draws from their provision.
The relationships between clients, service providers, and resource providers are illustrated
on Figure 12.1 (as noted before, a resource provider may itself request resources from a
higher level provider).

Figure 12.1. Service providers and resource providers

The requirements are the following, as seen by a service provider.

• The service provider should offer QoS guarantees to its clients, as specified by an
SLA. The SLA may take various forms: strict guarantee, probabilistic (the agreed
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levels will be reached with a specified probability, or for a specified fraction of the
demands), best effort (no guarantee on the results). The SLA is a contract that
goes both ways, i.e., the guarantees are only granted if the clients respects some
conditions on their requests. These conditions may apply to each client individually
or to a population of clients as a whole.

• The service provider allocates resources for the satisfaction of clients’ requests. It
should ensure equitable treatment (fair share), in the sense that each client needing
a resource should be guaranteed a share of that resource proportional to its “right”
(or “priority”), as defined by a global policy. The share should be guaranteed in
average over a specified period of time. If all clients have the same right, then each
should be guaranteed an equal share. Other situations may occur:

– Service differentiation is a means of specifying different classes of clients with
different rights, which may be acquired by purchase or by negotiation.

– The rights may be time-dependent, e.g., the right of a client may be increased
to allow it to meet a deadline.

More generally, the guarantee may be in terms of a minimal rate of progress, which
prevents starvation, a situation in which a client’s requests are indefinitely delayed.

• If several classes of clients are defined, the service provider should guarantee service
isolation: the allocation of resources for a class should not be influenced by that
of other classes. This means that a misbehaving client (one that does not respect
its side of the SLA) may only affect other clients of its class, not clients from other
classes.

The main requirement of a resource provider is to optimize the usage of the resources,
according to various criteria, e.g., ensuring maximal utilization rate over time (possibly
with a different weight for each resource), or minimizing energy consumption, etc. This
implies that no resource should be idle while there exist unsatisfied requests for that
resource (unless this situation is imposed by a higher priority policy, e.g. energy economy).
This requirement is subject to the constraint of resource availability: the supply of most
resources is bounded. There may be additional constraints on resource usage, e.g., due to
administrative reasons, or to locality (e.g., usage and cost conditions are different for a
local and a remote resource).

In all cases, a metric should be defined to assess the satisfaction of the requirements,
both for QoS and for resource utilization factors. Metrics are examined in 12.3.1.

The above requirements may be contradictory. For instance, ensuring guarantees
through worst case reservation may entail sub-optimal resource utilization. Such con-
flicts may only be resolved according to a higher level policy, e.g., through priority setting
or through negotiation. Another approach is to pool resources, in order to amortize their
cost among several applications, provided that peak loads do not occur at the same time
for all of them. Also note that the fairness requirement should be met both at the global
level (sharing resources among service providers) and for each service provider with respect
to its own service requesters.
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Resource management policies may be classified using various criteria (based on pre-
diction and/or observation, using open loop or closed loop) and may face various operating
conditions: if resources are globally sufficient to meet the global demand, combinatorial
optimization is the relevant tool; if resources are insufficient (the common case), control
methods are more appropriate. Examples throughout this chapter illustrate these situa-
tions.

Resource allocation is subject to a number of known risks, which any resource man-
agement policy should take into account.

• Violation of fairness, examples of which are the above-mentioned starvation, and
priority inversion, a reversal of prescribed priorities due to unwanted interference
between synchronization and priority setting (see 12.3.2).

• Congestion, a situation in which the available resources are insufficient to meet the
demand. This may be due to an inadequate policy, in which resources are over-
committed, or to a peak in the load. As a result, the system’s time is essentially
spent in overhead, and no useful work can be done, a situation known as thrashing.
Thrashing is usually avoided or delayed by an admission control policy (see 12.3.1).

• Deadlock, a situation of circular wait, in which a set of processes are blocked, each of
them waiting for a resource that is held up by another member of the set. Deadlock
may be prevented by avoiding circular dependencies (e.g., through ordered alloca-
tion), or detected and resolved, usually at some cost in progress rate.

In the context of this book, we are specifically interested in resource management for
middleware systems; among these, Internet services are the subject of an intense activity,
due to their economic importance. We conclude this section with a review of the main
aspects of resource management for this class of systems.

12.1.3 Resource Management for Internet Services

An increasing number of services are available over the Internet, and are subject to high
demand. Internet services include electronic commerce, e-mail, news diffusion, stock trad-
ing, and many other applications. As these services provide a growing number of functions
to their users, their scale and complexity have also increased. Many services may accept
requests from millions of clients. Processing a request submitted by a client typically in-
volves several steps, such as analyzing the request, looking up one or several databases
to find relevant information, doing some processing on the results of the queries, dynam-
ically generating a web page to answer the request, and sending this page to the client.
This cycle may be shortened, e.g., if a result is available in a cache. To accommodate
this interaction pattern, a common form of organization of Internet services is a multi-tier
architecture, in which each tier is in charge of a specific phase of request processing.

To answer the demand in computational power and storage space imposed by large
scale applications, clusters of commodity, low cost machines have proved an economic
alternative to mainframes and high-performance multiprocessors. In addition to flexibility,
clusters allow high availability by replicating critical components. Thus each tier of a
cluster-based application is deployed on a set of nodes (Figure 12.2). How the application



12-6 CHAPTER 12. RESOURCE MANAGEMENT AND QUALITY OF SERVICE

components running on the servers of the different tiers are connected together depends
on the architecture of the application; examples may be found in the rest of this chapter.
Nodes may be reallocated between different tiers, according to the resource allocation
policy.

Figure 12.2. A cluster-based multi-tier application

A service provider may deploy its own cluster to support its applications. An alter-
native solution, in increasing use, is for the provider to host the application on a general
purpose platform (or data center) owned by a computing facility provider, and shared with
other service providers. The drawback of this solution is that the service provider has less
control on the fine-grain tuning of the infrastructure on which its application is running.
However, there are several benefits to using shared platforms.

• The service provider is freed from the material tasks of maintaining the infrastruc-
ture.

• The fixed cost of ownership (i.e., the part of the cost that is not proportional to the
amount of resources) is shared between the users of the common facility.

• Mutualizing a large pool of resources between several applications allows reacting to
load peaks by reallocating resources, provided the peaks are not correlated for the
different applications.

• Resource sharing improves global availability, because of redundancy in hosts and
network connections.

The load imposed on a service is defined by the characteristics of the requests and
by their distribution in time. A request is characterized by the resources it consumes
at each stage of its processing. Trace analysis of real loads has allowed typical request
profiles to be determined for various classes of services (e.g., static content web server,
electronic stores, auctions, etc.), which in turn allow building realistic load generators
(see examples in [TPC 2006], [Amza et al. 2002]). Predicting the time distribution of the
load is much more difficult, since the demand on Internet services is subject to huge,
unexpected, variations. In the so-called flash crowd effect, the load on a service may
experience a 100-fold or 1000-fold increase in a very short time, causing the service to
degrade or to crash. Dealing with such overload situations is one of the main challenges
of resource allocation.
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We conclude this section by a summary of the main issues of resource allocation for
Internet services.

Determining the amount of resources of a computing infrastructure is known as the
capacity planning problem (see e.g., [Menascé and Almeida 2001]). Its solution relies on
an estimation of the expected load. However, due to the possibility of wide variations
in the load, dimensioning the installation for the maximum expected load leads to over-
provisioning. Given that peak loads are exceptional events, a better approach is to define
SLAs for a “normal” load (determined after observation, e.g., as the maximum load over
95% of the time). Relating resources to load is done by using a model, such as those
described in 12.5. Overload situations are dealt with by admission control, as discussed
below.

The problem of resource provisioning is that of allocating the resources of an instal-
lation in the face of competing demands. These demands may originate from different
applications in the case of a shared facility, or from different stages of an application, or
from different clients. In all cases, provisioning may be static or dynamic. Static provi-
sioning, also called reservation, is based on an a priori estimate of the needs. Dynamic
provisioning varies with time and is adapted to the current demand through a control
algorithm.

Admission control (sometimes called session policing1) is a response to an overload
situation, which consists in turning away a fraction of the requests to ensure that the
remaining requests meet their SLA. Admission control needs to take into account some
measure of the “value” of the requests, which may have different forms: class of service (if
service differentiation is supported), estimated resource consumption of the request, etc.

A complementary way of dealing with overload situations is service degradation, which
consists in providing a lower quality of service to some requests, thus consuming less
resources. The measure of quality is application-dependent; examples include lowering
image resolution, stripping down a web page by eliminating images, reducing requirements
on the freshness or consistency of data, etc.).

In the rest of this chapter, we examine some approaches to solving these problems. We
first examine the main abstractions relevant to resource management. We then consider
resource management from the point of view of control and we present the main mecha-
nisms and policies used for resource management at the middleware or application level,
using both feed-forward and feedback forms of control. This presentation is illustrated by
several case studies.

12.2 Abstractions for Resource Management

Resource management involves three main classes of entities: the resources to be allo-
cated, the resource principals (resource consumers), and the resource managers. The first
task in developing a resource management framework is to define suitable abstractions
for these entities and for their mutual relationships, and to design mechanisms for their
implementation.

1This term comes from network technology: traffic policing means controlling the maximum rate of
traffic sent or received on a network interface, in order to preserve network QoS.
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12.2.1 Resources

The physical resources of a system are the identifiable items that may be used for the
execution of a task, at a certain level of visibility. Usually this level is that of executable
programs, for which the resources are CPUs, memory, disk space; communication related
resources, such as disk or network I/O, are quantified in terms of available bandwidth.

An operating system creates an abstract view of these resources through virtualization,
in order to hide low-level allocation mechanisms from its users. Thus CPU time is ab-
stracted by threads, physical memory by virtual memory, and disk storage by files. These
abstractions may be considered as resources when allocated to users through processes;
but, from the point of view of the operating system kernel, they are principals for the
corresponding physical resources.

The whole set of physical resources that makes up a machine may itself be abstracted in
the form of a virtual machine, which provides the same interface as the physical machine
to its users, and runs its own operating system. This is again a two-level allocation
mechanism: at the lower level, a hypervisor multiplexes the physical resources between
the virtual machines; on each virtual machine, the operating system’s allocator shares
the virtual resources between the users. The interplay between the two levels of resource
management is examined in Section 12.2.2. The notion of a virtual machine has been
extended to multiprocessors [Govil et al. 2000] and to clusters (as discussed in more detail
in Section 12.2.2).

