
Middleware Architecture with Patterns and Frameworks
c©2003-2009, Sacha Krakowiak (version of February 27, 2009 - 12:58)
Creative Commons license (http://creativecommons.org/licenses/by-nc-nd/3.0/)

Chapter 9

Transactions

Transactions are a mechanism that allows endowing a sequence of actions with the proper-
ties of a single atomic (indivisible) action. Originally introduced in the context of database
management systems, transactions are a powerful tool to help building complex applica-
tions, by ensuring that the system remains in a consistent state in all circumstances.

In this chapter, we examine how transactional mechanisms are being implemented and
used in middleware systems. After a general introduction, the chapter briefly reviews the
main concepts and techniques developed for implementing transactions, with special em-
phasis on distributed transactions. It goes on with a discussion of transactional frameworks
for middleware systems, and concludes with a case study.

9.1 Motivations and Main Concepts

The notion of an atomic action is a powerful tool for overcoming the difficulties of concur-
rent programming. To illustrate this point, consider the case of multithreaded programs in
a shared memory multiprocessor. Elementary hardware-implemented operations such as
atomic exchange (exchanging the contents of a processor register and a memory location
in a single, indivisible action) are the basic building blocks on which more elaborate syn-
chronization mechanisms can be constructed and made available to application developers.

Elementary atomic operations have simple properties, which facilitate reasoning and
allow ensuring that the mechanisms built upon these operations meet their specifications.
For instance, the concurrent execution of two atomic operations A and B may only have
two outcomes (in the absence of failures): it has the same effect as either A followed by B

or B followed by A.

A composite action is defined as a sequence of actions; ultimately, any action consists
of a sequence of elementary atomic operations.The main idea of transactions is to extend
the properties of these elementary operations to composite actions.

A few notions are needed to specify the effect of actions. The universe (also called “the
system”) is composed of objects (in the sense of 2.2.2), each of which has a well-defined
state (typically, the values of a set of variables). The global state of the universe is the
union of the states of the individual objects. A process is a sequence of actions, each of
which is defined as follows: given an initial state of the system and a (possibly void) input

9-2 CHAPTER 9. TRANSACTIONS

value, the effect of the action, when executed alone, is to bring the system in a final state
in finite time, and to deliver a (possibly void) output value1. For a given action, the final
state and the output value are specified functions of the initial state and the input value.
This is essentially a state machine model, which we also use in 11.3.1.

Process execution may be subject to failures. A failure occurs when the behavior of the
system (or some component of it) does not conform to its specification. Different classes of
failures, according to their degree of severity, have been identified (see 11.1.3 for a detailed
discussion). Here we only consider fail-stop failures: either the component works according
to its specification, or it does nothing. We assume the existence of stable storage, i.e., stor-
age that guarantees that the data committed to it are immune from failures2. Techniques
for the implementation of stable storage are described in [Lampson and Sturgis 1979].

We now come to the notion of atomicity, a property of elementary actions that we wish
to extend to composite actions. Atomicity has two facets.

• Concurrency atomicity. Consider concurrent actions, i.e., actions executed by con-
current processes. Concurrency atomicity is then expressed as follows: let A and B

be two actions that are executed concurrently (which we denote by A||B). Then,
in the absence of failures, the effect of this execution is either that of A;B or that
of B;A (the effect is defined by the output values and the change of state of the
system).

A different formulation of this property is as follows. A composite action goes
through intermediate states of the system (the final states of its composing actions).
No such intermediate state may be visible to any concurrently executing action.
Stated in this form, concurrency atomicity is called isolation.

• Failure atomicity. Consider an action A, which (when executed alone) makes the
system go from state S1 to state S2 (which we denote by S1 {A} S2). Then, if a
failure may occur during the execution of A, the final state of the system is either S1
or S2. In other terms, the action is performed either entirely or not at all3. Again,
no intermediate state may be visible.

In addition to failures provoked by external causes, an action may decide to interrupt
its execution, and to cancel all the changes made so far to the system state. This
operation is called abort. If S1 {A} S2, the effect of an abort in the execution of A

is to restore the state of the system to S1, an operation called rollback.

Thus the atomicity property allows us to limit the uncertainty about the outcome of a
possibly concurrent execution of a set of actions in the presence of failures. A simple form
of transaction is defined as a sequence of actions that has the atomicity property (both
for concurrency and failures).

Transactions have been historically introduced in the context of database management
systems, which motivated the introduction of two additional properties.

1Two remarks are in order: (a) the effect of an action may be to create new objects; and (b) output
delivery may take the form of an action in the “real world” (e.g., printing a form, or delivering cash).

2We exclude catastrophes, exceptional events that would cause an extensive loss of storage media.
3“Real actions”, i.e., output actions operating in the real world (see note 1), pose a problem here, since

their effect can not always be canceled. More on this issue in 9.3.

9.1. MOTIVATIONS AND MAIN CONCEPTS 9-3

• Consistency. Consistency in a database is usually expressed as a set of integrity
constraints, i.e., predicates that apply to its state. These constraints are meant to
express invariant properties of the real world entities that are represented in the
database (e.g., banking accounts, inventory, contents of a library, etc.). Since consis-
tency needs to be preserved through the life of the database, a transaction is defined
as an atomic (composite) action that brings the system from a consistent state to
another consistent state. During the execution of a transaction, some intermediate
states may be inconsistent; however, by virtue of atomicity, they are never visi-
ble outside the transaction. By definition, consistency is an application dependent
notion.

• Durability. The durability (or permanence) property states that, if the transaction
succeeds (i.e., if it concludes without failures and does not abort), the changes it made
to the database are permanent. Of course, the state may be modified by subsequent
transactions. The operation that marks the successful end of a transaction is called
commit. Durability means that, after a transaction has committed, the changes that
it made are immune to failures (catastrophes excluded).

The acronym ACID (Atomicity, Consistency, Isolation, Durability) is commonly used
to qualify transactions in a database environment (note that “atomicity” in ACID has the
restricted meaning of “failure atomicity”, as “isolation” stands for “concurrency atom-
icity”). Thus if a database is initially in a consistent state, and all operations on it are
included in (consistency preserving) transactions, it is guaranteed to remain in a consistent
state, and all outputs are likewise consistent.

Transactions favor separation of concerns (1.4.2), since they allow the application de-
velopers to concentrate on the logic on the application (i.e., writing transactions that
preserve consistency), while a transaction management system is responsible for ensuring
the other transactional properties (atomicity, isolation and durability). These properties
are guaranteed through the following methods.

• Concurrency atomicity (or isolation) is ensured by concurrency control, which uses
locking (the main technique) or time-stamping.

• Failure atomicity is ensured by recovery, which in turn is based on logging techniques.

• Durability depends on failure atomicity, and relies on stable storage.

The transaction management system provides a simple interface to its users. While the
syntax of the operations may vary according to the system, the basic interface is usually
composed of the following operations.

• begin transaction: start of a new transaction.

• commit transaction: normal end of the transaction (changes are durably registered).

• abort transaction (or rollback transaction): discontinue the execution of the trans-
action and cancel the changes made by the transaction since its beginning.

9-4 CHAPTER 9. TRANSACTIONS

A transaction is uniquely identified, usually through an identifier delivered by the
transaction management system at the start of the transaction. In some systems, a trans-
action is associated with an object, which provides the above operations in the form of
methods. Additional operations may be available, e.g., consulting the current state of the
transaction, etc.

The above operations achieve transaction demarcation, i.e., delimiting the operations
that are part of a transaction within the program being executed. Transaction demarcation
may be explicitly done by the application programmer, or may be automatically generated
from a declarative statement by the programming environment (more details in 9.6).

The topic of transactions is an important area in its own right, and is the subject
of a vast amount of literature, including several reference books [Bernstein et al. 1987,
Gray and Reuter 1993, Weikum and Vossen 2002, Besancenot et al. 1997]. In the context
of this book, we concentrate on transactional aspects of middleware; our presentation
of the fundamental aspects of transaction management is only intended to provide the
necessary context, not to cover the subject in any depth.

The rest of this chapter is organized as follows. Section 9.2 examines concurrency
control. Section 9.3 is devoted to recovery techniques. Distributed transactions are the
subject of Section 9.4. Section 9.5 presents nested transactions and relaxed transactional
models. Transactional middleware is introduced in Section 9.6, and illustrated by a case
study in Section 9.7. A brief historical note (9.8) concludes the chapter.

9.2 Concurrency Control

If transactions were executed one at a time, consistency would be maintained, since each
individual transaction, by definition, preserves consistency. However, one wishes to allow
multiple transactions to execute concurrently, in order to improve performance, through
the following effects.

• Concurrent execution allows taking advantage of multiprocessing facilities, both for
process execution and for input-output.

• Concurrent execution potentially allows a better usage of resources, both physical
and logical, if each transaction only needs a subset of the available resources.

The goal of concurrency control is to ensure isolation (or concurrency atomicity, as
defined in 9.1) if several transactions are allowed to execute concurrently on the same set
of data. The main concept of concurrency control is serializability, a property of a set of
transactions that we examine in 9.2.1. The main mechanism used to enforce serializability
is locking, which is the subject of 9.2.2. In this section, we assume that all transactions take
place on a single site, and that they actually commit. Aborts and failures are examined
in section 9.3, and distributed transactions are the subject of section 9.4.

9.2.1 Serializability

The theory of concurrency control has developed into a vast body of knowledge (see e.g.,
[Bernstein et al. 1987, Papadimitriou 1986, Weikum and Vossen 2002]). Here we only
present a few results that are widely used in current practice.

9.2. CONCURRENCY CONTROL 9-5

An acceptable (or “correct”) concurrent execution of a set of transactions is one that
ensures isolation, and thus preserves consistency. The first issue in concurrency control
is to find a simple characterization of correct executions. A widely accepted notion of
correctness is that the concurrent execution be equivalent to some serial execution of this
same set of transactions4. Here, “equivalent to” means “having the same effect as”; a
more precise definition is introduced later in this section. Note that we do not specify
a particular order for the serial execution: any order is acceptable. If each transaction
preserves consistency, so does any serial execution of the set of transactions.

Consider a set of transactions {Ti}, operating on a set of objects {a, b, . . .}. When
executed alone, each transaction is a sequence of read and write operations on the objects
(each of these individual operations is atomic). We do not consider object creation and
deletion; these are discussed in 9.2.3. When the transactions {Ti} are executed concur-
rently, the operations of the transactions are interleaved in a single sequence, in which
the order of the operations of each individual transaction is preserved. Such a sequence is
called a schedule. By our definition of correctness, an acceptable schedule (one generated
by a correct concurrent execution of the set {Ti}) is one equivalent to a serial schedule, i.e.,
one corresponding to a serial execution of the transactions of {Ti}, in some (unspecified)
order. A schedule that is equivalent to a serial schedule is said to be serializable.

In order to characterize serializable schedules, let us identify the situations in which
consistency may be violated. A read (resp. write) operation performed by transaction
Ti on object x is denoted Ri(x) (resp. Wi(x)). Consistency may be violated when two
transactions Ti and Tj (i 6= j) execute operations on a shared object x, and at least one of
these operations is a write. Such a situation is called a conflict. Three types of conflicts
may occur, characterized by the following patterns in the execution schedule.

