Middleware Architecture with Patterns and Frameworks

(©2003-2009, Sacha Krakowiak (version of February 27, 2009 - 12:58)
Creative Commons license (http://creativecommons.org/licenses/by-nc-nd/3.0/)

Chapter 4

Communication

Middleware relies on an underlying communication service, usually at the transport level.
Providing communication services is also the main function of some middleware systems,
which supply a higher level communication interface to applications. This chapter presents
an architectural view of communication systems: how a communication system is con-
structed by combining more primitive ones, using uniform patterns. The main communi-
cation paradigms are first introduced, followed by a brief discussion of the main character-
istics of communication systems. Then comes an introduction to the internal organization
of a communication system, and a discussion of some underlying construction patterns.
The chapter concludes with a description of the communication framework of Jonathan,
an experimental open source communication toolkit, illustrated by simple use cases.

4.1 Introducing Communication Systems

In its simplest form, communication is the process of transmitting information between two
entities: a sender and a receiver. A more general form of communication (broadcast and
multicast), to be examined later, involves a sender and several receivers. In middleware
systems, senders and receivers are usually activities (processes or threads) executing in a
specified context (a machine, an application, an operating system, etc.).

The transmitted information is called a message; it may be as simple as a single bit
(the occurrence of an elementary state transition), or as complex as an elaborate flow of
data subject to timing constraints, such as a video stream.

Communication relies on a physical process whose interface is expressed in terms of
actions on some physical medium. At the application level, communication is more conve-
niently viewed as a service, whose interfaces include high-level communication primitives.
These interfaces may be specified in terms of messages, represented as data structures
defined in application-specific terms. They also may have a more abstract form, an exam-
ple of which is RPC (1.3), which encapsulates elementary message interchange within a
high-level communication interface.

A communication system is the combination of hardware and software that provides
a communication service to applications. In order to bridge the gap between the physical
and application levels, a communication system is usually organized as a set of layers

4-2 CHAPTER 4. COMMUNICATION

(2.2.1), in the form of a protocol stack. Each protocol specifies and implements the rules
that govern communication at a given level; it defines its own communication abstractions
and relies on the communication API provided by the lower level protocol in order to
implement its own service, down to the physical level. Thus, at each level, communication
may be seen as taking place over an abstract channel, which relies on (and hides) all the
protocol layers below that level. Protocols and protocol stacks are discussed in detail in
section 4.3.

At this stage, we only need to point out one aspect of this organization. A particu-
lar level may be chosen as the “base level” upon which more abstract upper layers are
developed.

sender receiver
sent sent i
high low, ime
sent (high) ¢ f delivered (Ell) (|) —»
upper upper sender
level level
sent (low) ¢ f received
base base
level level receiver 1
received delivered

Figure 4.1. A view of a layered communication architecture

We can then introduce the notion of delivery of a message (at the upper layer interface)
as distinct from its receipt (at the base layer interface). For example, the upper layer may
reorder messages, so that the order of delivery may differ from the order of receipt; or it
may drop duplicate messages. A similar distinction may be made at the sender end.

The base level and its interface are chosen to reflect the current interest: if the interest
is in middleware, then the base level is usually the transport interface; if the interest is in
the complete implementation of the transport protocol, then the base level may be chosen
as the physical interface.

In the rest of this section, we examine the main characteristics that define a commu-
nication service, introducing them progressively. We concentrate on specification, leaving
the architectural aspects for the next sections. The notions presented apply at any level
of the protocol stack: communication takes place over the abstract channel implemented
at that level.

We start with the simple case of an isolated message, assuming reliable transmission
(4.1.1). We then assume the occurrence of failures, and we consider the constraints implied
by multiple messages and multiple receivers (4.1.2). Other requirements (quality of service
and security) are examined in section 4.2.

4.1.1 Single Message, Reliable Channel

We consider the sending of a single message between one sender and one or more re-
ceivers, and we assume that the communication is reliable, i.e., the message is delivered
uncorrupted to all of the receivers.

4.1. INTRODUCING COMMUNICATION SYSTEMS 4-3

In order to characterize the properties of communication, we need a classification frame-
work. Various classification criteria have been proposed (e.g., [Tai and Rouvellou 2000],
[Tanenbaum and van Steen 2006, Chap. 2], and [Eugster et al. 2003]). The framework
that we propose borrows elements from these sources. It takes three aspects of communi-
cation into account.

1. Designation of receivers. The designation may be explicit, i.e., the receivers of a
message are directly designated by their names, or implicit, i.e., the set of receivers
is determined by some other criterion (which may depend on the contents of the
message). More details on multiple receivers are given in 4.1.2 and in Chapter 6.