A resource is defined by a number of properties, which influence the way it may be
used.

• Exclusive or shared use. Most resources are used in exclusive mode, i.e., they may
only be allocated to one principal at a time. Such is the case of a CPU, or a
block of private memory. In some infrequent cases, a resource may be shared, i.e.,
simultaneously used by several principals. This is the case of a shared, read-only
memory page or disk file. Even in that case, a maximal degree of sharing may be
specified to avoid performance degradation.

• Stateful or stateless. A resource may have a state related to the principal that
currently uses it. This state needs to be set up when the resource is allocated;
it should be cleaned up, and possibly stored for later reuse, when the resource is
reallocated. This operation may be simple and cheap (e.g., in the case of a CPU, in
which the state consists of a set of registers), or fairly costly, in the case of a whole
computer for which a new operating system may need to be installed.

• Individual or pooled. A resource may exist as a single instance, or it may be part
of a pool of identical resources (such that any resource of the pool may be allocated
to satisfy a request). Typical pooled resources are memory pages, CPUs in a multi-
processor, or machines in a homogeneous cluster. Note that, if a pooled resource is
stateful, there may be a preference to reallocate an instance previously used by the
same principal, in order to spare state cleanup and restoration (this is called affinity
scheduling in the case of CPUs).

For virtual resources, pooling is often used as an optimization device. Contrast-
ing with physical resources, virtual resources may be created and deleted; these
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operations have a cost. In order to reduce the overhead of creation and deletion,
a pool of resources is initially created. A request is satisfied by taking a resource
from the pool; when released, the resource is returned to the pool. Various policies
may be used to adapt the size of the pool to the mean demand (if the pool is too
small, it will frequently be exhausted; if too large, resources will be wasted). Such
pools are frequently used for threads, for network connections, or for components in
container-based middleware.

In addition to the above characteristics, a resource may have a number of attributes
(e.g., for a printer, its location, its throughput, its color characteristics, etc.) and may
allow access to some current load factors (e.g., number of pending requests, etc.). All the
properties of a resource are typically grouped in a data structure, the resource descriptor,
and are used for resource discovery, the process of looking up for a resource satisfying some
constraints (e.g., the closest color printer, or the one with the shortest job queue, etc.).
Techniques used for service discovery (3.2.3) are relevant here.

In a large scale system, providing an accurate, up to date, view of the current state
of all resources may in itself be a challenging task. Such a global view is seldom needed,
however, since most distributed resource management systems aim at satisfying a request
with a resource available in a local environment.

12.2.2 Resource Principals

In current operating systems, resources such as virtual memory or CPU time are allocated
to processes. A process, in turn, is created on behalf of a user. Thus the resources
consumed by a process are charged to the user for which it executes.

This scheme is not adequate for fair and accurate resource management, for several
reasons: the time spent in the system kernel, e.g., for servicing interrupts, is not taken
into account; a single system process may do work for a number of different users, e.g.,
for network related activities; conversely, a single user task may be split across several
processes. Therefore there is a need for defining a separate notion of a resource principal.

This is yet another application of the principle of separation of concerns (1.4.2). A
resource principal is defined as a unit of independent activity devoted to the execution of
a well-identified service; all the resources that is uses should also be well-identified. There
is no reason why resource principals should coincide with entities defined using different
criteria such as unit of protection or unit of CPU scheduling.

Note that resource principals are essentially mechanisms; they may be used to imple-
ment any globally defined policy for resource sharing among the independent activities
that they represent.

Several attempts have been done towards defining resource principals and relating them
to other entities. We briefly review some of these efforts. This subject is still an area of
active research.

Resource Containers

On a single machine, resource containers have been introduced in [Banga et al. 1999],
specifically in the context of networked servers, such as Web or database servers. A
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resource container is an abstract entity that contains all the system resources used by an
application to achieve a particular independent activity (in the case of Web servers, an
activity is the servicing of a particular HTTP connection).

Consider the case of CPU time. A resource container is bound to a number of threads,
and this binding is dynamic. Thus a given thread may do work for several containers and
its binding changes accordingly over time. Each container receives CPU time according to
some policy (e.g., fixed share, etc.), and distributes it among the threads that are currently
bound to it. Thus a thread that is multiplexed among several containers receives resources,
at different times, from all these containers2.

Other resources are managed in a similar manner. Thus a container may be dynami-
cally bound to a number of sockets and file descriptors, to implement the management of
network and disk bandwidth, respectively.

Containers may be organized in a hierarchy to control resource consumption at a finer
grain: a container may divide its resources among child containers. Resource allocation
within a container, managed at a certain level, is independent of resource allocation be-
tween the containers at that level. Containers defined at the top level get their resources
from the system, according to a global resource management policy.

In the experiments described in [Banga et al. 1999], resource containers have been used
to implement prioritized handling of clients, to control the amount of resources used by
CGI processing, and to protect a server against SYN-flooding, a DoS attack that attempts
to monopolize the use of the server’s network bandwidth.

Cluster Reserves and Related Work

Cluster reserves [Aron et al. 2000] are an extension of resource containers to cluster-based
servers, running on a set of commodity workstations connected by a network. Typically, a
request for a service is sent to a node designated as the front-end, which in turn assigns the
execution of the request to one or several nodes, according to a load sharing policy (12.3.2).
Such a policy defines a set of service classes (units of independent activity), together with
rules for sharing the cluster’s resources among the service classes. An implementation of
a global policy should ensure performance isolation, i.e., it should guarantee that these
rules are actually enforced (for instance, an application should not “steal” resources from
another one, leading to a violation of the global allocation policy). Assigning a request
to a service class may be done on various criteria, such as request content, client identity,
etc.

Service classes are implemented by cluster reserves. A cluster reserve is a cluster-wide
resource principal that aggregates resource containers hosted on the nodes of the cluster.
A resource globally allocated to a cluster reserve may be dynamically split among a set of
resource containers on different nodes.

The problem of partitioning the resources among the individual containers is mapped
to a constrained optimization problem. The goal is to compute a resource allocation on
each node, while satisfying several constraints: the total allocation of each resource for

2If the binding changes frequently, rescheduling the thread at each change may prove costly; thus the
scheduling of a shared thread is based on a combined allocation of the set of containers to which it is bound,
and this set is periodically recomputed; thus the rescheduling period may be controlled, at the expense of
fine grain accuracy.
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each reserve should minimally deviate from that specified by the global allocation policy;
the total allocation of any resource on each node should not exceed the available amount;
no resource should be wasted (i.e., allocated to a container that has no use for it); minimal
progress should be guaranteed for each service class. A resource manager node runs a solver
program that recomputes the optimal resource allocation (periodically or on demand) and
notifies it to the local manager of each node.

Experiments reported in [Aron et al. 2000] show that cluster reserves can achieve bet-
ter resource usage than a policy that reserves a fixed set of nodes for each service class,
and that they provide good performance isolation between a set of service classes.

An extension of the principle of cluster reserves has been developed in the Sharc

system [Urgaonkar and Shenoy 2004]. An application running on a cluster is decomposed
in individual components, or capsules, each running on a single node. Each capsule imposes
its own requirements in terms of performance and resource needs (the resources controlled
by Sharc are CPU and network bandwidth, while cluster reserves only control CPU).
Several application may concurrently share the cluster. A two-level resource manager (see
12.2.3) allocates the resources among the capsules. When a new application is started,
the manager determines the placement of its capsules on the nodes, according to available
resources. During execution, resources may be traded between capsules on a node (within
a single application), depending on their current needs; thus a capsule that has spare
resources may temporarily lend them to another capsule. Experience shows that this
system effectively shares resources on a moderate size cluster.

Virtual Clusters

Clusters on Demand (COD) [Chase et al. 2003, Moore et al. 2002] is another attempt
towards global resource management on clusters and grids. The hardware platform is a
(typically large) collection of machines connected by a network. The approach taken here
is to consider this platform as a utility, to be shared by different user communities with
different needs, possibly running different software. Thus each such community receives
a virtual cluster (in short, vcluster), i.e., an autonomous, isolated partition composed
of a collection of nodes. The users of a vcluster have total control on it (subject to
authorization), and may install a new software environment, down to the operating system.

The nodes that compose a vcluster are dynamically allocated. A node is usually a
physical machine, but it may also be a virtual machine hosted by a physical node. A
vcluster may expand or shrink, by acquiring or releasing nodes. This resizing may be at
the initiative of the vcluster, to react to variations in load, or at the initiative of the system
manager, according to the global management policy. Thus a negotiation protocol takes
place between these two levels to resolve conflicts (e.g., if several vclusters need to expand
at the same time).

A node is a stateful resource. When a node is reallocated, some of its state needs to
be saved, and it may possibly be entirely reinstalled. A bootstrap mechanism allows an
entirely new operating system to be installed at node reallocation.

Vclusters, like other forms of resource principals, are mechanisms. They may be used
to implement various policies, both for resource allocation within a vcluster (reacting to
load variations) and for global cluster management.

Another system based on the same principle is Oceano [Appleby et al. 2001].
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12.2.3 Resource Managers

A resource manager is the entity responsible for managing resources. Depending on the
system structure, it may take the form of a server process or of a passive object. In the first
case, the requests are sent as messages; in the second case, they take the forms of procedure
or method calls. The call may be implicit, i.e., triggered by an automatic mechanism; such
is the case for operating systems resource managers (e.g., a memory manager is called by a
page fault hardware trap). A resource manager may also be distributed, i.e., it is composed
of several managers that collaborate using a group protocol (peer to peer or master-slave),
while providing a single API to its users.

The role of a manager is to allocate resources at a certain level, by multiplexing re-
sources available at a lower level. Thus, a complex system usually relies on a hierarchy of
managers. The lowest level managers allocate physical resources such as CPU or memory,
and deliver corresponding resources in a virtual form. These virtual resources are in turn
allocated by higher level managers. For example, a low-level scheduler allocates CPU to
kernel-level threads; these in turn are used as resources by user-level threads. A resource
manager is usually associated with a management domain (10.1.2), which groups a set of
resources subject to a common policy.

These hierarchical schemes may be exploited in various ways, according to the overall
organization of resource management. In an organization using an elaborate model for
resource principals, a global management level allocates resources between these princi-
pals. Then a local manager is associated with each principal (e.g., a virtual cluster) to
allocate resources within that principal, which achieves isolation. In an organization based
on multi-node containers (as described in Section 12.2.2) the manager hierarchy may cor-
respond to a physical organization: a manager for a resource in a multi-node container
relies on sub-managers for that resource on each node. The already mentioned Sharc

system [Urgaonkar and Shenoy 2004], for instance, uses this two-level manager scheme.