• Unrepeatable read: Ri(x) . . .Wj(x) Then a subsequent read of x by Ti may
deliver a different result from that delivered in a serial execution.

• Dirty read: Wi(x) . . .Rj(x) Then the result of Rj(x) may be different from that
delivered in a serial execution.

• Lost write: Wi(x) . . .Wj(x) Then the effect of the first write may be canceled
by that of the second write.

Note that a conflict does not necessarily cause an inconsistency (this depends on
whether Ti commits before or after the operation by Tj). [Berenson et al. 1995] thor-
oughly analyze various cases of anomalous behavior, including the three above situations.

By definition, for a given execution, transaction Tj depends on transaction Ti if, for
some object x, there is a conflict between Ti and Tj, and the operation executed by Ti on
x appears first in the schedule. This relation is captured by a dependency graph, in which
vertices represent transactions, and edges (labeled by object names) represent conflicts.
Edges are oriented by the order of conflicting operations (e.g., for any of the conflicts
illustrated above, the edge would be oriented from Ti to Tj).

4Two remarks are in order: (1) This definition only provides a sufficient condition for correctness. In
other words, some consistency-preserving executions may not be equivalent to a serial execution. (2) For
efficiency reasons, weaker correctness conditions have been proposed. See an example (snapshot isolation)
in 9.2.3.

9-6 CHAPTER 9. TRANSACTIONS

We may now define a form of equivalence for schedules: two schedules are conflict-
equivalent if they contain the same operations and if they have the same dependency graph
(i.e., if each pair of conflicting operations appears in the same order in both schedules). A
schedule is conflict-serializable if it is conflict-equivalent to a serial schedule5.

The following result has been proven [Papadimitriou 1979]: a schedule is conflict-
serializable if and only if its dependency graph is acyclic. This property gives a convenient
characterization of a class of consistency-preserving schedules, and is the base of the most
common concurrency control algorithms used in practice. A simple example follows.

Example 1. Consider two transactions T1 and T2, defined as follows:

Transaction T1 Transaction T2

begin

if (A ≥ X) begin

{A = A − X} A = (1 + R)A
else abort B = (1 + R)B
B = B + X commit

commit

A and B denote banking accounts (and the corresponding balances). Transaction T1

transfers an amount X from A to B. Transaction T2 applies an interest rate R to both
accounts A and B. In fact, T1 and T2 are patterns for transaction types, in which A,
B, X and R are parameters.

The integrity constraints are the following: (a) the balance of each account is non-
negative; (b) the sum of all accounts is invariant after the execution of a transaction
of type T1; and (c) the sum of all accounts involved in a transaction of type T2 is
multiplied by (1 + R) after the execution of the transaction.

Now consider the concurrent execution of two transactions T1 and T2, with parameters
a, b, x, r, and assume that, initially, all parameters are positive and a ≥ x (so that T1

does not abort). Three possible schedules of this execution are shown below, together
with their dependency graphs.

Schedule S1 Schedule S2 Schedule S3

begin1 begin1 begin1

a = a − x a = a − x a = a − x

b = b + x begin2 begin2

commit1 a = (1 + r)a a = (1 + r)a
begin2 b = b + x b = (1 + r)b
a = (1 + r)a commit1 commit2
b = (1 + r)b b = (1 + r)b b = b + x

commit2 commit2 commit1

Schedule S1 is serial (T1; T2). S2 derives from S1 by exchanging two write operations
on different objects; since this does not cause a new conflict, S2 is equivalent to S1

5Note that conflict-equivalence is a restricted notion of equivalence, introduced because of its easy
characterization. Thus a schedule may be serializable, but not conflict-serializable. However, the two
notions coincide if a transaction always reads an object before writing it, a frequent situation in practice
[Stearns et al. 1976].

9.2. CONCURRENCY CONTROL 9-7

and thus is serializable. S3 has a write-write conflict causing the first write on b to be
lost, violating consistency. The dependency graph of S3 contains a cycle.

We now have a simple characterization of serializable transactions. A mechanism that
allows enforcing serializability is introduced in the next section.

9.2.2 Locking

In order to enforce serializability of concurrent transactions, one needs a mechanism to
delay the progress of a transaction. Locking is the most frequently used technique. In order
to allow concurrent access to a shared object in read-only mode, two types of locks are
defined: exclusive and shared (this distinction is inspired by the canonical synchronization
scheme of readers and writers [Courtois et al. 1971]). To acquire a lock on object o,
the primitives are lock exclusive(o) and lock shared(o). An acquired lock is released by
unlock(o). The following rules apply for access to shared objects within a transaction.

• A transaction needs to acquire a lock on a shared object before using it (shared lock
for read-only access, exclusive lock for read-write access).

• A transaction may not lock an object on which it already holds a lock, except to
upgrade a lock from shared to exclusive.

• No object should remain locked after the transaction concludes, through either com-
mit or abort.

The first two rules directly derive from the readers-writers scheme. The last rule avoids
spurious locks, which may prevent further access to the locked objects. A well-formed
transaction is one that respects these rules.

Locks are used to constrain the allowable schedules of concurrent transactions. Two
rules are defined to this effect.

• An object locked in shared mode by a transaction may not be locked in exclusive
mode by another transaction.

• An object locked in exclusive mode by a transaction may not be locked in any mode
by another transaction.

A legal schedule is one that respects these rules. To ensure legality, locking operation
that would break these rules is delayed until all conflicting locks are released.

Two-Phase Locking

While legal schedules of well-formed transactions ensure the valid use and correct operation
of locks, all such schedules are not guaranteed to be serializable. Additional constraints are
needed. The most commonly used constraint, called two-phase locking (2PL), is expressed
as follows.

After a transaction has released a lock, it may not obtain any additional locks.

A transaction that follows this rule therefore has two successive phases: in the first phase
(growing), it acquires locks; in the second phase (shrinking), it releases locks. The point
preceding the release of the first lock is called the maximum locking point.

9-8 CHAPTER 9. TRANSACTIONS

The usefulness of 2PL derives from the following result [Eswaran et al. 1976].

Any legal schedule S of the execution of a set {Ti} of well-formed 2PL trans-
actions is conflict-equivalent to a serial schedule. The order of the transactions
in this serial schedule is that of their maximum locking points in S.

Conversely, if some transactions of {Ti} are not well formed or 2PL, the concurrent execu-
tion of {Ti} may produce schedules that are not conflict-equivalent to any serial schedule
(and may thus violate consistency).

Example 2. Consider again the two transactions T1 and T2 of Example 1. Here
are two possible implementations of T1 (T1a and T1b), and one implementation of T2,
using locks (for simplicity, we have omitted the test on the condition x ≤ a, assuming
the condition to be always true).

Transaction T1a Transaction T1b Transaction T2

begin1a begin1b begin2

lock exclusive1a(a) lock exclusive1b(a) lock exclusive2(a)
a = a − x a = a − x a = (1 + r)a
unlock1a(a) lock exclusive1b(b) lock exclusive2(b)
lock exclusive1a(b) unlock1b(a) b = (1 + r)b
b = b + x b = b + x unlock2(b)
unlock1a(b) unlock1b(b) unlock2(a)
commit1a commit1b commit2

T1b and T2 are 2PL, while T1a is not.

Here are two possible (legal) schedules Sa and Sb, respectively generated by the con-
current execution of T1a, T2 and T1b, T2.

Sa(T1a, T2) Sb(T1b, T2)
begin1a begin1b

lock exclusive1a(a) lock exclusive1b(a)
a = a − x a = a − x

unlock1a(a) lock exclusive1b(b)
begin2 unlock1b(a)
lock exclusive2(a) begin2

a = (1 + r)a lock exclusive2(a)
lock exclusive2(b) a = (1 + r)a
b = (1 + r)b b = b + x

unlock2(b) unlock1b(b)
lock exclusive1a(b) lock exclusive2(b)
b = b + x b = (1 + r)b
unlock2(a) commit1b

commit2 unlock2(b)
unlock1a(b) unlock2(a)
commit1a commit2

Schedule Sa violates consistency, since T2 operates on an inconsistent value of b. Sched-
ule Sb is equivalent to the serial schedule T1b; T2

9.2. CONCURRENCY CONTROL 9-9

There are two variants of two-phase locking. In non-strict 2PL, a lock on an object is
released as soon as possible, i.e., when it is no longer needed. In strict 2PL, all locks are
released at the end of the transaction, i.e., after commit. The motivation for non-strict
2PL is to make the objects available to other transactions as soon as possible, and thus to
increase parallelism. However, a transaction may abort or fail before having released all
its locks. In that case, an uncommitted value may have been read by another transaction,
thus compromising isolation, unless the second transaction aborts. Strict 2PL eliminates
such situations, and makes recovery easier after a failure (see 9.3.2). In practice, the vast
majority of systems use strict 2PL.

Deadlock Avoidance

Using locks raises the risk of deadlock, a situation of circular wait for shared resources. For
example, transaction T1 holds an exclusive lock on object a, and attempts to lock object
b; however, b is already locked in exclusive mode by transaction T2, which itself tries to
lock object a. More generally, one defines a (directed) wait-for graph as follows: vertices
are labeled by transactions, and there exists an edge from T1 to T2 if T1 attempts to lock
an object already locked by T2 in a conflicting mode. A cycle in the wait-for graph is the
symptom of a deadlock.

There are two approaches to deadlock avoidance, prevention and detection. A common
prevention method is that all transactions should lock the objects in the same order. How-
ever, this is not always feasible, since in many applications transactions are independent
and do not have an advance knowledge of the objects they need to lock. In addition,
imposing a locking order (independent from the transaction’s semantics) may be overly
restrictive, and may thus reduce concurrency.

A more flexible approach, dynamic prevention, has been proposed by
[Rosenkrantz et al. 1978]. At creation time, each transaction receives a time-stamp,
which defines a total order among transactions. Conflicts are resolved using a uniform
precedence rule based on this order. Consider two transactions T1 and T2, which both
request a shared object x in conflicting modes, and suppose T1 has acquired a lock on x.
Two techniques may be used to resolve the conflict:

• Wait-Die: if T2 is “older” than T1, it waits until the lock is released; otherwise, T2

is forced to abort, and restarts later on.

• Wound-Wait: if T2 is “older” than T1, it preempts object x (breaking the lock);
otherwise, it waits until the lock is released. After preemption, T1 must wait for T2

to commit or to abort before trying to re-acquire a lock on object x.

Thus, a wait-for edge is only allowed from an older to a younger transaction6 (in
wait-die) or in the opposite direction (in wound-wait). This avoids starvation (waiting
indefinitely to acquire a lock). Wound-wait is usually preferable since it avoids aborting
transactions.

Contrary to prevention, deadlock detection imposes no overhead when deadlocks do
not occur, and is often preferred for performance reasons. Deadlock detection involves

6To guarantee this property, a transaction must keep its initial time-stamp when restarted after abort.