2. Message persistence. The message may be transient, i.e., it is lost if no receiver is
ready to receive it, or persistent, i.e., the communication system keeps the message
until it is delivered to it receiver(s).

3. Synchronization. The communication may be blocking, i.e., the sender thread or
process is blocked until a response comes from the receiver (the nature of the response
is elaborated further below), or non-blocking, i.e., the sender continues execution after
the message has been sent!.

For each aspect, these options define different degrees of coupling between the sender
and the receiver, as summarized in Table 4.1.

Coupling strong weak
Designation explicit implicit
Persistence persistent transient
Synchronization blocking non-blocking

Table 4.1. Degree of coupling in communication

There may be additional variations within these main classes. For instance, block-
ing message sending may have three possible meanings, for a single receiver, in order of
increasing coupling: the sender is blocked until it receives notice that either a) the mes-
sage has been received on the receiver’s site; b) the message has been delivered to the
receiver; c¢) the message has been processed by the receiver (assuming an answer is actu-
ally expected). In the case of multiple receivers, there are many more combinations, from
the weakest (the message has been received on one receiver’s site) to the strongest (the
message has been processed by all receivers).

The strongest degree of coupling, for a single receiver, is represented by the combination
(explicit, persistent, blocking-c), in which a message is sent to a specified receiver, the
message persists until delivered, and the sender is blocked until the message has been
answered. The weakest coupling is (implicit, transient, non-blocking), in which a message
is sent to an unspecified set of receivers (the sender does not need to know the selection
criteria for receivers), the message is transient (it is lost if no receiver is ready) and the
sender continues execution after having sent the message.

'The terms synchronous (resp. asynchronous) are often used in place of blocking (resp. non-blocking).
However, these terms have multiple meanings, and we use them in another context (4.1.2).

4-4 CHAPTER 4. COMMUNICATION

Strong coupling tends to build a communication pattern close to that of centralized
computing. Examples of strongly coupled communication services are RPC (1.3) and the
various object invocation primitives described in Chapter 5. Weak coupling, by contrast,
tends to favor independence and late binding between sender an receivers. FExamples
of weakly coupled services are events, messages, and other coordination mechanisms de-
scribed in Chapter 6.

4.1.2 Multiple Receivers and Messages, Unreliable Channel

We now consider a more general situation, in which multiple senders and receivers com-
municate over a channel subject to failures. We identify three subproblems.

1. How to build a reliable channel on top of an unreliable one.
2. How to characterize the timing properties of communication.

3. How to specify the properties of communication involving multiple senders and re-
ceivers.

We discuss these points in turn.

Building a Reliable Channel

Messages may be corrupted or lost, due to three main causes: (i) transmission errors at
the physical level, due to noise or signal weakening; (ii) failures or overload conditions in
communication software (e.g., packet loss in overloaded routers); and (iii) accidental cuts
or disconnection, which break the physical connection between sender and receiver.

Fault tolerance mechanisms implemented at the lower levels of the protocol stack en-
sure that a message is delivered to its receiver as long as there exists a working physical
communication link between the sender and the receiver. These mechanisms are based on
redundancy, both in space (including additional bits in the message for error detection or
correction) and in time (resending a message if loss or corruption has been detected).

The global effect of these mechanisms is to provide a reliable channel. Consider two
processes, A and B, connected by such a channel; assume that A and B do not fail, and
that the physical connection between them is preserved (i.e., restored after a cut or a
disconnection). Then the following properties hold.

e If A sends a message m to B, then m will be delivered to B.

e A message m is delivered only once to a receiver B, and only if some process sent m
to B.

This essentially says that a message is eventually delivered unaltered to its receiver
and that the channel does not generate spurious messages or duplicate actual messages.
However, there may be no guarantee on the time needed to deliver the message. This is
the subject of the next subsection.

4.1. INTRODUCING COMMUNICATION SYSTEMS 4-5

Timing and Ordering Properties of Communication

A communication system is synchronous if there is a known upper bound on the trans-
mission time of an elementary message?. If no such bound is known, the system is asyn-
chronous. This property is essential in a distributed system, because it allows the use of
timeouts to detect the failure of a remote node, assuming the channel is reliable. In an
asynchronous system, it is impossible to distinguish a slow processor from a faulty one,
which leads to a number of impossibility results for distributed algorithms in the presence
of failures.

Unfortunately, most usual communication systems (e.g., the Internet) are asyn-
chronous, because they rely on shared resources (e.g., routers) on which the load is unpre-
dictable. In practice, many implementations of distributed algorithms use timeouts based
on an estimated upper bound for message transmission time, and then must deal with late
messages, which may arrive after the timeout.