12.3 Resource Management as a Control Process

Like other aspects of system administration, resource management may be viewed as a
control process. The principles of control were introduced in 10.2.1. Recall that control
may take two forms: open loop (or feed-forward), and closed loop (or feedback). Both
approaches are used for resource management. However, open loop control relies on a
prediction of the load and needs an accurate model of the controlled system, two require-
ments that are difficult to meet in practice. Therefore, most open-loop policies either make
strong assumptions on the resource needs of an application, or apply to local decisions for
which a policy may be defined a priori.

In 12.3.1, we examine the main issues of resource management algorithms. In 12.3.2,
we discuss the main basic open loop policies used to manage resources. In 12.3.3, we
present market-based approaches, another form of open loop management relying on a de-
centralized, implicit, form of global control. Resource management using feedback control
is the subject of 12.4.
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12.3.1 Resource Management Algorithms

Assume that the managed system is in a state in which its current resource principals meet
a prescribed QoS specification using the resources already acquired (call it a “healthy”
state). A control algorithm for resource management attempts to keep the system in
a healthy state, using the three means of action outlined in 12.1.3: dynamic resource
provisioning, admission control, and service degradation. These may be controlled through
feed-forward, feedback, or through a mixed approach. In addition, the problem of bringing
the system in an initial healthy state should also be solved.

Several common questions arise in the design of a control algorithm. We examine them
in turn.

1) System States and Metrics

The first question is how to define a healthy state. In other words, what metric is used to
assess the state of the system?

Recall (12.1) that QoS is specified by Service Level Objectives (SLOs), which are the
technical expression of an SLA. SLOs involve high-level performance factors, such as global
response time or global throughput. While these factors are related to client satisfaction,
they cannot be directly used to characterize the state of a system, for which resource
allocation indicators are more relevant. These indicators are more easily measured, and
can be used for capacity planning and for controlling the system during operation.

The problem of SLA decomposition for performance QoS [Chen et al. 2007] is to derive
low-level resource occupation factors from Service Level Objectives. Note that equivalent
versions of this problem exist for other aspects of QoS, such as availability and secu-
rity. These are discussed in Chapters 11 and 13, respectively. Here we only consider the
performance aspects of QoS.

To illustrate this issue, consider a 3-tier implementation of an Internet service, for which
SLOs are expressed as a maximum mean response time R and a minimum throughput T .
For a given system infrastructure, the problem is to map these requirements onto threshold
values for resource occupation at the different tiers:

(R,T ) 7→ (ηhttp−cpu, ηhttp−mem, ηapp−cpu, ηapp−mem, ηdb−cpu, ηdb−mem)

where η∗−cpu and η∗−mem are the occupation rates of CPU and memory, respectively, for
the three tiers: HTTP, Application, and Database.

Two main approaches have been proposed to solve the SLA decomposition problem.

• Using a model of the system to derive low-level resource occupation thresholds from
high-level SLOs.

• Using statistical analysis to infer relevant system-related metrics from user-perceived
performance factors.

The model-based approach relies on the ability to build a complete and accurate model
of the system. This is a difficult task, due to the complexity of real systems, and to the
widely varying load conditions. However, progress is being made; the most promising
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approach seems to be based on queueing network models. [Doyle et al. 2003] uses a simple
queueing model to represent a static content Web service. [Chen et al. 2007] use a more
elaborate queueing network to describe a multi-tier service with dynamic web content.
This model is similar to that of [Urgaonkar et al. 2007], also described in Section 12.5.5.

The statistical analysis approach is fairly independent of specific domain knowledge,
and may thus apply to a wide range of systems and operating environments. An ex-
ample of this approach is [Cohen et al. 2004]. The objective is to correlate system-level
metrics and threshold values with high-level performance factors such as expressed in
SLOs. To that end, they use Tree-Augmented Naive Bayesian Networks, or TANSs
[Friedman et al. 1997], a statistical tool for classification and data correlation. Experi-
ments with a 3-tier e-commerce system have shown that a small number of system-level
metrics (3 to 8) can predict SLO violations accurately, and that combinations of such
metrics are significantly more predictive than individual metrics (a similar conclusion was
derived from the experiments described in 12.5.4). The method is useful for prediction,
but its practical use for closed loop control has not been validated.

2) Predictive vs Reactive Algorithms

Are decisions based on prediction or on reaction to real-time measurement through sensors?
In the predictive approach, the algorithm tries to assess whether the decision will keep
the system in a healthy state. This prediction may be based on estimated upper limits of
resource consumption (using a model, as described above), or on the prior observation of
a typical class of workload. Both approaches to prediction are useful for estimating mean
values and medium-term evolution, but does not help in the case of load peaks. Thus a
promising path seems to design algorithms that combine prediction with reaction and thus
implement a mixed feed-forward-feedback control scheme.

3) Decision Instants

What are the decision instants? The decisions may be made periodically (with a predefined
period), or may be linked to significant events in the system, such as the arrival or the
termination of a request, or depending on measurements (e.g., if some load factor exceeds
a preset threshold). These approaches are usually combined.

4) Heuristics and Strategies

While the design of a resource management algorithm depends on the specific features of
the controlled system and of its load, a few heuristic principles apply to all situations.

• Allocate resources in proportion of the needs. As discussed above, the needs may be
estimated by various methods. Techniques for proportional allocation are discussed
in 12.3.2.

• In the absence of other information, attempt to equally balance resource occupation.
An example illustrating this principle (load balancing algorithms) is presented in
12.3.2.



12.3. RESOURCE MANAGEMENT AS A CONTROL PROCESS 12-15

• Shed load to avoid thrashing. Experience shows that the best way of dealing with a
peak load is to keep only a fraction of the load that can be serviced within the SLA,
and to reject the rest. This is the main objective of admission control (see 12.5 for
detailed examples).

Recall (12.1.3) that three forms of resource management algorithms may be used, in
isolation or combined. The base for their decisions is outlined below.

In the case of resource provisioning, the decision is to allocate a resource to a principal
(acting on behalf of a request or set of requests), either from an available resource pool, or
by taking it from another principal. The decision is guided by the “proportional allocation”
principle, possibly complemented by an estimate of the effect of the action on the measured
QoS.

In the case of admission control, a request goes through an admission filter. The
filtering decision (admit or reject) is based on an estimate of whether admitting the request
would keep or not the system in a healthy state. There may be a single filter at the
receiving end, or multiple filters, e.g., at the entry of each tier in a multi-tiered system. A
rejected request may be kept by the system to be resubmitted latter, or to be granted when
admission criteria are met again, e.g., after resources have been released. Alternatively, in
an interactive system such as a web server, the request may be discarded and a rejection
message may be sent to the requester, with possibly an estimate of a future acceptance
time.

In the case of service degradation, the decision is to lower the service for some requests,
with the goal of maintaining the system in a healthy state with respect to other requests.
There are two aspects to the decision: how to select the “victim” requests, and by what
amount to degrade the service.

In all cases, the decision involves an estimate of its impact on the state of the system.
As explained in the discussion on system states, this estimate involves correlating resource
utilization thresholds with SLOs, through the use of a model and/or statistical analysis.

12.3.2 Basic Open Loop Policies

Open-loop policies for resource management make decisions based on the knowledge of the
resource needs, which may either be given a priori, or predicted by one of the techniques
discussed above. Some of these policies are a base on which more elaborate resource
management systems using feedback have been developed.

In this section, we first briefly present static reservation. We then go on to a discussion
of some usual techniques for implementing proportional scheduling: allocating resources
in proportion of specified needs. We finally illustrate balanced resource allocation with a
brief overview of load balancing.

1) Reservation

One way to ensure that a service provider respects its SLA is to reserve for it all the
resources that it may need, assuming the resource needs (or at least an upper bound of
the needs for each kind of resource) are known in advance. Thus the resources of the
system are statically divided between the different classes of services. Each provider also
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may use reservation to allocate its resource pool among the service requesters. If a service
provider closes its activity, its resources become available, and may be reallocated to a
new provider, if they satisfy its needs.

This method assumes that the total available amount of each resource is large enough
to satisfy the aggregated demand. In addition, each reservation should be made by con-
sidering the worst case situation. Thus, if there is a large variation in resource demand,
or if the worst case demand cannot be accurately estimated, a significant amount of re-
sources may be wasted. This limits the applicability of static reservation; however, this
drawback may be reduced by temporary trading unused resources, such as proposed in
Sharc (12.2.2 and [Urgaonkar and Shenoy 2004]).

The same principle is used for capacity planning, i.e., estimating the global amount
of resources of a platform, given its expected load and the SLAs. Capacity planning thus
relies on a mapping of SLAs to resource occupation, as discussed above. If worst case
estimates are used, overestimating the amount of resources leads to underutilization. To
counter this risk, [Urgaonkar et al. 2002] propose a controlled overbooking strategy.

A common use of reservation is to guarantee QoS in network communications, by
statically reserving network bandwidth and buffer space.

2) Proportional Scheduling

A frequent situation is one in which the policy to be implemented for sharing a resource is
one of proportional-share, i.e., each requester gets a share of the resource proportional to
a predefined ratio. This ratio may be fixed, or it may vary over time. This may be used
at the global level, to allocate resources among various service classes, or within a service
provider, to share resources among the requesters of that service.

A more precise statement of the requirements is as follows. Let there be n contenders
for a (non-shared) resource, and define a set of ratios r1, . . . rn, such that 0 ≤ ri ≤ 1 and
n

∑

i=1

ri = 1. The goal is that, at any time, each contender ci should be granted a fraction ri

of the resource. If the resource is, for example, CPU time, this means that ci gets a virtual
processor whose speed is ri times that of the actual CPU. If the resource is memory, ci

gets a fraction ri of the available memory (possibly rounded to the nearest page limit if
the memory is paged). This holds even if the ri or n vary over time.

Priority-based methods. The problem of proportional scheduling has initially been
attacked by assigning priorities to the contenders, in proportion to their assigned ratios.
This is the classical method used for CPU scheduling in operating systems. In the simplest
case, all processes have equal priority, and are ordered in a single run queue, scheduled
by round robin with a fixed quantum q. This approximates the “shared processor” model
(the limit case when q goes to 0), in which each process is granted a virtual processor of
equal speed (the speed of the physical processor divided by the number of processes). If
priorities are introduced, the scheduler orders the run queue by decreasing priority, with
FIFO ordering within each priority.