9-10 CHAPTER 9. TRANSACTIONS

two design decisions: defining a deadlock detection algorithm; defining a deadlock resolu-
tion method. Deadlock detection amounts to finding a cycle in the wait-for graph; in a
distributed system, this involves information interchange between the nodes, so that the
deadlock may be detected locally at any site. A typical algorithm (introduced in the R*
system [Mohan et al. 1986]) is described in [Obermarck 1982]. Once detected, a deadlock
is resolved by aborting one or more “victim” transactions. A victim is chosen so as to
minimize the cost of its rollback according to some criterion (e.g., choosing the “youngest”
transaction, or choosing a transaction local to the detection site, if such a transaction
exists).

Two-phase locking, in its strict version, is the most commonly used technique to guar-
antee a consistent execution of a set of transactions.

9.2.3 Additional Issues

In this subsection, we present a few complements regarding concurrency control.

Object Creation and Deletion

In the above presentation, we assumed that the database contained a fixed set of objects,
accessible through read or write operations. Object creation and deletion raises additional
problems. Consider the following transactions:

T1 : . . . create(o1) in set S; . . . create(o2) in set S; . . .
T2 : . . . for all x in S do {read(x). . . } . . .

Suppose the concurrent execution of T1 and T2 generates the following schedule:

. . . create(o1) in set S; for all x in S do {read(x). . . }; create(o2) in set S; . . .

Although the schedule appears to be conflict-serializable (in the order T1;T2), this is not
the case, because object o2 “escaped” the “for all” operation by T2. Such an object,
which is potentially used before being created, is called a phantom object. A symmetrical
situation may occur with object deletion (the object is potentially used after having been
deleted).

The problem of phantoms is solved by a technique called multilevel locking, in which
objects are grouped at several levels of granularity (e.g., in files, directories, etc.), and locks
may be applied at these levels. Besides read and write locks, intentional locks (intent read,
intent write, . . .) may be applied at the intermediate levels. The following rules apply:
(1) Before locking an object, a transaction must have obtained an intentional lock, in a
compatible mode, on all the groups that contain the object; and (2) An object may only
be created or deleted by a transaction T if T has obtained an intent write lock on a higher
level group including the object. This ensures that object creation and deletion will be
done in mutual exclusion with potential accesses to the object.

Time-stamp Based Concurrency Control

The principle of time-stamp based concurrency control is to label each transaction with
a unique time-stamp, delivered at creation, and to process conflicting operations in time-

9.2. CONCURRENCY CONTROL 9-11

stamp order. Thus the dependency graph cannot have cycles, and the serialization order
is determined a priori by the order of transactions’ time-stamps.

Processing conflicting operations in time-stamp order may involve aborting a transac-
tion if it attempts to perform an “out-of-order” operation, i.e., if the order of the conflicting
operations does not agree with that of the corresponding time-stamps.

In the basic variant of the method, each object x holds two time-stamps: Rx, the
time-stamp of the most recent transaction (i.e., the one with the largest time-stamp) that
has read x, and Wx, the time-stamp of the most recent transaction that has written x.
Suppose that a transaction T , time-stamped by t, attempts to execute an operation o(x)
on an object x, that conflicts with an earlier operation on x. The algorithm runs as follows:

• If o(x) is a read, then it is allowed if t > Wx; otherwise, T must abort.

• If o(x) is a write, then it is allowed if t > max(Wx, Rx); otherwise, T must abort.

In both cases, if the operation succeeds, Rx or Wx are updated.

The case of the write-write conflict may be optimized as follows: if Rx < t < Wx, then
the operation succeeds, but the attempted write by T is ignored since a most “recent”
version exists. In other words, “the last writer wins”. This is known as Thomas’ write
rule [Thomas 1979].

Multiversion concurrency control [Bernstein and Goodman 1981,
Bernstein et al. 1987] is a variant of time-stamp based concurrency control that
aims at increasing concurrency by reducing the number of aborts. The above rules
for conflict resolution are modified so that a read operation is always allowed. If a
write operation succeeds (according to the rule presented below), a new version of the
object is created, and is labeled with the transaction’s time-stamp. When a transaction
time-stamped by t reads an object x, it reads the version of x labeled with the highest
time-stamp less than t, and t is added to a read set associated with x. When a transaction
T , time-stamped by t, attempts to write an object x, it must abort if it invalidates a
previous read of x by another transaction. Invalidation is defined as follows: let W be the
interval between t and the smallest write time-stamp7 of some version of x. If there is a
read time-stamp (a member of the read set of x) in the interval W , then the attempted
write invalidates that read (because the version read should have been the one resulting
from the attempted write).

Snapshot isolation [Berenson et al. 1995] is a further step towards improving perfor-
mance by increasing concurrency, building on the notion of multiversion concurrency con-
trol. When a transaction T starts, it gets a start time-stamp ts(T) and takes a “snapshot”
of the committed data at that time. It then uses the snapshot for reads and writes, ignor-
ing the effect of concurrent transactions. When T is ready to commit, it gets a commit
time-stamp tc(T), which must be larger than any other start or commit time-stamp. T is
only allowed to commit if no other transaction with a commit time-stamp in the interval
[ts(T), tc(T)] had a write-write conflict with T . Otherwise, T must abort.

While this method improves performance, since there is no overhead in the absence
of write-write conflicts, it is subject to undesirable phenomena called skew anomalies.
Such anomalies occur when there exists constraints involving different objects, such as

7If no such time-stamp exists, W = [t,∞].

9-12 CHAPTER 9. TRANSACTIONS

val(o1) + val(o2) > 0, where val(o) denotes the value of object o. If two transactions T1

and T2 run in parallel under snapshot isolation, T1 updating o1 and T2 updating o2, then
the constraint may be violated although no conflict is detected. The inconsistency would
have been detected, however, under a serial execution.

[Fekete et al. 2005] propose techniques to remedy this situation, thus making snapshot
isolation serializable. Snapshot isolation is used in several commercial database systems.
It is also used as a consistency criterion for data replication (see 11.7.1)

9.3 Recovery

The function of recovery in a transaction management system is to guarantee atomicity8

and durability in the face of failures. Recall that storage is organized in two levels: non-
permanent (or volatile), such as main memory, and permanent, such as disk storage.
Response to failures thus raises two issues: (1) how to recover from failures that only
affect volatile storage, such as system crash or power supply failure; and (2) how to make
the system resistant to media failures (excluding catastrophes). The latter problem is
treated by data replication, which is the subject of 11.7. In this section, we only consider
recovery from volatile storage loss. Note that the problem of processing an abort (rolling
back a transaction) is a special case of failure recovery.

A failure may leave the system in an inconsistent state. Restoring the system to
a consistent state is not always feasible, as shown by the following example. Consider
a transaction T1 which reads an object written by a transaction T2. Suppose that T1

commits, and that T2 aborts (or is affected by a failure) at a later time. Then rolling back
T2 makes the value read by T1 non-existent. But since T1 has committed, its effect (which
may depend on the read value) cannot be undone. A similar situation occurs if T1 writes
an object that was previously written by T2.

Therefore, a desirable property is that the system be recoverable, i.e., that the failure
of a transaction cannot invalidate the result of a committed transaction. This property
may be translated in terms of schedules: a schedule is strict if, for any pair of transactions
T1 and T2 such that an operation op2 of T2 precedes a conflicting operation op1 of T1

on the same object, the commit event of T2 also precedes9 op1. Strictness is a sufficient
condition for recoverability. Note that strict two-phase locking (9.2.2) only allows strict
schedules, since locks (which prevent conflicting operations) are only released at commit
time. In practice, most transaction systems use strict two-phase locking and therefore are
recoverable.

The problem of transaction recovery is a complex one, and we only outline the main
approaches used to solve it. For an in-depth analysis, refer to [Haerder and Reuter 1983]
and to the specialized chapters of [Gray and Reuter 1993] and [Weikum and Vossen 2002].
In the rest of this section, we examine the issues of buffer management (how to organize
information exchange between the two levels of storage in order to facilitate recovery),
and logging (how to record actions so as to be able to recover to a consistent state after a
failure).

8in the sense of “failure atomicity” (9.1).
9As a consequence, if T2 aborts or fails, it does so before T1 executes op1.

9.3. RECOVERY 9-13

9.3.1 Buffer Management

In order to exploit access locality, access to permanent storage uses a buffer pool in volatile
storage, which acts as a cache, usually organized in pages10 (unit of physical transfer). A
read operation first looks up the buffer pool. If the page is present, the read does not
entail disk access; if not, the page is read from disk unto the buffer pool, which may cause
flushing the contents of a page, if there is no free frame in the pool. A write operation
modifies the page in the pool (after reading it if it was not present). The contents of the
modified page may be written on disk either immediately or at a later time, depending on
the policy (more details further on).

Two main approaches are followed regarding updates in a database. In the direct page
allocation, each page has only one version on disk, and all updates (either immediate or
delayed) are directed to this page. In the indirect page allocation, updates are done on
a different version of the page, called a shadow. Thus the original version of the page
still exists, together with the most recent version (and possibly all intermediate versions,
depending on the strategy adopted). To actually perform the update, one makes the (most
recent) shadow to become the current version (an operation called propagation), and this
may be done some time after the update. The advantage of indirect allocation is that
it is quite easy to undo the effect of a sequence of updates, as long as the changes have
not been propagated. The drawback is a performance penalty in regular operation (in the
absence of failures), due to the overhead of maintaining the shadows and the associated
data structures.

One may now identify three views of the database: (1) the current view, i.e., the most
recent state, which comprises modified, unsaved pages in the buffer pool and up to date
pages on disk; (2) the materialized view, i.e., the view after a system crash causing the loss
of the buffer pool; this view consists of the propagated pages on disk; and (3) the physical
view, again after a system crash, consisting of both propagated pages and unpropagated
shadow pages on disk. If direct page allocation is used, the physical and materialized views
coincide.

Two strategies may now be defined regarding the management of page updates in a
transaction.

• Atomic: all the updates made by a transaction (from begin to commit) are per-
formed in a single (indivisible) operation. Technically, this requires indirect page
allocation (using indirection allows global propagation to be done by updating a
single pointer, an atomic operation).

• Not Atomic: some, but not all, of the pages updated by a transaction may be
present in the materialized view. This happens with direct page allocation, since
there is no simple way to write the contents of a set of updated pages as a single
indivisible operation.

While Atomic achieves indivisible global write, its drawbacks are those of indirect
page allocation. On the other hand, Not Atomic is more efficient in normal operation,
but necessitates to perform an undo algorithm after a system crash (see 9.3.2).

10Following the common usage, we distinguish between pageframes (containers) and pages (contents).

9-14 CHAPTER 9. TRANSACTIONS

Regarding buffer pool management, the main issue is: “when is the contents of a
modified page actually written to disk?”. Writing a modified page to disk may be caused
by two events: either its frame in the buffer pool is allocated to another page, or an explicit
write decision is made by the transaction management system. Thus the options are the
following:

• Steal: A page that has been modified by a transaction may be “stolen” (its frame
is allocated to another transaction) before the first transaction has committed (the
page must then be written to disk). This reduces the space requirements of the
buffer pool.

• No Steal: The pages modified by a transaction remain in the buffer pool at least
until the transaction commits.

• Force: Before a transaction commits, all the pages it has modified must have been
written to disk.

• No Force: Some pages modified by a transaction may remain (non reflected on
disk) in the buffer pool after the transaction has committed. This reduces I/O costs
if such pages are needed by another transaction. The drawback is a more complex
recovery procedure in the case of system failure.