Some applications have hard real-time constraints (i.e., a late message causes the ap-
plication to fail), and therefore require a guaranteed upper bound on transmission time.
This is usually achieved by resource reservation (see 4.2.1).

Some applications need to be aware of physical time. If the application is distributed,
the physical clocks of the different nodes must then be synchronized, i.e., the drift (time
difference) between the clocks at any two sites must be bounded. If the absolute time is
relevant, then the drift between any local clock and an external time reference (a time
server) must also be bounded. This is achieved by clock synchronization algorithms (see
e.g., [Coulouris et al. 2005], section 11.3).

Even if an application has no constraints related to physical time, the relative order
of events is important, since process synchronization is expressed by constraints on the
order of events. Events on a site may be ordered by dating them with a local clock. Event
ordering on different sites relies on communication, and is based on the causality principle:
for any message m sent from process A to process B, the event “sending m” on A precedes
the event “receiving m” on B. Based on this remark, one defines a system of logical clocks
(first introduced in [Lamport 1978]), which preserves this ordering property, as well as
local order on each site. These clocks capture a causal precedence relationship, noted —
(or happens before). For any two events e and €/, e — ¢’ means that e is a potential cause
of €/, while ¢ cannot be not a cause of e. More elaborate ordering systems have been
designed to capture causality more closely (see e.g., [Babaoglu and Marzullo 1993]). Thus
communication is a basic mechanism for event ordering in a distributed system.

Broadcast and Multicast

We now turn to the definition of communication involving multiple receivers. We start by
defining a process group as a set of related processes associated with a set of protocols for
managing group membership (e.g., joining or leaving the group, determining the current
composition of the group) and communication. The main motivations for process groups
are the following.

2When considering a distributed system (i.e., a set of processors connected by a communication system),
synchrony also implies that there is a known bound on the relative speed ratio of any two processors.

4-6 CHAPTER 4. COMMUNICATION

e Defining a set of processes that behave like a single (reliable) process, i.e., any process
of the group may replace another one if this latter fails. This implies that all the
members of the group have a consistent view of the system’s state.

e Defining a set of processes that share common privileges (e.g., for access to informa-
tion), and that may participate in collaborative work.

Two main operations are defined for group communication: broadcast and multicast.
Both involve a single sender an several receivers.

e In broadcast, the receivers are the processes that belong to a single set, implicitly
defined (e.g., the processes that are members of a specified group; all the processes
in the system). The sender is also a member of that set.

e In multicast, the receivers are the members or one or several process groups. These
groups may have common members. The sender may or not belong to the set of
receivers.

Process groups and group communication are examined in more detail in Chapter
11 (see 11.3.2, 11.4). Specific techniques for large scale broadcast are discussed in 11.4.4

A number of properties may be specified for group communication®. They essentially
deal with the behavior of the communication system in case of failures. Here we assume
that the group communication protocols are built over a reliable channel, and that the
processes may fail. We assume fail-stop failures, i.e., a process either behaves according
to its specification, or is stopped and does nothing (see 11.1.3). A correct process is one
that does not fail.

The weakest property is reliable delivery, also called “all or nothing”: if a message is
delivered to a correct process, then it is delivered to all correct processes. A broadcast or
multicast system that does not guarantee reliable delivery is not of much practical use.
For instance, if the members of a process group are used to update multiple copies of
a database, an unreliable broadcast protocol may cause inconsistency (divergent copies)
in case of failure, even if the relative order of updates is irrelevant. Reliable broadcast
can be implemented even if the underlying reliable channel is asynchronous (see e.g.,
[Hadzilacos and Toueg 1993]).

When several messages are issued by a sender, the order of delivery is a relevant
factor. We need to consider the order of delivery with respect to the order of sending,
and the relative order of delivery in the case of multiple receivers. We note sent(m) (resp.
delivered(m)) the event of sending (resp. delivering) message m.

FIFO delivery means that the messages are delivered to a receiver in the order in which
they have been sent. Causal delivery means that the order in which messages are delivered
respects causality, i.e., if sent(ml) — sent(m2), then delivered(ml) — delivered(m2).
FIFO delivery is also causal.

Atomic (or totally ordered) delivery means that for any two messages m1 and m2 that
have a set of common receivers, m1 and m2 are delivered in the same order to all of

3We only give an informal specification. An accurate and unambiguous specification of group commu-
nication properties is a delicate task, and is outside the scope of this discussion. See [Chockler et al. 2001].

4.2. APPLICATION REQUIREMENTS 4-7

these receivers. Note that the atomicity property is orthogonal to the causal and FIFO
properties (i.e., FIFO or causal delivery may or may not be atomic).