A stronger bias in favor of high priority processes may be achieved by several means.
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• Preemption. A new process preempts the processor if its priority is higher than that
of the active process.

• Multiple queues. A different queue is used for each priority, with lower quantum
values for high priority. The processor is granted to the first process of the non-
empty queue with the highest priority, and preemption is applied.

While widely used in commercial systems, priority-based methods suffer from several
drawbacks.

• The relative proportion of priorities has no simple relationship with the prescribed
rates; thus priorities must be set by trial and error to approximate these rates.

• The system is subject to starvation. This may be prevented by having the priority
of a process increase with its waiting time (to be restored to its initial value after it
has been served), but this further complexifies the behavior of the system.

• For real-time systems, in which processes must meet deadlines, there is a risk of
priority inversion. Consider a process P0 of priority 0 (the highest), which is blocked
by a mutex held by a process P7 of priority 7. P7 in turn is delayed by processes
of intermediate priorities (4, 5, . . . ) and thus cannot release the mutex. As a
consequence, P0 may miss a deadline. Ad hoc techniques have been proposed to
avoid priority inversion (e.g., increasing the priority of a process while it holds a
mutex), but the competition between processes is not always apparent, as the mutex
may be hidden under several layers of abstraction in an operating system routine.

Therefore alternative methods have been proposed for achieving proportional rate re-
source allocation.

Lottery scheduling. A more accurate and efficient solution is provided by lottery
scheduling [Waldspurger and Weihl 1994], a mechanism that has initially been proposed
for proportional-share CPU scheduling. Each contender ci gets a number of tickets pro-
portional to the ratio ri; each ticket carries a different value. Each time an allocation
should be made (e.g., at periodic instants, or at each new request, etc.), a lottery (i.e.,
a random drawing in the set of tickets, with equal chances) is held, and the resource is
allocated to the holder of the winning ticket.

Lottery scheduling has been extended and adapted to other resources such as memory
or network bandwidth, and to the allocation of multiple resources [Sullivan et al. 1999].

It can be shown that the allocation is probabilistically fair, in the sense that the
expected allocation to clients is indeed proportional to the number of tickets they hold,
i.e., to the assigned ratios. While a discrepancy may exist between the actual proportion
of the resource allocated to a client and the expected one, the accuracy improves like

√
N ,

where N is the number of drawings. The overhead cost of a random drawing is very small.

Several additional mechanisms may be implemented, such as temporary transfer of
tickets between clients, e.g., when a client cannot use its share of tickets because it waits
for a message or another resource. This method may be used to prevent priority inversion.
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3) Load balancing

In the context of cluster computing, load balancing is a technique used to distribute a set of
tasks among the nodes of a cluster. A typical situation is that of a cluster-based web server
which receives requests from clients. A common architecture consists of a front-end node
(the switch) and a set of homogeneous back-end (or server) nodes on which the actual work
is performed. Client requests are directed to the switch, which distributes them among
the server nodes (Figure 12.3(a)). This scheme is also used between the successive tiers of
a multi-tier system, in which each tier runs on a set of nodes (Figure 12.3(b)).

From the point of view of a client, the front-end node and the servers may be considered
together as a virtual server, which globally provides the specified service. The clients are
unaware of the distribution of requests among the servers.

Figure 12.3. Load balancing

The objectives of a load balancing policy are the following.

• Keeping the servers active; no server should be idle while unsatisfied requests are
pending. A heuristic to achieve this goal is to distribute the load “evenly” among
the servers (in a sense to be illustrated by the examples that follow).

• Increasing the overall performance, e.g., reducing the mean response time of the
requests, or maximizing the throughput.

• As an accessory goal, exploiting the existence of multiple servers to increase avail-
ability; however, for this goal to be achieved, the switch itself should be replicated
to preserve its function in case of failure.

These objectives are subject to a number of constraints, among which the following.

• If the requests are not independent (e.g., if they activate subtasks of a parallelized
global task), the precedence constraints between the subtasks should be respected.

• If client-specific state is maintained by the server, the requests from a given client
should be run on the same server (this property is called persistence3).

3This term has a different meaning from that used in Chapter 8.
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The simplest load balancing policy is Round-Robin: successive requests are sent to
servers in a sequential, circular order (S1, S2, . . . , Sn, S1, . . . ). This policy is static, in the
sense that it depends neither on the characteristics of the requests nor on the current load
of the servers. Round-Robin gives acceptable results for a “well-behaved” load, in which
arrival and service times are regularly distributed (e.g., following an exponential law).
However, as pointed out in 12.1.3, real loads usually exhibit a less predictable behavior,
with high variability in both arrival rates and service times. For such irregular loads,
Round-Robin may cause the load on the servers to be heavily unbalanced. For this reason,
dynamic policies have been investigated. Such policies base their decisions on the current
load of the back-end servers and/or on the content of the requests.

A first improvement on basic Round-Robin is to take the current server load into
account, by assigning each server a weight proportional to its current load (server load
estimates are periodically updated). Thus lightly loaded nodes are privileged for accepting
new requests. Server load is estimated by CPU or disk utilization, by the number of open
connections, or by a combination of these factors. This policy, called Dynamic Weighted
Round-Robin, is simple to implement, since it does not involve request analysis. The same
principle is applied for balancing the load between heterogeneous nodes with different
performance characteristics: the nodes with higher performance are privileged.

In addition to server load, more elaborate policies also take request contents into
account. One of the first attempts in this direction was the Locality Aware Request
Distribution (Lard) proposed in [Pai et al. 1998]. The main objective is to improve cache
hit rates in the servers, thus reducing mean response time. To do so, the name space that
defines the data to be fetched from the database (e.g., the URLs) is partitioned, for instance
through a hash-coding function, and each partition (or target) is assigned to a particular
back-end server, thus improving cache locality. Lard combines load-aware balancing and
high locality, by giving priority to lightly loaded servers for the first assignment of a target.
In addition, server activity is monitored in order to detect substantial load imbalance, and
to correct it by reassigning targets between servers.

More recent work, Adaptload [Zhang et al. 2005], attempts to improve on Lard by
dynamically adjusting the parameters of the load distribution policy, in order to react
to peaks in the load. To do so, Adaptload uses knowledge of the history of request
distribution.

A survey of load balancing policies for clustered web servers may be found in
[Cardellini et al. 2002].

12.3.3 Market-based Resource Management

The presentation of the goals and policies of resource allocation (12.1.2) suggests an anal-
ogy with an economic system in which customers and suppliers are trading goods and
services. A number of projects have tried to exploit this analogy (see [Sutherland 1968]
for an early attempt), but none of these proposals has actually achieved wide application.

In this section, we summarize the main problems of market-based resource manage-
ment, and we illustrate them with a case study.
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1) Issues in Market-based Resource Management

With the emergence of large distributed systems shared by a community of users (clusters,
grids, PlanetLab [Bavier et al. 2004]), the idea of using market mechanisms for resource
allocation has been revived in several recent proposals. Drawing on the analogy with
an economic system, the goal is to assign resources to requests, while satisfying a set of
constraints. These include limitations on both the amount of resources available and on
the payment means of the requesters, as well as meeting the goals of both providers and
requesters. Since these goals may be contradictory (as pointed out in 12.1.2), each party
will attempt to maximize its own utility function, based on a valuation of resources, and
a global compromise should be sought.

The following main issues need to be considered.

• How to assign a value to a request? Note that this value may be a function of time,
since a request may prove of no value (or may even cause a penalty) if satisfied too
late.

• How to assign a value to a resource? This value may again vary, depending on
availability and on demand (e.g., through a form of bidding).

• Does there exist an equilibrium point between the requirements of resource providers
and requesters?

• How is value measured? Economic analogies suggest bartering (trading a resource
for another one), or using a form of currency, real or virtual.

• What mechanisms are used for contracting? Again, analogies suggest the notions of
brokering (using intermediate agents), using leases (granting a resource for a fixed
period of time), etc.

• How to prevent and detect misbehavior (cheating, stealing, overspending)?

These issues are still being explored, and there is no universally accepted solution. The
following example gives an idea of some orientations of current research.

2) Case Study: Currency-based Resource Management

We present this case study in two steps. We first describe Sharp (Secure Highly Available
Resource Peering) [Fu et al. 2003], a framework for distributed resource management in
an Internet scale computing infrastructure. We then show the use of this framework to
acquire resources by means of virtual currency.

Sharp defines abstractions and mechanisms for coordinated resource allocation on a
system composed of a collection of sites, where a site is a local resource management
domain, which may range from a single machine to a cluster. This framework is designed
for building resource management systems that are flexible (allowing for various policies
and trade-offs), robust (tolerant to partial failures), and secure (resisting to attacks).

Sharp relies on a hierarchy of resource managers, based on two roles: authority and
broker. An authority is the entity that has actual control over a set of resources and
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maintains their status. A broker4 is an intermediate entity that has a delegation from an
authority and receives requests for the resources managed by that authority; an authority
may grant delegation to several brokers.

A claim is an assertion stating that some principal has control on some set of resources
over some time interval. A claim may be soft, i.e., it is only a promise that may possibly
not be fulfilled; or it may be hard, i.e., the resources are actually granted. A soft claim
is concretely represented by a ticket, while a hard claim is represented by a lease. Both
tickets and leases are delivered by certified authorities, and are cryptographically protected
to avoid forgery.

A typical situation is that represented on Figure 12.4 (ignore the left part, for the time
being): the authority is a resource provider (e.g., a platform provider), and resource prin-
cipals are hosted services. To get resources, a hosted service uses a two-phase process: it
first gets a ticket from a local resource manager (a broker acting for the resource provider);
it then uses this ticket to get a lease from that resource provider. It then may use the
claimed resources until the end of the specified period.

Figure 12.4. Resource allocation in Sharp (from [Fu et al. 2003, Irwin et al. 2005])

After the hosted service has successfully redeemed his ticket with the resource provider,
it is granted the set of requested resources, and may then run (serve its own clients) using
these resources until the end of the lease period.

The distinction between tickets and leases allows flexibility for resource allocation
by delaying the resource allocation decision to the last possible time. Tickets may also
be transferred from one resource principal to another one; for instance, a principal may
create children and delegate part of its tickets to them; the children may do the same,
thus creating a resource delegation tree.