Combining the three above binary choices leads to eight different policies. The (Steal,
No Force) combination is frequently used, since it favors performance and allows flex-
ible buffer management. System-R [Gray et al. 1981], the first full scale implementation
of a relational database, used (Atomic, Steal, No Force), with shadow pages. Many
current transaction managers are based on Aries (Algorithms for Recovery and Isola-
tion Exploiting Semantics) [Mohan et al. 1992], which uses (Not Atomic, Steal, No

Force). Aries emphasizes performance in normal operation, using direct page allocation
rather than shadow paging, at the expense of a more complex recovery algorithm (see next
section). This choice is justified, since failures are infrequent in current systems.

9.3.2 Logging

Logging is a general technique used to restore the state of a system after a failure which
caused the contents of the volatile storage to be lost. A log is a sequence of records written
on stable storage in the append-only mode. Each record registers a significant event that
changed the state of the system. Typically, a record contains the date of the event, the
state of the modified element before and after the change (possibly using a form of diff
for economy of space), and the nature of the operation that performed the change.

In a transaction management system, the log may register the change of a logical
element (a database record) or a physical element (a page); some systems register both
classes of events, depending on their nature, thus constructing a “physiological” (physical
+ logical) log.

After a system failure, the log is used for two main purposes:

• To Redo the changes performed by a transaction that has committed at the time
of the failure, but whose changes have not been written to the disk in entirety (this
may occur with the No Force option). This guarantees durability.

9.4. DISTRIBUTED TRANSACTIONS 9-15

• To Undo the changes performed by a transaction that has not committed at the time
of the failure. This guarantees atomicity. Undo also applies to aborted transactions
whose initial state has not yet been restored.

In addition to logging, the recovery system may use checkpointing to register peri-
odically a consistent state. This limits the number of log records to be processed after
a failure, since one only needs to restart from the last checkpoint. The difficulty lies in
capturing a consistent state of the system, which may be a complex and costly process in
itself, specially in a distributed system.

The log, which is on stable storage, must contain enough information to execute the
necessary Undo and Redo operations after a failure that caused the loss of the contents
of volatile storage. This is ensured by the technique of Write Ahead Logging (WAL), which
enforces two conditions:

• A transaction is only considered committed after all its log records have been written
to stable storage (condition for Redo).

• All log records corresponding to a modified page must be written to stable storage
before the page is itself written to permanent storage (condition for Undo).

Recovery proceeds in three phases. An analysis of the situation first determines the
earliest log records to be used for the next two phases. A Redo (forward) phase, applied
to all transactions, including those committed, ensures that all updates done before the
failure are reflected on permanent storage. Then an Undo (backward) phase ensures
that the effect of all uncommitted transactions is undone. Both Redo and Undo are
idempotent; thus, if a failure occurs during one of these phases, the operation may simply
be restarted without additional processing.

While the principle of log-based recovery is fairly simple, implementing a WAL-based
recovery system is a challenging proposition. Note that recovery interacts with concurrency
control; in that respect, strict two-phase locking facilitates recovery, because it prevents
dirty reads (9.2.1). A detailed description of the WAL-based recovery system of Aries

may be found in [Mohan et al. 1992]. A summary description is in [Franklin 2004].

9.4 Distributed Transactions

We have assumed, up to now, that a transaction takes place on a single site. We now con-
sider distributed transactions, in which the objects may reside on a set of nodes connected
by a network.

In a distributed system, the transaction manager is organized as a set of cooperating
local managers, each of which manages the data present on its node. These managers need
a mutual agreement protocol, in order to preserve global consistency. The main subject
of agreement is the decision on whether to commit or to abort, since this decision must
be consistent among all nodes involved in the transaction. In other words, distributed
commitment should be atomic (all nodes commit, or none). In addition to commitment
proper, an atomic commitment protocol can be used for concurrency control, through a
method called commitment ordering [Raz 1992]. Atomic commitment is therefore a central

9-16 CHAPTER 9. TRANSACTIONS

issue for distributed transactions. In the following subsections, we specify the problem and
examine its main solutions.

9.4.1 Atomic Commitment

On each node of the distributed system, a process executes the local transaction manager,
and communicates with similar processes on the other nodes. We assume the following
properties.

• Communication is reliable (messages are delivered unaltered) and synchronous (up-
per bounds are known for message transmission time and ratio of processor speeds
at the different nodes, see 4.1.2). In addition, we assume that communication or
process failures cannot partition the network.

• Processes may fail (in the fail-stop mode, see 11.1.3). A failed process may be
repaired and be reintegrated in the transaction. A correct process is one that never
failed.

• Each node is equipped with stable storage, which survives failures.

The assumption of reliable, synchronous communication is needed to ensure that an
agreement protocol can run in finite time (see details in 11.1.3).

The atomic commitment protocol may be started by any process involved in the dis-
tributed transaction. Each process then casts a vote: yes if it is ready to commit locally
(make permanent its updates to the local data), no otherwise. The protocol must satisfy
the following requirements.

• Validity: The decision must be either commit or abort.

• Integrity: Each process decides at most once (once made, a decision cannot be
revoked).

• Uniform agreement: all processes that decide (be they correct or not) make the same
decision.

• Justification: If the decision is commit, then all processes voted yes.

• Obligation: If all processes have voted yes, and if all processes are correct, the
decision must be commit.

• Termination: each correct process decides in finite time.

A few remarks are in order about these specifications. The “atomic” property is ensured
by uniform agreement, in which the decision of faulty processes is taken into account. This
is because a process may perform an irreversible action, based on its decision, before failing.
Agreement must therefore include all processes. Note that the two possible outcomes are
not symmetric: while unanimity is required for commit, it is not required that all processes
have voted no to decide abort (in fact, a single no vote is enough). The implication in
the Justification requirement is not symmetric either: the outcome may be abort, even

9.4. DISTRIBUTED TRANSACTIONS 9-17

if all processes have voted yes (this may happen if a process fails between the vote and
the actual decision). The Obligation requirement is formally needed to exclude trivial
solutions, such as all processes always deciding abort.

We now present some protocols for atomic commitment.

9.4.2 Two-phase Commit

The two-phase commit protocol, or 2PC, has been initially proposed by [Gray 1978]. One
of the processes is chosen as coordinator, and it starts11 by requesting a vote from the
other processes (participants). Each participant (and the coordinator itself) sends its vote
(yes or no) to the coordinator. When the coordinator has collected all votes, it decides
(commit if all votes are yes, abort otherwise), and sends the decision to all participants.
Each participant follows the decision and sends an acknowledge message to the coordinator.
In addition, all events (message sending and receiving) are logged. This is summarized on
Figure 9.1.

prepare

coordinator
p0

participant
pi

all
YES

phase 1

phase 2

time

vote

commit

prepare

coordinator
p0

participant
pi

not all
YES

phase 1

phase 2

vote

abort

ack ack

log

log

log

log

log
log

log

log

log

log

vote YES

vote NO

force log

no force log

commit abort

Figure 9.1. Two-phase commit: basic protocol

Logging may be forced (i.e., it takes place immediately and therefore blocks execution
until finished) or non forced (it may be delayed, for example piggybacked on the next
forced log).

Note that the coordinator and each participant start a round-trip message exchange,
and can therefore use timeouts to detect failure. Recall that communication is assumed to
be synchronous; call δ the upper bound for message propagation, and ǫ and T estimated
upper bounds for processing a vote request and a vote reply, respectively. Then timeouts
may be set at the coordinator and at each participant site, as shown on Figure 9.2.

If the coordinator has detected a participant’s failure, it must decide abort (Figure
9.2a). If a participant has detected the coordinator’s failure (Figure 9.2b), it first tries to
determine whether a decision has been made, by consulting the other participants. If it
fails to get an answer, it starts a protocol to elect a new coordinator.

11As noted above, the protocol may be initiated by any process, which then needs to send a “start”
message to the coordinator.

9-18 CHAPTER 9. TRANSACTIONS

Figure 9.2. Two-phase commit: failure detection

When the coordinator or a participant restarts after a failure, it uses the log records
to determine the state of the transaction, and to act accordingly. For instance, if it finds
itself in phase 1, it restarts the transaction; if it finds itself in phase 2, it sends the logged
decision to the participants; if the last log record is the end of the transaction, there is
nothing to do.

Note that a participant that voted yes enters an “uncertainty zone” until it has received
a decision from the coordinator, or until timeout (Figure 9.2c). This is because another
participant may have already made either a commit or an abort decision (none is excluded
for the time being). This may lead to a blocking scenario: suppose pi has voted yes

and is in the uncertainty zone; suppose that the coordinator made a decision, sent it to
some participants, and then failed; suppose, in addition, that these latter participants also
failed. Then a decision has actually been made, but pi, although being correct, has no
means to know it, at least until after the coordinator has been repaired (if the coordinator
has logged the decision on stable storage before failing, the decision can be retrieved and
resent to the participants).

Even if it is eventually resolved (either by retrieving the decision or by calling a new
vote), a blocking situation is undesirable, because it delays progress and wastes resources
that are held by blocked processes. Therefore various solutions have been devised to avoid
blocking. Two of them are presented in the following subsection.

9.4.3 Non-Blocking Commitment Protocols

The first solution [Skeen 1981] proposed for avoiding blocking is the three-phase commit
(3PC) protocol. If all participants have voted yes, the coordinator sends a prepare

message to all participants; if not, it decides abort, like in 2PC.

When a participant receives a prepare message, it enters a “prepared to commit”
phase, and replies with an ack message to the coordinator. If the coordinator has received
ack from all processes, it decides commit and sends this decision to all participants. This
protocol is summarized on Figure 9.3. Note that, if the communication system does not
lose messages, acknowledgments are redundant.

9.4. DISTRIBUTED TRANSACTIONS 9-19

Figure 9.3. Three-phase commit

Why does this protocol eliminate blocking? The role of the “prepared to commit”
phase is to reduce a participant’s uncertainty as to the outcome of the transaction. After
a participant pi has voted yes, there is no situation in which pi is uncertain and some
process (say pj) has already decided commit. Otherwise said: in 2PC, a process that
decides commit “knows” that all have voted yes; in 3PC, a process that decides commit
“knows”, in addition, that all know that all have voted yes (because they all received the
prepare message).

Dealing with failures is more complex than in 2PC, since there are more different
possible states for the system. The situation is summarized on Figure 9.3.

A second, more elegant solution [Babaoǧlu and Toueg 1993], consists in using a multi-
cast protocol with strong properties, again with objective of reducing uncertainty among
the participants. The algorithm is directly derived from 2PC: in the program of the coordi-
nator, replace “send the decision (commit or abort) to the participants” by “broadcast the
decision to the participants using UTRB (Uniform Timed Reliable Broadcast)”. UTRB is
a reliable multicast protocol (11.3.2) that has two additional properties:

• Timeliness: there exists a known constant δ such that, if the multicast of message
m was initiated at real time t, no recipient process delivers m after real time t + δ.

• Uniform Agreement: if any of the recipient processes (correct or not) delivers a
message m, all correct recipient processes eventually deliver m.