Over-subscription (delivering more tickets than could simultaneously be redeemed) is
possible, allowing better satisfaction and improving resource availability, at the risk of
occasionally refusing or delaying the granting of a lease. Over-subscription may occur at
all levels, i.e., a principal may delegate more tickets than it holds. When processing a
tree of nested claims, a simple algorithm examines the claims in bottom up order and
locates conflicts due to over-subscription at the lowest common ancestor, thus ensuring

4called agent in [Fu et al. 2003].
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accountability for conflicts.

Tickets and leases are signed by the authority that delivered them. This makes them
unforgeable, non-repudiable, and independently verifiable by third parties (e.g., for an
audit). The finite duration of leases improves the system’s resilience since any resource
shall be freed in bounded time, even if its manager fails.

Experiments have shown that the proposed framework improves resource utilization.
However, to achieve that goal, the various parameters (degree of over-subscription, dura-
tion of the claim, structure of the delegation trees) need to be carefully selected, using
experience. The implementation of claims by tickets and leases provides flexibility and al-
lows various trade-offs to be explored, while signatures improve security and traceability.

We now describe a virtual currency model built on top of Sharp, and used in a project
called Cereus [Irwin et al. 2005]. While resources may be traded through bartering (iden-
tifying mutual coincidence of needs between parties), the introduction of currency allows
external regulation of resource allocation policies within a community.

Cereus currency is self-recharging, i.e., spent amounts are restored to each consumer’s
budget after some time. Each consumer is allocated a number of credits in virtual currency
(this initial allocation might itself be purchased with actual money). If a consumer has a
budget of c credits, it may use them to acquire resources through contracts or auctions.
Credits are automatically recharged after a fixed amount of time (say r) from the moment
they are spent. A consumer may not spend or commit more than c over any interval of
time of length r, and it may not accumulate more than c credits at any time. This prevents
hoarding, which might allow malicious actions such as starving other users. Note that this
system behaves like lottery scheduling (fair share proportional allocation, see 12.3.2) if the
recharge time is set to a very small value. For larger recharge time, the users have more
freedom to schedule their requests over time.

In a system in which resources are acquired through auctions, users spend their credits
by bidding for resources. A sum committed to a bid at time t is recharged at time t + r,
which encourages early bidding and discourages canceled bids. Cereus uses an auction
protocol in which a broker posts a call price based on recent history, and returns resources
in proportion to the bid if the demand exceeds the amount available.

In order to regulate the use of currency, Cereus coordinates all currency transactions
through a trusted banking service. Currency is implemented using the claim mechanism
provided by Sharp: c credits are represented by a claim for c units of a special type, virtual
currency. This claim, called a credit note, is an instance of a Sharp ticket. Credit notes
are issued to consumers by trusted banks (left part of Figure 12.4). To spend currency,
a consumer delegates control of its credits to a supplier, or to a broker that conducts an
auction. In return, the consumer (hosted service) gets resource tickets that it may redeem
for leases on the acquired resources (middle part of Figure 12.4). The credits are spent by
the brokers to get resources from the suppliers, and are ultimately returned to the banks
to be reissued to consumers.

An auditing system allows malicious behavior (overspending, attempting to recharge
credits before recharge time) to be detected, since all the needed information is contained
in the credit notes.

Other aspects of the economic approach to resource management have been investigated.
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The Tycoon project [Feldman et al. 2005] proposes a resource allocation mechanism
for shared clusters, based on a continuous reevaluation of users’ preferences through an
ongoing auction. They explore existence conditions for an equilibrium (in the sense that
resources may be allocated in a way that maximizes each user’s utility function) and
propose strategies for reaching equilibrium with small overhead. Tycoon is close to
Cereus, but places emphasis on agility (fast reaction to change), while Cereus guarantees
medium-term stability through leasing.

The work of [Balazinska et al. 2004] proposes a load management mechanism for
loosely coupled distributed systems, through contracts between the participants. Their
price-setting mechanism produces “acceptable” allocations, in the sense that no partici-
pant is overloaded if spare resources are available, and that overload, if it occurs, is shared
by all participants. This achieves a form of fairness.

12.4 Feedback-controlled Resource Management

An overview of the control aspects of systems management has been presented in 10.2.1.
Here we concentrate on the aspects related to performance and resource management,
using feedback control. As noted in 10.2.1, the main advantage of using feedback vs. feed-
forward control is that it does need a detailed model of the controlled system, and is well
adapted to an unpredictable behavior of the load.

In order to apply feedback control to resource management, one needs to specify the
model used to represent the system, the variables, both observed and controlled, and the
sensors and actuators that allow the controller to interact with the variables, and the policy
implemented by the controller. We examine these aspects in turn. See [Hellerstein 2004],
[Diao et al. 2005] for more details, and the book [Hellerstein et al. 2004] for an in-depth
study of the subject.

12.4.1 Models

There are four main approaches to modeling the resource management and performance
aspects of a computing system.

The first approach is empirical, and has been often used, due to the complexity of the
actual systems. For instance, in an early effort to design a control algorithm to prevent
thrashing in paged virtual memory systems [Brawn and Gustavson 1968], the evolution of
the system was represented by a transition graph between three states (normal, under-
load, overload), characterized by value ranges of resource occupation rates. The controller
attempted to prevent the system from getting into the overload state by acting on the
degree of multiprogramming (the number of jobs admitted to share memory). Despite its
simplicity, this approach proved remarkably efficient. Other empirical models are based on
observation and represent the behavior of the system using curve-fitting methods (see an
example in [Uttamchandani et al. 2005], using a piecewise linear approximation to model
the behavior of a large scale storage utility).

The second approach is to consider the controlled system as a black box, i.e., a device
whose internal organization is unknown, and which only communicates with the outside
world through a set of sensors and actuators. One also needs to assume that the behavior
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of the system follows a known law. A common assumption is to consider that the system
is linear and time-invariant (see 12.5.4, note 7 for a definition of these terms). Then the
numerical values of the model’s parameters are determined by performing appropriate
experiments (e.g., submitting the system to a periodic input and measuring the response
on the output channels), a technique known as system identification. An example of the
use of this technique may be found in 12.5.4.

The third approach is based on queueing theory. It considers the system as a queueing
network, i.e., a set of interconnected queues, each of which is associated with a specific
resource or set of resources. A request follows a path in this network, depending on the
resources it needs for its completion. In order to fully specify the model, one needs to define
the service law and the inter-arrival law for each queue, and the transition probabilities
from one queue to another one. Both analytical and computational solutions for queueing
problems have been developed (a book on the applications of queueing theory to computing
system is [Lazowska et al. 1984], also available on line5).

Models based on queueing systems are commonly used to build workload generators, in
order to study the impact of various load parameters on the performance of an application.
These models fall into two main classes depending on how job (or request) arrivals are
organized. In a closed model, new arrivals are conditioned by job completions, since a job
goes back to a fixed size pool upon completion, to be resubmitted later. In an open model,
new jobs arrive independently of job completions and completed jobs disappear from the
system. Partly open models combine the characteristics of open and closed models, as only
part of the job population is recycled upon completion. Open and closed models exhibit
vastly different behaviors, as stressed in [Schroeder et al. 2006]. Examples of the use of
queueing models for QoS control are presented in this chapter: a closed model in 12.5.5,
and an open model in 12.5.6.

The last approach is to represent the behavior of the system by an analytical model.
This approach is only applicable when the organization of the controlled system is suffi-
ciently simple and well known. This is often the case for single-resource problems, such as
CPU scheduling, as illustrated by the example of 12.5.6

12.4.2 Sensors and Actuators

In order to apply feedback control to resource management, one needs to specify the
variables, both observed and controlled, the sensors and actuators that allow the controller
to interact with the variables, and the policy implemented by the controller. We first
examine the common aspects related to variables.

Since the objective of a resource management policy is to improve QoS, using QoS-
related factors as observed variables seems a natural choice. Such variables depend on
the relevant aspect of QoS, such as response time (mean, variance, maximum value),
throughput, jitter, etc. However, these variables are not always easy to observe (e.g.,
how to observe the mean response time for a large, widely distributed user population?).
Therefore, variables related to resource utilization, which are more readily accessible, are
often used. Resource utilization metrics include CPU load, memory occupation, power
consumption, I/O channel rate, percentage of servers used in a pool, etc.

5http://www.cs.washington.edu/homes/lazowska/qsp/
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The problem of relating these variables to the measure of QoS is discussed in 12.3.1.

Actuators for resource management may take a variety of forms:

• Allocate or release a unit of allocation, e.g., an area of storage, a time slice on a
CPU, a whole server in a server farm, a share of bandwidth on a communication
channel, etc.

• Change the state of a resource, e.g., turn off a server, or modify the frequency of a
CPU, in order to reduce energy consumption.

• Add or remove a resource to or from a pool. The resource may be physical (e.g., a
server or a memory board), or virtual (e.g., a virtual machine or a virtual cluster).

• Allow or deny a principal the right to compete for resource allocation (in a certain
resource pool). One common example is adjusting the multiprogramming level, i.e.,
the number of jobs or tasks allowed to run concurrently on a node.

We briefly mention specific actuators associated with two resource management tech-
niques: admission control and system reconfiguration.

Admission control relies on regulating a flow of incoming requests. If the decision
(admit or reject) depends on the contents of the request, each request must be considered
individually. Otherwise, for “anonymous” admission control, one may rely on a method
only based on the incoming flow rate, such as the token bucket, a flow-throttling device
used for network control. Each token in the bucket gives a right to admit a unit of flow
(e.g., a fixed number of bytes); the token is consumed when the unit is admitted. Tokens
may be added to the bucket, up to a maximum capacity; if the capacity is exceeded, the
bucket “overflows” and no token is added. Thus the two controlling parameters are the
token issue rate and the capacity of the bucket (Figure 12.5). Token buckets are used, for
example, to regulate admission control in the Seda system (12.5.2).

Figure 12.5. The token bucket: an actuator for anonymous admission control

Reallocating resources may involve system reconfiguration. For example, if additional
resource units are added to a pool, connections between these units and the rest of the
system need to be set up. Techniques for dynamic system reconfiguration are examined
in 10.5.
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12.4.3 Control Algorithms

In many instances, specially when no model of the system is available, resource manage-
ment algorithms using feedback are not based on control theory, but use a rule-based
approach. For instance, a simplistic admission control algorithm may use thresholds: if
the measured QoS indicator (e.g., mean response time) is less than a lower limit, admit;
if it exceeds a higher limit, reject. A number of experiments (see [Hellerstein et al. 2004])
have investigated more elaborate algorithms, based on control theory.