The first property derives form the synchrony assumption for communication. The

9-20 CHAPTER 9. TRANSACTIONS

second property is the one that eliminates uncertainty, and thus prevents blocking: as
soon as a participant has been notified of a decision by the coordinator, it “knows” that
all correct participants will also receive the same information. If a participant times out
without having received a decision, it can safely decide abort by virtue of the timeliness
property.

9.4.4 Optimizing Two-phase Commit

As is apparent from the above description of 2PC (9.4.2), there is a significant difference,
as regards the number of logging and communication operations, between the failure and
no-failure cases. This observation suggest a potential way of improving the performance of
2PC in a situation in which the abort rate of transactions can be estimated, by adapting the
protocol to the most likely behavior. The definition of the 2PC Presumed Commit (2PC-
PC) and 2PC Presumed Abort (2PC-PA) protocols [Mohan et al. 1986] is an attempt
towards this goal. The main idea is to reduce the number of Force log writes and to
eliminate superfluous acknowledge messages.

2PC-PA is optimized for the case of abort, and is identical to standard 2PC in the case
of commit. An analysis of the abort case shows that it is safe for the coordinator to log the
abort record in the No Force mode, and to “forget” about the transaction immediately
after the decision to abort. Consequently, a participant which receives the abort message
does not have to acknowledge it, and also logs it in the No Force mode.

2PC-PC is optimized for the case of commit, and is identical to standard 2PC in the
case of abort. In this protocol, the absence of information is interpreted as a commit
decision. However, the 2PC-PC protocol is not exactly symmetrical to 2PC-PA, in order
to avoid inconsistency in the following situation: the coordinator crashes after having
broadcast the prepare message, but before having made a decision; upon recovery, it aborts
the transaction and forgets about it, without informing anyone, since it does not know the
participants. However, if a prepared participant times out and inquires the coordinator,
it will get (by default) the commit answer, which is inconsistent.

To avoid this problem, the coordinator records (by a Force log) the names of the
participants, before sending the prepare message. It will then know whom to inform of the
abort decision after recovery from a crash. If the coordinator decides to commit, it Force

logs this decision and sends it to the participants. Upon receipt, a participant Force logs
the decision, without sending an acknowledge message. If the decision is to abort, the
coordinator informs the participants that voted yes and waits for the acknowledgments.
It then logs the decision in the No Force mode.

Commit Messages Forced log writes
protocol Commit Abort Commit Abort

2PC 4p 1 + 2p

2PC-PA 4p 3p 1 + 2p p

2PC-PC 3p 4p 2 + p 1 + 2p

Table 9.1. Compared costs of 2PC protocols (from [Serrano-Alvarado et al. 2005])

The compared costs of the protocols are summarized on Table 9.1, which shows the

9.5. ADVANCED TRANSACTION MODELS 9-21

gains of 2PC-PA and 2PC-PC with respect to standard 2PC, in the case of abort and
commit, respectively. In this table, p denotes the number of participants.

To exploit this optimization, [Serrano-Alvarado et al. 2005] propose to dynamically
adapt the commit protocol to the behavior of the application, by selecting 2PC-PA or
2PC-PC according to the observed abort rate. As a result, the average completion time
of a transaction is reduced with respect to a non-adaptive commit scheme. The commit
protocols are implemented in terms of Fractal components within the GoTM framework
(see 9.7): each protocol contains the same basic components, with a different configuration.

9.5 Advanced Transaction Models

The transaction model described in sections 9.2 and 9.3 was developed for centralized
databases used by short transactions with a moderate amount of concurrency. This model
(called “traditional”, or “flat”) was found overly constraining for the complex, long-lived
applications that came to existence with the rise of large scale distributed systems. Such
applications are typically developed by composing several local applications, each of which
may need to preserve some degree of autonomy. Relevant application domains include
computer aided design and manufacturing (CAD/CAM), software development, medical
information systems, and workflow management.

The coupling between the local applications may be strong (e.g., synchronous client-
server) or loose (e.g., message-based coordination). The running time of the composite
application may be long (hours or days, instead of seconds for traditional applications).
The probability of failures increases accordingly. Blocking resources for the entire duration
of the application would be overly expensive.

As a consequence, the application may be subject to one or more of the following
requirements.

• A local application may be allowed to fail without causing the failure of the global
application.

• After a failure, the global application may be allowed to roll back to an intermediate
checkpoint, instead of undoing the whole work performed since its beginning.

• Some partial results may need to be made visible before the global application con-
cludes.

Thus the atomicity and isolation requirements of the traditional transaction model may
need to be relaxed for a global application, even if they remain valid for the composing
sub-applications.

Presentations of advanced transaction models often use the canonical example of a
travel agency, which prepares a travel plan by reserving flight tickets, hotel rooms, car
rentals, show tickets, etc. For efficiency, reservations for the various kinds of resources can
be done in parallel, each in a separate transaction. On the other hand, these transactions
are not independent: if a hotel room cannot be found at a certain place, one may try a
different location, which in turn would need changing the flight or car rental reservation,
even if the corresponding transaction has already committed.

9-22 CHAPTER 9. TRANSACTIONS

A number of models that relax the ACID properties in some way have been proposed
under the general heading of “advanced transaction models”. [Elmagarmid 1992] and
[Jajodia and Kerschberg 1997] are collections of such proposals, few of which have been
tested on actual applications. In the following subsections, we present two models that
have been influential for further developments. Both of them rely on a decomposition of
a global transaction into sub-transactions. Nested transactions (9.5.1) use a hierarchical
decomposition, while sagas (9.5.2) use a sequential one.

9.5.1 Nested Transactions

The nested transactions model has been introduced in [Moss 1985]. Its motivation is to
allow internal parallelism within a transaction, while defining atomicity at a finer grain
than that of the whole transaction.

The model has the following properties.

• A transaction (the parent) may spawn sub-transactions (the children), thus defining
a tree of transactions.

• The children of a transaction may execute in parallel.

• A transaction Tj that is a sub-transaction of Ti starts after Ti and terminates before
Ti.

• If a transaction aborts, all of its sub-transactions (and, by recursion, all its descen-
dants) must abort; if some of these transactions have committed, the changes they
made must be undone.

• A nested transaction (one that is not the root of the tree) may only (durably) commit
if its parent transaction commits. By virtue of recursion, a nested transaction may
only commit if all of its ancestors commit.

Thus the model relaxes the ACID properties, since durability is not unconditionally
guaranteed for a committed nested transaction. The top-level (the root) transaction has
the ACID properties, while the nested transactions (the descendants) only have the AI
properties.

Several variants of this model have been proposed. In the simplest form, only leaf
transactions (those at the lowest level) can actually access data; transactions at the higher
level only serve as controlling entities. Other forms allow all transactions to access data,
which raises the problem of concurrency control between parent and child transactions.

Concurrency control may be ensured by a locking protocol that extends 2PL with lock
transmission rules between a transaction and its parent and children. A sub-transaction
“inherits” the locks of its ancestors, which allows it to access data as if these locks were
its own. When a sub-transaction commits, its locks are not released, but “inherited”
(upward transmission) by its parent. When a sub-transaction aborts, only the locks it
directly acquired are released; inherited locks are preserved. As a consequence, if two
sub-transactions are in conflict for access to a shared object, one of them is blocked until
their lowest common ancestor has committed.

9.5. ADVANCED TRANSACTION MODELS 9-23

The benefits of nested transactions are the possibility of (controlled) concurrent ex-
ecution of sub-transactions, the ability to manage fine-grain recovery within a global
transaction, and the ability to compose a complex transaction out of elementary ones
(modularity).

9.5.2 Sagas

The traditional transaction model is not well suited for long-lived transactions, for two
main reasons: (1) to maintain atomicity, some objects need to be locked for a long time,
preventing other transactions from using them; and (2) the probability of a deadlock
increases with the length of the transaction, thus leading to a potentially high abort
rate. The Sagas model [Garćıa-Molina and Salem 1987] was proposed to alleviate these
drawbacks. In this model, a global transaction (called a saga) is composed of a sequence
of sub-transactions, each of which follows the traditional model. Thus a saga S may be
defined as follows:

S = (T1;T2; . . . Tn)

where the Tis are the sub-transactions of S.

A saga only commits if all of its sub-transactions commit; thus a saga is atomic.
However, the execution of a saga can be interleaved with the execution of other sagas. As
a consequence, sagas do not have the isolation property, since a saga may “see” the results
of another, partially completed, saga.

If a sub-transaction of a saga aborts, the entire saga aborts, which means that the effect
of the sub-transactions executed up to the current point needs to be canceled. However,
since these transactions have committed, a special mechanism must be introduced: for
each sub-transaction Ti, one defines a compensating transaction Ci whose purpose is to
cancel the effect of the execution of Ti.

Thus the effect of the execution of a saga S = (T1; . . . Tn) is equivalent to either that
of

T1;T2; . . . Tn,

in which case the saga commits and achieves its intended purpose, or that of

T1;T2; . . . Tk;Ck;Ck−1 . . . C1 (k < n),

in which case the sub-transaction Tk has aborted, and its effect, as well as that of the
preceding sub-transactions, has been compensated for12.

Recall that isolation is not maintained for sagas. Two consequences follow:

• Compensation of a saga S does not necessarily bring the system back to its state
before the execution of S, since sub-transactions of other sagas may have taken place
in the meantime.

• Other sagas may have read the results of committed sub-transactions of a saga S,
before they were compensated for. Applications are responsible for dealing with this
situation.

12Note that there is no need for a compensating transaction for the last sub-transaction Tn.

9-24 CHAPTER 9. TRANSACTIONS

The main practical problem with building applications based on sagas is to define
compensating transactions. This may be difficult, or even impossible if a sub-transactions
has executed “real” actions.

The main current application of the “advanced transactions” models is in the area of
web services transactions (see 9.6.2).

9.6 Transactional Middleware

As seen above, the notion of a transaction has evolved from the traditional model to
a variety of “advanced” models, in order to comply with the requirements of complex,
composite applications. Transaction support software has evolved accordingly. In cen-
tralized databases, transactions were supported by a set of modules closely integrated
within database management systems. As systems became distributed, and as transac-
tions were applied to non-database services such as messaging, transaction management
was isolated within specialized middleware components. A transaction processing system
is typically organized into a transaction manager (TM) and a set of resource managers
(RM). Each resource manager is in charge of a local resource, such as a database or a
message queuing broker, and is responsible for ensuring transactional properties for access
to the local resource. The transaction manager ensures global coordination between the
resource managers, using the 2PC protocol.

Several standards have been developed over time to provide a formal support to
this organization. The Open Group Distributed Transaction Processing (DTP) standard
[X-OPEN/DTP] defines the interfaces between the application and the TM (TX inter-
face), and between the TM and the RMs (XA interface), as shown on Figure 9.4.

Figure 9.4. Transactional interfaces in X-Open DTP

In the rest of this section, we examine two frameworks that have been developed in
recent years for transaction management. These frameworks are representative of two fam-
ilies of middleware systems. In 9.6.1, we describe the principles of transaction management
in JEE, a platform for component-based programming. In 9.6.2, we present WS-TX, a
standard proposed for web services transactions. We conclude in 9.6.3 with a brief outline
of current advances in transactional middleware.