The control of computing systems is a new area, which presents several challenges.
The controlled systems are usually non-linear, and they are submitted to a highly variable
workload. In addition, sensors and effectors are themselves fairly complex systems, and
their own dynamics should be integrated into the model of the controlled system.

While many common control algorithms are Single Input-Single Output (SISO), expe-
rience (see 12.5.4) has shown that Multiple Input-Multiple Output (MIMO) models more
adequately reflect the behavior of complex computing systems. Control algorithms use a
proportional (P) or Proportional Integral (PI) control law, assuming that the controlled
system is linear, or possibly piecewise linear. Control laws based on the Derivative (D) are
seldom used, because they tend to overreact to steep load variations, which are common
in Internet services.

Case studies of resource management algorithms based on control theory are presented
in 12.5.4 and 12.5.6.

12.4.4 Problems and Challenges

The application of feedback control methods to resource management and QoS in computer
systems is still in its infancy. A number of problems still need to be solved.

• Accurate models of real, large scale computing systems are difficult to build, and
the performance factors of these systems, as perceived by the clients, are difficult
to measure. As a consequence, the correlation between QoS factors and controlled
parameters (as set by actuators) is not easy to establish.

• The load on real system has complex, time dependent characteristics, and is difficult
to model, even if realistic load generators are now available.

• Most of the methods and tools for solving control problems have been developed
for linear systems. However, real systems such as Internet services exhibit highly
non-linear behavior, because of such phenomena as saturation and thrashing.

More generally, the communities of computer science and control systems still have
different cultures, and progress is needed in the mutual understanding of their respective
concepts and methods. Joint projects, examples of which are mentioned in this chapter,
should contribute to this goal.

12.5 Case Studies in Resource Management

In order to illustrate the concepts and techniques presented in the previous sections, we ex-
amine six case studies, which are representative of the variety of situations and approaches.
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Their main features are described in Table 12.1.

sect. appl. infrastr. model sensors actuators diff. reference

12.5.1 IS1 cluster empiric resp. time AC4, RP5 yes [Blanquer et al. 2005]

12.5.2 IS1 cluster empiric resp.time AC4, RP5 yes [Welsh and Culler 2003]

12.5.3 IS1 server empiric CPU util. AC4 no [Cherkasova and Phaal 2002]

12.5.4 WS2 server black-box CPU util. MaxClient no [Diao et al. 2002a]
+ ident. mem. util. KeepAlive

12.5.5 IS1 cluster queues resp. time AC4, RP5 yes [Urgaonkar et al. 2007]

12.5.6 RT3 server analytic CPU util. RP5 (CPU yes [Lu et al. 2002]
miss ratio scheduling)

1Internet service
2Web server
3Real time

4Admission control
5Resource provisioning

Table 12.1. Case studies in resource management

The case studies are classified according to the following criteria: nature of the ap-
plication (most applications are Internet services, with the special case of a simple web
server); supporting infrastructure (single machine or cluster); model (empirical, analytic,
“black-box” with parameter identification); observed and controlled variables (through
sensors and actuators, respectively); support for differentiated service.

There are two main approaches to implement a resource management policy.

• Considering the managed system as a black box and installing the management
system outside this black box. Examples of this approach are developed in 12.5.1
and 12.5.4.

• Embedding the management system within the managed system; this may be done
at various levels, e.g., operating system, middleware, or application. Examples of
this approach are developed in 12.5.5 and 12.5.6.

The first approach has the advantage of being minimally invasive, and to be indepen-
dent of the internal structure of the managed system, which may possibly be unknown,
as is the case with legacy systems. The second approach allows a finer grain control of
the management policy, but involves access to the internals of the managed systems. The
resource management programs also need to evolve together with the application, which
entails additional costs.

A mixed approach is to consider the system as an assembly of black boxes, and to install
the management system at the boundaries thus defined, provided that the architecture of
the managed system is indeed explicit. An example is presented in 12.5.2.

12.5.1 Admission Control using a Black-Box Approach

As an example of the black-box approach, we present Quorum [Blanquer et al. 2005],
a management system for cluster-based Internet services. Quorum aims at ensuring
QoS guarantees for differentiated classes of service. For each class of service, the SLA
is composed of two Service Level Objectives (SLO): minimum average throughput, and
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maximum response time for 95% of the requests. The SLA may only be guaranteed if
it is feasible for the expected load and the cluster capacity, i.e., if 1) the clients of each
class announce the expected computation requirements for the requests of the class; 2) the
incoming request rate for each class is kept below its guaranteed throughput; and 3) the
resources of the cluster are adequately dimensioned. In line with the black-box approach,
SLA guarantees are defined at the boundary of the cluster.

Quorum is implemented in a front-end node sitting between the clients and the cluster
on which the application is running; this node acts as a load balancer (12.3.2), and is
connected to the nodes that support the first tier of the application.

Figure 12.6. The architecture of Quorum (from [Blanquer et al. 2005])

Quorum is composed of four modules, which run on the front-end node (Figure 12.6).
Their function is as follows (more details are provided further on).

• The Classification module receives all client requests, and determines the service
class of each request.

• The Request Precedence module determines which proportion of the requests within
each class will be transmitted to the cluster.

• The Selective Dropping module performs admission control, by discarding the re-
quests for which the specified maximum response time cannot be guaranteed.

• The Load Control module releases the surviving requests into the cluster, and de-
termines the rate of this request flow in order to keep the load of the cluster within
acceptable bounds.

Thus Quorum controls both the requests to be forwarded to the cluster and the flow
rate of these requests.

Load Control regulates the input rate of the requests through a sliding window mech-
anism similar to that of the TCP transport protocol. The window size determines the
number of outstanding requests at any time; it is recomputed periodically (a typical pe-
riod is 500 ms, a compromise between fast reaction time and significant observation time).
The observed parameter is the most restrictive response time for the set of service classes.
The current algorithm increments or decrements linearly the window size to keep the
response time within bounds.
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Request Precedence virtually partitions the cluster resources among the service classes,
thus ensuring isolation between classes. The goal is to ensure that the fraction of the global
cluster capacity allocated to each class allows the throughput guarantee for this class to
be met. The resource share allocated to each class is computed from the guaranteed
throughput for this class and the expected computation requirements of the requests.
Should the requests for a class exceed these requirements (thus violating the client’s part of
the contract), the throughput for that class would be reduced accordingly, thus preserving
the other classes’ guarantees.

In summary, Request Precedence ensures the throughput SLO for each class, while
Load Control ensures the response time SLO. Selective Dropping discards the requests for
which the response time SLO cannot be achieved under the resource partition needed to
guarantee throughput.

Experience with a medium-sized cluster (68 CPUs) and a load replayed from traces of
commercial applications shows that Quorum achieves its QoS objectives with a moderate
performance overhead (3%), and behaves well under wide fluctuations of incoming traffic,
or in the presence of misbehaving classes (i.e., exceeding their announced computation
requirements).

Other systems have experimented with the black-box approach for 3-tier applications.
Gatekeeper [Elnikety et al. 2004] does not provide QoS guarantees, but improves

the overall performance of the system by delaying thrashing, using admission control. In
the absence of a client-side contract, Gatekeeper needs a preliminary setup phase in
order to determine the capacity of the system.

Yaksha [Kamra et al. 2004] is based on a queueing model of the managed system,
and uses a PI (Proportional Integral) feedback control loop to pilot admission control.
It does not provide service differentiation. The SLA only specifies a maximum response
time requirement; throughput is subject to best effort. The system is shown to resist to
overload, and to rapidly adjust to changes in the workload.

12.5.2 Staged Admission Control

Seda (Staged Event-Driven Architecture [Welsh et al. 2001], [Welsh and Culler 2003]) is
an architecture for building highly concurrent Internet services. High concurrency aims
at responding to massive request loads. The traditional approach to designing concurrent
systems, by servicing each request by a distinct process or thread, suffers from a high
overhead under heavy load, both in switching time and in memory footprint. Seda explores
an alternative approach, in which an application is built as a network of event-driven stages
connected by event queues (Figure 12.7(a)). Within each stage, execution is carried out by
a small-sized thread pool. This decomposition has the advantages of modularity, and the
composition of stages through event queues provide mutual performance isolation between
stages.

The structure of a stage is shown on Figure 12.7(b). A stage is organized around
an application-specific event handler, which schedules reactions to incoming events, by
activating the threads in the pool. Each invocation of the event handler treats a batch of
events, whose size is subject to control, as explained later.

The event handler acts as a finite state machine. In addition to changing the local
state, its execution generates zero or more events, which are dispatched to event queues of
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Figure 12.7. The architecture of Seda (from [Welsh and Culler 2003])

other stages. To ensure performance, the event handling programs should be non-blocking;
thus a non-blocking I/O library is used. Note that this structure is similar to that of Click
[Kohler et al. 2000], the modular packet router described in 4.5.2.

Two forms of control are used within each stage, in order to maintain performance
in the face of overload: admission control is applied to each event queue, and resource
allocation within a stage is also subject to control.

Doing admission control on a per stage basis allows focusing on overloaded stages.
The admission control policy usually consists in limiting the rate at which a stage accepts
incoming events to keep the observed performance at that stage within specified bounds.
If an event is rejected by this mechanism, it is the responsibility of the stage that emitted
the event to react to the rejection (e.g., by sending the event to another stage, a form
of load balancing). In the experiments described, performance metrics is defined by the
90th-percentile response time, smoothed to prevent over-reaction in case of sudden spikes.
The policy also implements service differentiation, by defining a separate instance of the
admission controller for each customer class. Thus a larger fraction of the lower class
requests are rejected, ensuring service guarantees to the higher classes.

Within a stage, resources may be controlled by one or more specialized controllers.
One instance is the thread pool controller, which adjusts the number of threads according
to the current load of the stage, estimated by the length of the event queue. Another
instance is the batching controller, which adjusts the size of the batch of events processed
by each invocation of the event handler. The goal of this controller is to maintain a
trade-off between the benefits of a large batching factor (e.g., cache locality and task
aggregation, which increase throughput), and the overhead it places on response time.
Thus the controller attempts to keep the batch size at the smallest value allowing high
throughput.

Experiments on a Seda-based mail server [Welsh and Culler 2003] have shown that the
admission control controller is effective in reacting to load spikes, and keeps the response
time close to the target. However, the rejection rate may be as high as 80% for massive
load spikes. It has also been shown that per-stage admission control rejects less requests
than single point admission control.