9.6. TRANSACTIONAL MIDDLEWARE 9-25

9.6.1 Transaction Management in JEE

JEE [JEE] is a platform for developing distributed, component-based applications in
Java. It uses containers (7.5.1) to manage application-built components called enterprise
beans13. Beans contain the code of the application and call each other using (possibly
remote) method invocation.

Each bean is is managed by a container, which intercepts all method calls and acts
as a broker for system services. There are two kinds of transactions, which differ by the
method used for transaction demarcation.

• Bean-managed transactions, in which transaction demarcation instructions (begin,
commit, rollback) are explicitly written by the developer of the bean, using the
javax.transaction.UserTransaction interface.

• Container-managed transactions, in which transaction demarcation is done by the
container, using declarative statements provided by the developer, as annotations
attached to the bean.

In container-managed transactions, the main issue is to determine whether a method
of a bean should be executed within a transaction, and if yes, whether a new transaction
should be started. This is specified by a transaction attribute, attached to the method (a
transaction attribute may also be attached to a bean class, in which case it applies to all
the application methods of the class). The effect of the attribute is described in Table 9.2.

Transaction attribute Calling activity Method’s transaction

Required None T 2

T 1 T 1

RequiresNew None T 2

T 1 T 2

Mandatory None Error

T 1 T 1

NotSupported None None

T 1 None
Supports None None

T 1 T 1

Never None None

T 1 Error

Table 9.2. Transaction attributes in container-managed transactions

The column “Calling status” indicates whether the call is done within a transaction
(denoted as T1) or outside a transaction. The column “Method’s transaction” indicates
whether the method should be run within a transaction (which may be the calling trans-
action, T1, or a new transaction, T2).

For instance, suppose the called method has the Required attribute. Then, if it is called
from outside a transaction, a new transaction must be started. If the method is called

13There are several kinds of beans (differing by persistence properties). We ignore these distinctions,
which are not relevant in this presentation.

9-26 CHAPTER 9. TRANSACTIONS

from within a transaction, it must be executed under that transaction. Some situations
cause an error, in which case an exception is raised; if a transaction was running, it will
automatically be rolled back.

In order to explicitly abort a container-managed transaction (for example, if the bean
throws an application exception) the application should invoke the setRollbackOnly

method of the EJBContext interface.

9.6.2 Web Services Transactions

Web services [Alonso et al. 2004] provide a standard means of interoperating between
different software applications, running on a variety of platforms and/or frameworks. In a
more specific sense (see [W3C-WSA 2004]), Web services define a set of standards allowing
applications to be integrated and executed over the Internet, following a service oriented
architecture such as described in 3.3.4.

Web services (which would be more appropriately called Internet services) typically
use a loosely-coupled mode of communication, in which applications execute over long
periods and may negotiate the terms and conditions of their interaction. The conventional
transaction model based on ACID properties proves too constraining for Web services.
Therefore, new standards are being developed to support extended transaction models
adapted to the Web services environment.

The emerging standard for Web services transactions is the set of Web Services Trans-
action specifications (collectively known as WS-TX) produced by OASIS (Organization
for the Advancement of Structured Information Standards [OASIS]), a consortium that
develops “open standards for the global information society”.

The WS-TX collection is composed of three standards.

• WS-Coordination (WS-C) [OASIS WS-TX TC 2007c] This specification describes
an extensible framework used to coordinate a number of parties participating in a
common activity. The framework has two parts: (a) a generic part, which allows par-
ticipants to share a common context and to register for a common activity, possibly
controlled by a coordinator; and (b) a specific part, which defines a particular pro-
tocol in the form of a “coordination type”. WS-Coordination is the base on which
the transaction services described below are built, as specific coordination types.
WS-Coordination is presented in 6.7.

• WS-AtomicTransaction (WS-AT) [OASIS WS-TX TC 2007a]. This specification de-
fines an atomic transaction protocol, to be used for short duration transactions
between participants with a high degree of mutual trust. It is based on 2PC
(9.4.2), with two variants: Volatile 2PC, for participants managing volatile resources
(e.g., caches), and Durable 2PC, for participants managing durable resources (e.g.,
databases).

• WS-BusinessActivity (WS-BA) [OASIS WS-TX TC 2007b]. This specification de-
fines a protocol (in the form of a set of coordination types) to build applications
involving long-running, loosely coupled distributed activities, for which the conven-
tional ACID transaction model is inadequate. WS-BusinessActivity is based on an
extended transaction model (9.5) in which the results of an activity may be visible

9.6. TRANSACTIONAL MIDDLEWARE 9-27

before its completion, and the effect of a completed activity may be undone by means
of compensation, such as defined in the saga model (9.5.2).

Separating WS-Coordination from the specific transaction protocols has two main ben-
efits:

• Separation of concerns. The functions related to coordination are isolated and may
serve for other purposes than transaction management.

• Extensibility. New transaction protocols, in addition to WS-AT and WS-BA, may
be added in the future as coordination types in WS-C.

While WS-AT is essentially a conventional 2PC protocol for ACID transactions, its
main advantage is to allow interoperability between applications that participate in a
common transactional activity, by wrapping them into Web services. Thus independently
developed applications, using different platforms and standards, may be made to interop-
erate in a closely coupled environment.

Since WS-BA addresses applications that integrate loosely coupled, independent par-
ticipants running in different domains of trust, flexibility is an important requirement. It
is achieved through the main following features:

• Nested scopes. A long running activity may be structured as a set of tasks, each of
which is a short duration unit of work, which may typically follow a conventional
transaction model. A task may itself be organized in a hierarchy of (child) tasks.
Each task, which uses a collection of Web services, defines a scope. Scopes can be
arbitrarily nested. This model is close to that of nested transactions (9.5.1), but
is more flexible, since a parent may catch an error in a child task, and decide on
whether to compensate, to abort, or to produce a non-atomic outcome.

• Flexible coordination model. WS-BA supports two coordination types, which define
the behavior of the coordinator of a transaction. In the AtomicOutcome type, the
coordinator must direct all participants either to close (i.e., to complete successfully)
or to compensate. In the MixedOutcome type (optional), the coordinator may direct
each individual participant to either close or compensate.

• Custom termination protocol. Two protocols are defined, each of which can use one
of the two above coordination types. The difference between these protocols is about
which entity decides whether a participant’s activity is terminated. In the Busines-
sAgreementWithParticipantCompletion (BAwPC) protocol, the decision is made by
the participant, which notifies the coordinator. In the BusinessAgreementWithCo-
ordinatorCompletion (BAwCC) protocol, the decision is made by the coordinator,
which has information about the tasks requested from the participant. In both cases,
according to its decision about the outcome of the global activity, the coordinator
requests the participant either to close (successfully complete) or to compensate the
task.

The life-cycle of a transaction, as seen by the coordinator or by a participant, is
represented as a state diagram. Transitions between states are triggered by messages
sent either by a participant or by the coordinator.

9-28 CHAPTER 9. TRANSACTIONS

In the BAwPC protocol (Figure 9.5), when an active participant decides that it has
completed its work, it notifies the coordinator by a Completed message and goes to the
Completed state. The coordinator then decides to either accept the participant’s work
(message Close) or to request that the work be compensated for14 (message Compensate).
In both cases (in no error occurs during compensation) , the participant eventually goes
to the Ended state, in which it forgets about the transaction. Other states shown on the
figure are introduced to deal with abnormal events at various stages of the work.

Figure 9.5. BusinessAgreementWithParticipantCompletion: state diagram
(adapted from [OASIS WS-TX TC 2007b])

In the BAwCC protocol (Figure 9.6), the decision about termination is made by the
coordinator, which sends a Complete message to the participant, which then goes to a
Completing stage. In the absence of errors, the participant answers with a Completed
message and goes to the completed state. The rest of the protocol is as described above.
Various errors may occur during the Completing phase, leading to the additional transi-
tions shown on the figure.

Figure 9.6. BusinessAgreementWithCoordinatorCompletion: state diagram
(adapted from [OASIS WS-TX TC 2007b])

An open source implementation of the WS-TX protocols is underway at

14The WS-BA standard does not define the compensation operations, which are the responsibility of the
application’s logic.

9.7. GOTM, A FRAMEWORK FOR TRANSACTION SERVICES 9-29

[Kandula 2007]. It includes an extension to the WS-BA protocol, described in
[Erven et al. 2007], which introduces a new role called the initiator to facilitate the devel-
opment of applications using WS-BA.

9.6.3 Advances in Transactional Middleware

The emergence of new applications areas has motivated a variety of requirements regarding
transactions. Several standards have been proposed to satisfy these requirements, which
cover a wide spectrum. As a consequence, it has become clear that no single transaction
model is able to cover all possible cases. Transactional middleware is therefore required to
be adaptable and extensible. More precisely, it should satisfy the following requirements.

• Allowing various transactional services to be built on a common infrastructure, by
composing a set of parts.

• Allowing the coexistence of several “personalities” of transaction support systems,
conforming to various transaction standards and providing different guarantees to
the applications.

• Allowing run-time extension and adaptation to react to changes in the environment.

To comply with these requirements, advances have been done in two complementary
directions.

The first direction is to define new abstractions in order to identify commonalities in
the transaction models and tools, and to better specify these models and tools. Separating
coordination from transaction management in the WS-TX protocols (9.6.2) is a step in this
direction. Another example of this approach is the abstraction of transaction demarcation
(i.e., the policies that specify whether and how an action is to be executed under an active
transaction), in [Rouvoy and Merle 2003].

The second direction is to design middleware infrastructures to support adaptable
and extensible transaction systems, specially through the use of components. Two re-
cent examples are the Argos framework [Arntsen et al. 2008] and the GoTM framework
[Rouvoy and Merle 2007]. GoTM is presented in the next section.

9.7 Case Study: GoTM, a Framework for Transaction Ser-

vices

GoTM (GoTM is an open Transaction Monitor) is a component-based framework for
building highly adaptable and extensible transaction services. To achieve this goal, GoTM
relies on an abstract architecture for transaction services, in the form of a set of common
design patterns, which are reified as assemblies of fine-grained components based on the
Fractal component model (7.6). Thus GoTM provides an extensible component library,
which can be used to develop the main functions required from a transaction service.

The main aspects of a transaction service that may be subject to variation are the
following:

9-30 CHAPTER 9. TRANSACTIONS

• Transaction standard. Various standards have been defined for different environ-
ments. These standards specify the user interface of the transaction service. Exam-
ples include Object Transaction Service (OTS) for Corba, Java Transaction Service
for JEE, and Web Services Atomic Transaction for Web Services. Some of these
standards rely on common notions (e.g., the flat transaction model) or common
mechanisms (e.g., transaction creation, context management).

• Transaction model. Various transaction models have been developed (see 9.5) to fit
different application requirements. One major aspect of variation is the degree of
isolation. Again, the goal is to allow different transaction models to coexist in a
transaction service.

• Commitment protocol. As noted in 9.4.4, the two-phase commit protocol has a
number of variants optimized for various execution environments. The abstract
notion of a 2PC protocol captures the core notions that are common to these variants.

GoTM allows building transaction services that can be adapted according to the above
criteria. This is achieved by the systematic use of reification of different notions in the
form of fine-grain components. This reification process is applied at two levels:

• For the design patterns used to specify the architecture of the transaction service.
Reifying the patterns in the form of components allows using component description
and composition tools to adapt the structure of the transaction service.

• For the functions and the execution states of a transaction service. Since a fine-grain
component represents an elementary aspect, it may be easily shared among different
transaction services.

Thus the adaptation mechanisms of GoTM essentially apply to the architecture of the
transaction services, rather than to the contents of the elements.

The next two subsections describe the architecture of the GoTM framework (9.7.1)
and the main features of its implementation (9.7.2). The last subsection (9.7.3) shows how
GoTM may be used for transaction service adaptation. This presentation only describes
the main elements of GoTM. Refer to [Rouvoy 2006] and [Rouvoy and Merle 2007] for
details.

9.7.1 Architecture of GoTM

GoTM is organized in two levels: a static part, the Transaction Service, whose function is
to create transactions; and a dynamic part, the Transactions created by the transaction
service. Both parts rely on design patterns, as shown on Figure 9.7.

The front-end components in both parts of GoTM are based on the Façade design
pattern [Gamma et al. 1994]. The role of this pattern is to provide a simple, unified
interface to a complex system that may itself involve a number of interfaces15. GoTM
uses Façade to implement various transactions standards (e.g., JTS, OTS, WS-AT) in

15Façade is thus related to the Adapter pattern (2.3.3). While Adapter gives access to an existing
interface by way of another existing interface, Façade builds a new interface to integrate a set of existing
interfaces.

9.7. GOTM, A FRAMEWORK FOR TRANSACTION SERVICES 9-31

Figure 9.7. Patterns in the architecture of GoTM (adapted from [Rouvoy and Merle 2007])

terms of the interfaces exported by its component library. A specific Façade component
is automatically generated for each standard (e.g., JTS-Façade, OTS-Façade, etc.).

The core of the transaction service (Figure 9.8) is a Transaction Factory component,
based on the Factory design pattern (2.3.2). This component creates transaction in-
stances conforming to a specified transaction model (also represented as a component).
The transaction model acts as a set of templates, which may be cloned to create com-
ponents of transaction instances. For better performance, the factory is enhanced with
caching and pooling facilities. Note that this construction makes use of the ability of the
Fractal model to share components (the component Factory is shared between the three
transaction services of the different standards).

Figure 9.8. The GoTM transaction service (adapted from [Rouvoy and Merle 2007])

As an example, Figure 9.9 shows the transaction model component for JTS transac-
tions. This model acts as a prototype to create instances of transactions using the JTS
standard and its JTA interface. Note the conventions for the figures: a star denotes an
interface of type Collection, and components shared with other models are enclosed by
dotted lines.

In addition to Façade, transaction instances use three main design patterns: State,
Command, and Publish-Subscribe.

9-32 CHAPTER 9. TRANSACTIONS

Figure 9.9. A prototype for JTS transactions in GoTM (adapted from [Rouvoy 2006])

The function of State is to represent and to control the different states of a trans-
action. Using this pattern (embodied in the component AtomicTransactionState), GoTM
implements the state automaton defined by a transaction model (Figure 9.10). Each state
is reified by a component, while the transitions between states are represented by bindings
between these components (further comments on this technique in 9.7.2).

Figure 9.10. Controlling state in GoTM (adapted from [Rouvoy and Merle 2007])

The function of Command is to encapsulate a command (and its parameters) into
an object. This provides an abstraction to build generic components, and facilitates the
building of undoable commands (e.g. by storing the command objects into a stack).

In GoTM, Command is used to notify the participants to a transaction of significant
events, defined as state changes. This applies both to actual participants (those involved
in the transaction) and to “synchronization participants”, which are only notified of the
beginning and the end of the transaction.

The use of the Publish-Subscribe pattern is described in the next section as an
illustration of the implementation techniques of GoTM.

9.7.2 Implementation of GoTM

The implementation techniques used in GoTM are intended to make evolution easy. Using
a component-based architecture is a first step towards that goal. In addition, a special

9.7. GOTM, A FRAMEWORK FOR TRANSACTION SERVICES 9-33

Figure 9.11. Using the Command pattern in GoTM (adapted from [Rouvoy 2006])

effort has been made towards a very fine grain definition of the components and interfaces,
guided by the principle of separation of concerns. Each function of a transaction service
is reified in the form of a component. Within a transaction model, reusable functions
are identified, and implemented as fine-grained shared components. The states that are
defined by a specific transaction model are likewise reified. Thus a transaction service is
described as an assembly of “micro-components”.

This approach has the following benefits:

• The interfaces of the micro-components are simple (in practice, no more than four
operations per interface).

• Component sharing and reuse is favored (and made technically easy by the compo-
nent sharing facility of the Fractal model).

• Configuration attributes are reified into bindings, thus allowing the use of an ADL
as an evolution tool.

This is illustrated by the example of the Publish-Subscribe component of transactions
(Figure 9.12). Publish-Subscribe is used to synchronize the transaction participants during
the execution of the Two-phase commit protocol (9.4.2).

In the implementation shown, the publish operation may be synchronous or asyn-
chronous. Selecting one of these options could have been done through a parameter in the
publish interface. Instead, the options are provided through two micro-components, Syn-
chronous and Asynchronous, which have a common interface publish, of type Collection.
The client binds to both components, through client interfaces (pub-sync and pub-async,
respectively), and selects the component to use according to its needs (for instance, em-
phasizing safety or performance). Note that bindings may be modified at run time, e.g.,
to introduce a new option. The role of the State Checker components is to ensure that the
execution of publish conforms to the state automaton that specifies the semantics of this
operation. Components State and Subscriber Pool are shared (this is denoted by dotted
lines on the figure).

9-34 CHAPTER 9. TRANSACTIONS

Figure 9.12. Publish-Subscribe in GoTM (from [Rouvoy 2006])

9.7.3 Using GoTM

We illustrate the adaptation capabilities of GoTM with three simple examples.

• Adapting the commitment protocol of a transaction. The algorithm of the commit-
ment protocol is isolated through the Strategy design pattern. Thus, to modify
this algorithm (e.g., to use 2PC-PA instead of 2PC-PC), one only needs to update
the description of the component which implements the protocol. This is done (stat-
ically) by modifying one line in the ADL description of the framework. This may
also be done at execution time (see [Rouvoy 2006] for details).

• Adapting the management of the participants to a transaction. This may be done
at two levels. One may first add new commands in the Synchronization Commands
components (each command is itself represented as a component, according to the
Command pattern). One may also replace the whole component Synchronization
Commands, in order to modify the type of the participants of a transaction (i.e.
the available commands). Both extensions are again performed by a simple, local,
modification of the ADL description.

• Adapting the transaction standard. As shown in 9.7.1, this is done by providing a
model for the new standard, together with a front end implemented as a new Façade
component.

In conclusion, the separation of concerns which guided the design of GoTM, together
with the systematic application of design patterns and the implementation techniques us-
ing micro-components achieve the goal of flexibility set up by the designers of GoTM.
Experience reported in [Rouvoy et al. 2006a, Rouvoy et al. 2006b] shows that these ben-
efits do not entail a significant performance overhead.

GoTM is described in [Rouvoy 2006, Rouvoy and Merle 2007]. It is available under an
open source LGPL license at [GoTM].

9.8. HISTORICAL NOTE 9-35

9.8 Historical Note

The notion of a transaction as a well-identified processing unit acting on a set of data was
empirically used in commercial exchanges, even before computers. With the advent of
databases in the late 1960s and early 1970s, this notion was embodied in the first transac-
tion processing monitors, such as CICS, developed by IBM. However, although atomicity
was identified as an important issue, no formal model existed, and the implementations
relied on empirical rules.

The first attempt at establishing a formal support for concurrency control is the land-
mark paper [Eswaran et al. 1976]. It lays the foundations of the theory of serializability,
which is still the base of today’s approach to concurrency control, and introduces two-
phase locking. Fault tolerance issues were also beginning to be investigated at that time
(see 11.10), and found their way into the database world. Thus [Gray 1978] introduces the
DO-UNDO-REDO and WAL (write-ahead logging) protocols. The ACID properties are
identified in the early 1980s (e.g., [Gray 1981]). An early survey on recovery techniques
is [Haerder and Reuter 1983]. All these notions were applied to the design of large scale
database management systems, among which System-R [Gray et al. 1981], which has been
extensively documented.

Distributed commitment, the key problem of distributed transaction processing, is
examined in [Gray 1978], which introduces two-phase commit (2PC). This stimulated re-
search on non-blocking protocols, first leading to three-phase commit (3PC) [Skeen 1981],
and later to other developments described further on.

The first distributed databases were developed in the early 1980s. R*
[Mohan et al. 1986] was a distributed extension of System-R. Other influential distributed
transactional systems include Camelot, later known as Encina [Eppinger et al. 1991] and
UNITS (Unix Transaction System), later known as Tuxedo [Andrade et al. 1996] Both
Encina and Tuxedo have evolved into products that are still in current use.

Transaction models relaxing the ACID rules (known as “advanced” models) were inves-
tigated in the 1980s. The most influential ones (9.5) are nested transactions [Moss 1985]
and sagas [Garćıa-Molina and Salem 1987].

In the early 1990s, considerable progress was made in the understanding of the fun-
damental aspects of distributed transactions. Non-blocking atomic commitment was an-
alyzed in detail [Babaoǧlu and Toueg 1993, Guerraoui and Schiper 1995] and its relation-
ship with consensus was clarified [Guerraoui 1995]. For recent advances in this area, see
[Gray and Lamport 2006].

The development of middleware platforms for distributed applications, which started
in the mid-1990s, called for advances in transactional middleware. After experience with
technical solutions has been gathered, the main effort was devoted to the elaboration of
standards. This work is still ongoing. “Advanced” transaction models, which are well
adapted to the constraints of long transactions, are finding their way into web services.

The mainstream research in the field of transactions has now shifted to transac-
tional memory, a mechanism using transactions to manage concurrent memory access,
a potential bottleneck for applications using multicore processors. Transactional mem-
ory may be implemented by hardware, by software, or by a combination of both. See
[Larus and Rajwar 2007] for a survey of this area.

9-36 CHAPTER 9. TRANSACTIONS

Historical sources for various aspects of transactions may be found in the historical
notes of [Gray and Reuter 1993]. A recent detailed historical account of transaction man-
agement is [Wang et al. 2008].

References

[Alonso et al. 2004] Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2004). Web Services.
Springer. 354 pp.

[Andrade et al. 1996] Andrade, J. M., Carges, M., Dwyer, T., and Felts, S. D. (1996). The Tuxedo
System: Software for Constructing and Managing Distributed Business Applications. Addison-
Wesley. 444 pp.

[Arntsen et al. 2008] Arntsen, A.-B., Mortensen, M., Karlsen, R., Andersen, A., and Munch-
Ellinsen, A. (2008). Flexible transaction processing in the Argos middleware. In Proceedings of
the 2008 EDBT Workshop on Software Engineering for Tailor-made Data Management, Nantes,
France, pages 12–17.

[Babaoǧlu and Toueg 1993] Babaoǧlu, Ö. and Toueg, S. (1993). Non-Blocking Atomic Commit-
ment. In Mullender, S., editor, Distributed Systems, pages 147–168. Addison-Wesley.