Another policy for responding to overload is to degrade the QoS of the request being
served, in order to reduce the rejection rate at the expense of lower quality (see 12.1.3).
Service degradation gives best results when coupled with admission control.
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In its current state, Seda does not attempt to coordinate the admission control deci-
sions made at the different stages of an application. Therefore, a request may be dropped
at a late stage, when it has already consumed a significant amount of resources. The work
presented in the next section addresses this problem.

12.5.3 Session-Based Admission Control

Session-Based Admission Control [Cherkasova and Phaal 2002] is a method used to im-
prove the performance of commercial web sites by preventing overload. This is essentially
an improvement of a basic predictive admission control method based on the individual
processing of independent requests, in which the admission algorithm keeps the server
close to its peak capacity, by detecting and rejecting requests that would lead to overload.

This method is not suited for a commercial web site, in which the load has the form
of sessions. A session is a sequence of requests separated by think intervals, each request
depending on the previous ones (e.g., browsing the site, making inquiries, moving items
into the cart, etc.). If the requests are admitted individually, request rejection may occur
anywhere in a session. Thus some sessions may be interrupted and aborted before com-
pletion if retries are unsuccessful; for such a session, all the work done till rejection will
have been wasted. As a consequence, although the server operates near its full capacity,
the fraction of its time devoted to useful work may be quite low for a high server load (and
thus a high rejection rate).

Therefore a more appropriate method is to consider sessions (rather than individual
requests) as units of admission, and to make the admission decision as early as possible for
a session. The admission criterion is based on server utilization, assuming that the server
is CPU-bound (the criterion could be extended to include other resources such as I/O or
network bandwidth).

A predefined threshold Umax specifies the critical server utilization level (a typical value
is 95%). The load of the server is predicted periodically (typically every few seconds), based
on observations over the last time interval:

U i+1
predicted = f(i + 1), where f is defined by:

{

f(1) = Umax

f(i + 1) = (1− k)f(i) + kU i
measured

Thus the predicted load for interval Ti+1 is estimated as a weighted mean of the previous
estimated load and the load actually measured over the last interval Ti. The coefficient k
(the weight of measurement versus extrapolation) is set between 0 and 1. The admission
control algorithm is as follows.

• if U i+1
predicted > Umax, then any new session arriving during Ti+1 will be rejected (a

rejection message is send to the client). The server will only process the already
accepted sessions.

• if U i+1
predicted ≤ Umax, then the server will accept new sessions again.

The weighting factor k allows the algorithm to be tuned by emphasizing responsiveness
(k close to 1) or stability (k close to 0). A responsive algorithm (strong emphasis on
current observation) tends to be restrictive since it starts rejecting requests at the first
sign of overload; the risk is server underutilization. A stable algorithm (strong emphasis



12-32 CHAPTER 12. RESOURCE MANAGEMENT AND QUALITY OF SERVICE

on past history) is more permissive; the risk is a higher rate of abortion of already started
sessions if the load increases in the future (a session in progress may be aborted in an
overloaded server, due to timeouts on delayed replies and to limitation of the number of
retries).

This algorithm has been extensively studied by simulation using SpecWeb, a standard-
ized benchmark for measuring basic web server performance. Since sessions (rather than
individual requests) are defined as the resource principals, an important parameter of the
load is the average length (number of requests) of a session. Thus the simulation was done
with three session populations, of respective average length 5, 15 and 50. We present a
few typical results (refer to the original paper for a detailed analysis).

With a fully responsive admission control algorithm (k = 1), a sampling interval of 1
second, and a threshold Umax = 95%

1. The throughput for completed sessions is improved for long sessions (e.g., from 80%
to 90% for length 50 at 250% server load6); it is fairly stable for medium length
sessions, and worse for short sessions. This may be explained by the fact that more
short sessions are rejected at high load, with a corresponding rise of the rejection
overhead.

2. The percentage of aborted sessions falls to zero for long and medium sessions, at all
server loads. It tends to rise for short sessions at high loads (10% at 250% load, 55%
at 300% load).

3. The most important effect is the increase in useful server utilization, i.e., the fraction
of processor time spent in processing sessions that run to completion (i.e., are not
aborted before they terminate). This factor improves from 15% to 70%, 85% and
88% for short, medium and long sessions, respectively, for a 200% server load. This
is correlated with result 2 (low rate of aborted sessions).

Lowering the weighting factor k (going from responsive to stable) has the expected
effect of increasing the useful throughput at moderate load, but of decreasing it at higher
load, where more sessions are aborted due to inaccurate prediction (the threshold load
value is about 170% for 15-request sessions). This suggests using an adaptive policy in
which k would be dynamically adjusted by observing the percentage of refused connections
and aborted requests. If this ratio rises, k is increased to make the admission policy more
restrictive; if it falls to zero, k is gradually decreased.

Another dynamic strategy consists in trying to predict the number of sessions that
the server will be able to process in the next interval, based on the observed load and on
workload characterization. The server rejects any new session above this quota.

Both dynamic strategies (adapting the responsiveness factor k and predicting the ac-
ceptable load) have been tried with different load patterns drawn from experience (“usual
day” and “busy day”). Both strategies were found to reduce the number of aborted ses-
sions and thus to improve the useful throughput, the predictive strategy giving the best
results.

6the server load is the ratio between the aggregated load generated by the requests and the server
processing capacity.
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12.5.4 Feedback Control of a Web Server

The work reported in [Diao et al. 2002a], [Diao et al. 2002b] is an early attempt to apply
feedback control to the management of an Internet service (a single Apache web server
delivering static content).

The controlled variables are CPU and memory utilization, denoted by CPU and
MEM , respectively, which are easily accessible low-level variables, assuming that the set-
tings of these variables are correlated to QoS levels such as expressed in an SLA. The con-
trolling variables are those commonly used by system administrators, namely MaxClients
(MC), the maximum number of clients that can connect to the server, and KeepAlive
Timeout (KA), which determines how long an idle connection is maintained in the HTTP
1.1 protocol. This parameter allows an inactive client (or a client whose think time has
exceeded a preset limit) to be disconnected from the server, thus leaving room to serve
other clients.

The Apache web server is modeled by a black box, with two inputs (MC and KA) and
two outputs (CPU and MEM). The behavior of this black box is assumed to be linear
and time-invariant7. In a rough first approximation, CPU is strongly correlated with KA,
and MEM is strongly correlated with MC. This suggests modeling the evolution of the
server by the two Single Input, Single Output (SISO) equations:

CPU(k + 1) = aCPUCPU(k) + bCPUKA(k)

MEM(k + 1) = aMEMMEM(k) + bMEMMC(k)

where time is discretized (X(k) denotes the value of X at the k-th time step), and the
as and bs denotes constant coefficients, to be determined by identification (least squares
regression with discrete sine wave inputs).

A more general model, which does not assume a priori correlations, is the Multiple
Input, Multiple Output (MIMO) model:

y(k + 1) = Ay(k) + Bu(k)

in which

y(k) =

[

CPU(k)
MEM(k)

]

,u(k) =

[

KA(k)
MC(k)

]

,

and A and B are 2 × 2 constant matrices, again determined by identification.
The first step is to test the accuracy of the models. Experience with a synthetic

workload generator, comparing actual values with those predicted by the model, gives the
following results.

• While the SISO model of MEM is accurate, the SISO model of CPU provides a
poor fit to actual data, specially with multiple step inputs.

• Overall, the MIMO model gives a more accurate fit than the dual SISO model.

• The accuracy of the models degrades near the ends of the operating region, showing
the limits of the linearity assumption.

7A system with input u and output y is linear if y(au) = ay(u) and y(u1 + u2) = y(u1) + y(u2). It
is time-invariant if its behavior is insensitive to a change of the origin of time.
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The second step is to use the model for feedback control. The controller is Proportional
Integral (PI), with gain coefficients determined by classical controller design methods (pole
placement for SISO, and cost function minimization for MIMO). Experience shows that
the SISO model performs well in spite of its inaccuracy, due to the limited degree of
coupling between KA and MC. However, the MIMO model does better overall, specially
for heavy workload.

The contributions of this work are to show that control theory can indeed be applied
to Internet services, and that good results can be obtained with a simple design. In that
sense, this work is a proof of concept experiment. However, being one of the first attempts
at modeling an Internet service, it suffers from some limitations.

• The model is linear, while experience shows that actual systems exhibit a non-linear
behavior due to saturation and thrashing.

• The model uses low-level system parameters as controlled variables, instead of user-
perceived QoS factors. In that sense, it does not solve the SLA decomposition
problem, as presented in 12.3.1.

• The model considers a single server, while clusters are more common.

• The workload generator does not create wide amplitude load peaks.

More recent models, such as that presented in the next section, aim at overcoming
these limitations.

Another early attempt at applying feedback control to web server performance is
[Abdelzaher et al. 2002]. They use a SISO algorithm, in which the measured variable
is system utilization and the controlled variable is a single index that determines the frac-
tion of clients to be served at each service level (assuming the service to be available at
various levels of degradation). This index is the input of an admission control actuator.

12.5.5 Resource Provisioning for a Multi-tier Service

The work reported in [Urgaonkar et al. 2007] differs from that presented in the previous
sections, in that it is based on an analytical model of the managed system. This model may
be used to predict response times, and to drive resource allocation, using both dynamic
resource provisioning and admission control.

The class of systems under study is that of multi-tiered systems (12.1.3). A multi-
tiered system is represented as a network of queues: queue Qi represents the i-th tier
(i = 1, 2, . . . ,M). In the first, basic, version of the model, there is a single server per tier.
A request goes from tier 1 to tier M , receiving service at each tier, as shown on Figure
12.8, which represents a 3-tier service.

The model represents a session as a set of requests (cf 12.5.3). Sessions are represented
by a special queueing system, Q0, which consists of N “servers”, which act as request
generators. Each server in Q0 represents a session: it emits successive requests, separated
by a think time. When a session terminates, a new one is started at the same server; thus
Q0 represents a steady load of N sessions.

The model takes the following aspects into account:
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Figure 12.8. Queueing network for a 3-tier service (adapted from [Urgaonkar et al. 2007])

• A request may visit a tier (say number k) several times (e.g., if it makes several
queries in a database).

• A request may go no further than a certain tier (e.g., because the answer was found
in a cache in that tier, and no further processing is needed).

This is represented in the model by a transition from tier k to tier k − 1. The two
above cases are represented using different transition probabilities. A request terminates
when it goes back from Q1 to Q0.