[Berenson et al. 1995] Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., and O’Neil, P.
(1995). A critique of ANSI SQL isolation levels. In SIGMOD’95: Proceedings of the 1995 ACM
SIGMOD International Conference on Management of Data, pages 1–10, New York, NY, USA.
ACM.

[Bernstein and Goodman 1981] Bernstein, P. A. and Goodman, N. (1981). Concurrency control
in distributed database systems. ACM Computing Surveys, 13(2):185–221.

[Bernstein et al. 1987] Bernstein, P. A., Hadzilacos, V., and Goodman, N. (1987). Concurrency
Control and Recovery in Database Systems. Addison-Wesley. 370 pp.

[Besancenot et al. 1997] Besancenot, J., Cart, M., Ferrié, J., Guerraoui, R., Pucheral, Ph., and
Traverson, B. (1997). Les systèmes transactionnels : concepts, normes et produits. Hermès. 416
pp.

[Courtois et al. 1971] Courtois, P. J., Heymans, F., and Parnas, D. L. (1971). Concurrent control
with “readers” and “writers”. Communications of the ACM, 14(10):667–668.

[Elmagarmid 1992] Elmagarmid, A. K., editor (1992). Database transaction models for advanced
applications. Morgan Kaufmann. 611 p.

[Eppinger et al. 1991] Eppinger, J. L., Mummert, L. B., and Spector, A. Z. (1991). Camelot and
Avalon: A Distributed Transaction Facility. Morgan Kaufmann.

[Erven et al. 2007] Erven, H., Hicker, G., Huemer, C., and Zapletal, M. (2007). The Web
Services-BusinessActivity-Initiator (WS-BA-I) Protocol: an Extension to the Web Services-
BusinessActivity Specification. In Proceedings of the 2007 IEEE International Conference on
Web Services (ICWS 2007), pages 216–224. IEEE Computer Society.

[Eswaran et al. 1976] Eswaran, K. P., Gray, J. N., Lorie, R. A., and Traiger, I. L. (1976). The
notions of consistency and predicate locks in a database system. Communications of the ACM,
19(11):624–633.

[Fekete et al. 2005] Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P., and Shasha, D. (2005). Mak-
ing snapshot isolation serializable. ACM Transactions on Database Systems, 30(2):492–528.

REFERENCES 9-37

[Franklin 2004] Franklin, M. J. (2004). Concurrency control and recovery. In Tucker, A. J., editor,
Computer Science Handbook, chapter 56. Chapman and Hall/CRC. 2nd ed., 2752 pp.

[Gamma et al. 1994] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns:
Elements of Reusable Object Oriented Software. Addison-Wesley. 416 pp.

[Garćıa-Molina and Salem 1987] Garćıa-Molina, H. and Salem, K. (1987). Sagas. In Dayal, U.
and Traiger, I. L., editors, SIGMOD’87: Proceedings of the 1987 ACM SIGMOD International
Conference on Management of Data, pages 249–259. ACM Press.

[GoTM] GoTM. The GoTM Project. http://gotm.objectweb.org/.

[Gray 1978] Gray, J. (1978). Notes on data base operating systems. In Operating Systems, An
Advanced Course, pages 393–481, London, UK. Springer-Verlag.

[Gray 1981] Gray, J. (1981). The transaction concepts: Virtues and limitations. In Proceedings
of the 31st International Conference on Very Large Data Bases (VLDB’05), pages 144–154.
Cannes, France, September 9–11 (invited paper).

[Gray and Lamport 2006] Gray, J. and Lamport, L. (2006). Consensus on transaction commit.
ACM Transactions on Database Systems, 31:133–160. ACM Press.

[Gray et al. 1981] Gray, J., McJones, P., Blasgen, M., Lindsay, B., Lorie, R., Price, T., Putzolu,
F., and Traiger, I. (1981). The recovery manager of the System-R database manager. ACM
Computing Surveys, 13(2):223–242.

[Gray and Reuter 1993] Gray, J. and Reuter, A. (1993). Transaction Processing: Concepts and
Techniques. Morgan Kaufmann. 1070 pp.

[Guerraoui 1995] Guerraoui, R. (1995). Revistiting the relationship between non-blocking atomic
commitment and consensus. In WDAG ’95: Proceedings of the 9th International Workshop on
Distributed Algorithms, pages 87–100, London, UK. Springer-Verlag.

[Guerraoui and Schiper 1995] Guerraoui, R. and Schiper, A. (1995). The decentralized non-
blocking atomic commitment protocol. In Proceedings of the 7th IEEE Symposium on Parallel
and Distributed Systems, pages 2–9.

[Haerder and Reuter 1983] Haerder, T. and Reuter, A. (1983). Principles of Transaction-Oriented
Database Recovery. ACM Computing Surveys, 15(4):287–317.

[Jajodia and Kerschberg 1997] Jajodia, S. and Kerschberg, L., editors (1997). Advanced Transac-
tion Models and Architectures. Kluwer. 400 p.

[JEE] JEE. Java Platform, Enterprise Edition. Sun Microsystems.
http://java.sun.com/javaee.

[Kandula 2007] Kandula (2007). The Apacha Kandula project. http://ws.apache.org/kandula/.

[Lampson and Sturgis 1979] Lampson, B. W. and Sturgis, H. E. (1979). Crash recovery in a
distributed data storage system. Technical report, Xerox PARC (unpublished), 25 pp. Partially
reproduced in: Distributed Systems – Architecture and Implementation, ed. Lampson, Paul, and
Siegert, Lecture Notes in Computer Science 105, Springer, 1981, pp. 246–265 and pp. 357–370.

[Larus and Rajwar 2007] Larus, J. R. and Rajwar, R. (2007). Transactional Memory. Morgan &
Claypool. 211 pp.

[Mohan et al. 1992] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., and Schwarz, P. (1992).
Aries: a transaction recovery method supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Transactions on Database Systems, 17(1):94–162.

9-38 CHAPTER 9. TRANSACTIONS

[Mohan et al. 1986] Mohan, C., Lindsay, B., and Obermarck, R. (1986). Transaction management
in the R* distributed database management system. ACM Transactions on Database Systems,
11(4):378–396.

[Moss 1985] Moss, J. E. B. (1985). Nested transactions: an approach to reliable distributed com-
puting. Massachusetts Institute of Technology, Cambridge, MA, USA. Based on the author’s
PhD thesis, 1981. 160 p.

[OASIS] OASIS. Organization for the Advancement of Structured Information Standards.
http://www.oasis-open.org/.

[OASIS WS-TX TC 2007a] OASIS WS-TX TC (2007a). Web Services Atomic Transaction Version
1.1. http://www.oasis-open.org/committees/tc home.php?wg abbrev=ws-tx.

[OASIS WS-TX TC 2007b] OASIS WS-TX TC (2007b). Web Services Business Activity Version
1.1. http://www.oasis-open.org/committees/tc home.php?wg abbrev=ws-tx.

[OASIS WS-TX TC 2007c] OASIS WS-TX TC (2007c). Web Services Coordination Version 1.1.
http://www.oasis-open.org/committees/tc home.php?wg abbrev=ws-tx.

[Obermarck 1982] Obermarck, R. (1982). Distributed deadlock detection algorithm. ACM Trans-
actions on Database Systems, 7(2):187–208.

[Papadimitriou 1979] Papadimitriou, C. H. (1979). The serializability of concurrent database up-
dates. Journal of the ACM, 26(4):631–653.

[Papadimitriou 1986] Papadimitriou, C. H. (1986). The Theory of Database Concurrency Control.
Computer Science Press.

[Raz 1992] Raz, Y. (1992). The principle of commitment ordering, or guaranteeing serializabil-
ity in a heterogeneous environment of multiple autonomous resource managers using atomic
commitment. In Proceedings of the 18th International Conference on Very Large Data Bases
(VLDB’92), pages 292–312, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Rosenkrantz et al. 1978] Rosenkrantz, D. J., Stearns, R. E., and Philip M. Lewis, I. (1978). Sys-
tem level concurrency control for distributed database systems. ACM Transactions on Database
Systems, 3(2):178–198.

[Rouvoy 2006] Rouvoy, R. (2006). Une démarche à granularité extrêmement fine pour la construc-
tion de canevas intergiciels hautement adaptables: application aux services de transactions. PhD
thesis, Université des Sciences et Technologies de Lille. 248 pp.

[Rouvoy and Merle 2003] Rouvoy, R. and Merle, Ph. (2003). Abstraction of transaction demarca-
tion in component-oriented platforms. In Proceedings of the 4th ACM/IFIP/USENIX Middle-
ware Conference (Middleware 2003), pages 305–323. LNCS 2672 (Springer).

[Rouvoy and Merle 2007] Rouvoy, R. and Merle, Ph. (2007). Using microcomponents and design
patterns to build evolutionary transaction services. Electronic Notes in Theoretical Computer
Science, 166:111–125. Proceedings of the ERCIM Working Group on Software Evolution (2006).

[Rouvoy et al. 2006a] Rouvoy, R., Serrano-Alvarado, P., and Merle, Ph. (2006a). A component-
based approach to compose transaction standards. In Software Composition, pages 114–130.
LNCS 4089 (Springer).

[Rouvoy et al. 2006b] Rouvoy, R., Serrano-Alvarado, P., and Merle, Ph. (2006b). Towards context-
aware transaction services. In Proceedings of the 6th IFIP Conference on Distributed Applications
and Interoperable Services (DAIS), pages 272–288. LNCS 4025 (Springer).

REFERENCES 9-39

[Serrano-Alvarado et al. 2005] Serrano-Alvarado, P., Rouvoy, R., and Merle, P. (2005). Self-
adaptive component-based transaction commit management. In ARM ’05: Proceedings of the
4th Workshop on Reflective and Adaptive Middleware Systems, New York, NY, USA. ACM.

[Skeen 1981] Skeen, D. (1981). Non-blocking commit protocols. In SIGMOD’81: Proceedings of
the 1981 ACM-SIGMOD International Conference on Management of Data, pages 133–142,
Orlando, FL, USA.

[Stearns et al. 1976] Stearns, R. E., Lewis, P. M., and Rosenkrantz, D. J. (1976). Concurrency
control in database systems. In Proceedings of the 17th Symposium on Foundations of Computer
Science (FOCS’76), pages 19–32, Houston, Texas, USA.

[Thomas 1979] Thomas, R. H. (1979). A majority consensus approach to concurrency control for
multiple copy databases. ACM Transactions on Database Systems, 4(2):180–209.

[W3C-WSA 2004] W3C-WSA (2004). W3C-WSA Group, Web Services Architecture.
http://www.w3.org/TR/ws-arch/.

[Wang et al. 2008] Wang, T., Vonk, J., Kratz, B., and Grefen, P. (2008). A survey on the history
of transaction management: from flat to grid transactions. Distributed and Parallel Databases,
23(3):235–270.

[Weikum and Vossen 2002] Weikum, G. and Vossen, G. (2002). Transactional Information Sys-
tems. Morgan Kaufmann. 853 pp.

[X-OPEN/DTP] X-OPEN/DTP. Distributed Transaction Processing. The Open Group.
http://www.opengroup.org/products/publications/catalog/tp.htm.