The parameters of the basic version of the model are the service times Si at each tier
i, the transition probabilities between queues (pi is the transition probability from Qi to
Qi−1), and the think time of the user, represented by the service time of the servers in Q0.
Numerical values of these parameters, for a specific application, are estimated by moni-
toring the execution of this application under a given workload. Once these parameters
are known, the system may be resolved, using the Mean-Value Analysis (MVA) algorithm
[Reiser and Lavenberg 1980] for closed queueing networks, to compute the mean response
time.

Several enhancement have been added to the basic version.

• Modeling multiple servers. Internet services running on clusters use replicated tiers
for efficiency and availability. This is represented by multiple queues at each tier:
the single queue Qi is replaced by ri queues Qi,1, . . . , Qi,ri

, where ri is the degree of
replication at tier i. As described in 12.3.2, a load balancer forwards requests from
one tier to the next, and dispatches them across replicas. A parameter of the model
captures the possible imbalance due to specific constraints such as stateful servers
or cache affinity.

• Handling concurrency limits. There is a limit to the number of activities that a node
may concurrently handle. This is represented by a drop probability (some requests
are dropped due to concurrency limits).

• Handling multiple session classes. Given the parameters of each class (think time,
service times, etc.), the model allows the average response time to be computed on
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a per-class basis.

The model has some limitations: a) Each tier is modeled by a single queue, while
requests actually compete for several different resources: CPU, memory, network, disk.
b) The model assumes that a request uses the resources of one tier at a time. While this is
true for many Internet services, some applications such as streaming servers use pipeline
processing, not currently represented by the model.

Experiments with synthetic loads have shown that the model predicts the response
time of applications within the 95% confidence interval. In addition, the model has been
used to assist two aspects of resource management: dynamic resource provisioning (for
predictable loads) and admission control (for unexpected peaks).

1. Dynamic resource provisioning. Assume that the workload of the application may
be predicted for the short term, in terms of number of sessions and characteristics
of the sessions. Then resource provisioning works as follows: define an initial server
assignment for each tier (e.g., one server per tier). Use the model to determine the
average response time. If it is worse than the target, examine the effect of adding
one more server to each tier that may be replicated. Repeat until the response time
is below the target. This assumes that the installation has sufficient capacity (total
number of servers to meet the target). The complexity of the computation is of the
order of M.N (M number of tiers, N number of sessions), which is acceptable if
resources are provisioned for a fairly long period (hours).

2. Admission control. Admission control is intended to react to unexpected workload
peaks. In the model under study, it is performed by a front-end node, which turns
out excess sessions to guarantee the SLA (here the response time). The criterion for
dropping requests is to maximize a utility function, which is application dependent.
For example, the utility function may be a global revenue generated by the admitted
sessions; assigning a revenue to each session class allows service differentiation. In
the experiments described, the system admits the sessions in non-increasing order of
generated revenue, determining the expected response time according to the model,
and drops a session if its admission would violate the SLA for at least one session
class.

The interest of this work is that it provides a complete analytical model for a complex
system: a multi-tiered application with replicated tiers, in the presence of a complex load.
The system is able to represent such features as load unbalancing and caching effects, and
allows for differentiated service. Its main application is capacity planning and dynamic
resource provisioning for loads whose characteristics may be predicted with fair accuracy.

Similar queueing models have been used for correlating SLOs with system-level thresh-
olds [Chen et al. 2007], and for identifying the bottleneck tier in a multi-tier system, in
order to apply a control algorithm for service differentiation [Diao et al. 2006].

12.5.6 Real-Time Scheduling

[Lu et al. 2002] have explored the use of feedback control theory for the systematic design
of algorithms for real-time scheduling. This is a single-resource problem: a number of tasks,
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both periodic and aperiodic, compete for the CPU. Each task must meet a deadline; for
periodic tasks, the deadline is set for each period, and for non-periodic tasks, the deadline
is relative to the arrival time. The arrival times (for aperiodic tasks) and CPU utilization
rates are unknown, but estimates are provided for each task.

The controlled variables, i.e., the performance metrics controlled by the scheduler, are
sampled at regular intervals (with a period W ), and defined over the kth sampling window
[(k − 1)W,kW ]. These variables include:

• The deadline miss ratio M(k), the number of deadline misses divided by the number
of completed and aborted tasks in the window.

• The CPU utilization U(k), the percentage of CPU busy time in the window.

Reference values MS and US are set for these variables (e.g. MS = 0 and US =
90%). Three variants of the control system have been studied: FC-U, which only controls
M(k), FC-M, which only controls U(k), and FC-UM, which combines FC-U and FC-M as
described later.

There is a single manipulated variable, on which the scheduler may act to influence the
system’s behavior: B(k), the total estimated CPU utilization of all tasks in the system.
The actuator changes the value of B(k) according to the control algorithm. Then an
optimization algorithm determines the precise allocation of CPU to tasks over the (k+1)th
window so that their total CPU utilization is B(k +1). In addition to being called at each
sampling instant, the actuator is also invoked upon the arrival of each task, to correct
prediction errors on arrival times..

The optimization algorithm relies on the notions of QoS level and value. Each task
Ti is assigned a certain number (at least two) of QoS levels, which determine possible
conditions of execution, defined by a few attributes associated with each level j, among
which a relative deadline Di[j], an estimated CPU utilization Bi[j] and a value Vi[j]. Level
0 corresponds to the rejection of the task; both Bi[0] and Vi[0] are set8 to 0. The value
Vi[j] expresses the contribution of the task (as estimated by the application designer) if it
meets its deadline Di[j] at level j; if it misses the deadline, the contribution is Vi[0] (equal
or less than 0). Both Bi[j] and Vi[j] increase with j.

The optimization algorithm assigns a (non-zero) QoS level to each task to maximize
its value density (the ratio Vi[j]/Bi[j], defined as 0 for level 0), and then schedules the
tasks in the order of decreasing density until the total prescribed CPU utilization B(k) is
reached.

Intuitively, a system with two levels of QoS corresponds to an admission control algo-
rithm: a task is either rejected (level 0) or scheduled at its single QoS level (level 1); the
value density criterion gives priority to short, highly valued tasks. Increasing the number
of levels allows for a finer control over the relative estimated value of a task’s completion:
instead of deciding to either run or reject a task, the algorithm may chose to run it at an
intermediate level of QoS for which the ratio between contribution and consumed resources
qualifies the task for execution.

The controller algorithm uses a simple proportional control function (Figure 12.9), i.e.,
the control function is D(k) = K.E(k), where E(k) (the error), is the difference between

8
Vi[0] may also be set to a negative value, which corresponds to a penalty.
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Figure 12.9. Feedback control of CPU scheduling

the reference value and the measured output, i.e., either MS−M(k) or US−U(k) depending
on the controlled variable. Then the command to the actuator is B(k +1) = B(k)+D(k).

Combining FC-U and FC-M is done as follows: the two separate control loops are set
up, then the two command signals D(k) are compared, and the lower signal is selected.

The disturbance is the actual load, which introduces an uncertainty factor since the
estimates of arrival times and CPU consumption may be incorrect.

A complete analysis of this system has been done, using the control theory methodol-
ogy. The system is non-linear, due to saturation. This can be modeled by two different
regimes separated by a threshold; each of the regimes can be linearized. Then the analysis
determines stability conditions and allows the parameters to be tuned for various load
characteristics.

The experimental results obtained with various synthetic loads show that the system
is stable in the face of overload, that it has low overshoot in transient states, and that it
achieves an overall better utilization of CPU than standard open-loop control algorithms
such as EDF. In addition, the system has all the benefits of the availability of a model,
i.e., performance prediction and help in parameter selection.

12.6 Conclusion

We summarize a few conclusions on resource management to achieve QoS requirements.

• Resource management has long been guided by heuristics. The situation is changing,
due to a better understanding of SLA decomposition (the relationship between user-
perceived QoS and internal resource occupation parameters). This in turn results
from the elaboration of more accurate models of the managed systems, and from the
development of better statistical correlation methods.

• The application of control theory to resource management is still in an early stage.
This may be explained by the inherent complexity of the systems under study
and by their highly non-linear and time-dependent character. Control-based tech-
niques should also benefit from the above-mentioned progress in SLA decomposition.
Most likely, successful methods will combine predictive (model-based) and reactive
(feedback-controlled) algorithms.

• Admission control appears to be the dominant strategy for dealing with unexpected
load peaks. It may be made minimally invasive, using a black box approach, and its
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actuators are easy to implement.

However, this apparent simplicity should not offset the difficulty of the design of
a good admission control algorithm. As many experiments have shown, a good
knowledge of the load can be usefully exploited, again mixing predictive and reactive
approaches.

• A number of aspects need further investigation, e.g., allocation problems for multiple
resources, interaction between resource management for multistage requests (such as
multiple tiers), further elaboration of the contract satisfaction criteria (probabilistic,
guaranteed).

12.7 Historical Note

Resource allocation was one the main areas of operating systems research in the mid-1960s.
The pitfalls of resource management, such as deadlock and starvation, were identified at
that time, and solutions were proposed. The influence of resource allocation on user-
perceived performance was also investigated, using both queueing models and empirical
approaches. Capacity planning models were used for dimensioning mainframes. The
problems of resource overcommitment, leading to thrashing, were understood in the late
1960s, and the principle of their solution (threshold-based control of the multiprogramming
degree) is still valid today.

The notion of Quality of Service was not present as such for operating systems (al-
though similar concepts were underlying the area of performance management). QoS was
introduced in networking, first in the form of support for differentiated service, then for
application-related performance. QoS emerged as an important area of study with the
advent of the first multimedia applications (e.g., streaming audio and video), for which
the “best effort” philosophy of the Internet Protocol was inappropriate. Techniques such
as channel reservation, traffic policing, scheduling algorithms, and congestion avoidance
were developed. [Wang 2001] presents the main concepts and techniques of Internet QoS.

In the 1980s, heuristic-based feedback control methods were successfully applied
to network operation (e.g., for adaptive routing in the Internet, for flow control in
TCP). The extension of QoS to middleware systems was initiated in the 1990s (see e.g.,
[Blair and Stefani 1997]).

The rapid rise of Internet services in the 2000s, and the growing user demand for
QoS guarantees, have stimulated efforts in this area. As a part of the autonomic
computing movement (see 10.2), several projects have attempted to apply control the-
ory to the management of computing systems, specially for performance guarantees.
[Hellerstein et al. 2004] gives a detailed account of these early efforts. In addition to
feedback control, current research topics are the development of accurate models for com-
plex Internet services, and the use of statistical methods to characterize both the service
request load and the behavior of the managed systems.
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