It is impossible to implement atomic broadcast or multicast (by a deterministic algo-
rithm) over an asynchronous communication system. The methods used in practice, based
on the notion of “imperfect” failure detectors, rely on timeouts and therefore need to relax
the asynchrony hypothesis (see Chapter 11).

Physical time constraints on message delivery are important in applications involving
control operations and multimedia transmission. These aspects are examined in 4.2.1.

The rest of this chapter is organized as follows. Section 4.2 gives an overview of two
application requirements: quality of service, availability, and security, and of their impact
on network protocols. Section 4.3 describes the organization of a communication system
as a protocol graph. Section 4.4 examines middleware and application-level protocols.
Section 4.5 describes frameworks for the construction of communication systems. A case
study of one such framework is presented in Section 4.6. Finally, Section 4.7 gives a brief
account of the history of communication systems.

4.2 Application Requirements

The range of services offered by the new networked applications is expanding, and these
services tend to pervade new areas of activity. As a consequence, service providers must
satisfy new requirements. Service specifications are expressed in a service level agreement
(see 2.1.3), to which the provider must comply. In order to do so, the application that
implements the service must in turn rely on predictable properties of the communication
infrastructure. We briefly examine three main classes of properties: performance (section
4.2.1), availability (section 4.2.2), and security (section 4.2.3).

4.2.1 Quality of Service

The applications that use a communication system may have specific requirements for
the performance of the communication service. These requirements take two main forms:
performance assurance, i.e., guarantees on the absolute value of some performance in-
dicators, or service differentiation, i.e., guarantees on the relative treatment of different
classes of applications. The general term Quality of Service (QoS) refers to the ability of
a communication system to provide such guarantees.

The Internet was initially designed for “traditional” applications, such as mail, file
transfer, remote login, etc., which do not have strict timing constraints. Its basic commu-
nication protocol, IP (4.3.2), provides best effort delivery, offers no performance guarantee,
and gives uniform treatment to all its traffic. The need for performance assurance stems
from the advent of time-critical applications, such as multimedia content delivery or real
time control. Service differentiation aims at giving a privileged treatment to some classes
of applications, whose users are willing to pay a higher price for a better service.

Performance assurance relies on resource allocation. An application that has specific
performance constraints must first define the corresponding resource requirements, and
then attempt to reserve resources. To this end, several reservation protocols are available;

4-8 CHAPTER 4. COMMUNICATION

they differ by the level of guarantees that they provide. Reservation protocols are easier to
implement on a private (e.g., company-wide) network than on the Internet, since resource
allocation is more readily controllable.

Differentiated services are achieved by dividing the traffic into a number of classes,
each of which is subject to specific constraints as regards its resource provisioning by the
network. Again, the firmness of the guarantees provided to each class depends on the
global resource allocation policy, and is easier to achieve on a network operated by a single
authority.

A detailed study of the architectures and mechanisms used to provide QoS guarantees
on the Internet may be found in [Wang 2001]. Application-level QoS is examined in
Chapter 12.

4.2.2 Availability

For a system (or an application) observed during a certain period, availability is the
fraction of the time the system is ready to provide its service. An increasing number of
activities demand an availability rate close to 100%. Availability depends on two factors:
the mean time between failures (a failure is an event that prevents the service from being
correctly delivered); and the mean time needed to restore the correct operation of the
application after a failure has occurred (see 11.1.1).

The probability of occurrence of failures may be reduced by various preventive mea-
sures, but it is a fact of experience that failures will occur in spite of all such measures.
Therefore a system must be designed to operate in the presence of failures. Redundancy is
the universal tool used to meet this goal. For a communication system, redundancy may
be achieved by several means (as seen in 4.1.2):

e By providing alternate paths from a source to a destination in a network.

e By requiring the recipient of a message to acknowledge receipt, so the message may
be resent if lost or corrupted. This implies that a sender must keep a copy of
unacknowledged messages, and must estimate an upper bound of the round trip
time for message transmission.

e By providing redundancy in the messages themselves, allowing a transmission error
to be detected or corrected.

Redundancy may be provided at several levels of the protocol hierarchy. According
to the “end to end principle” [Saltzer et al. 1984], mechanisms for recovery at the inter-
mediate levels are redundant with those provided at the application level and might be
eliminated. This assumes that failures at the lower levels are relatively infrequent, since
recovery at application level is more costly (e.g., retransmitting a whole file instead of
a single packet); in that case, the performance optimization provided by recovery at the
lower levels is marginal. The end to end principle is therefore less relevant in situations
where the failure rate is high (e.g., wireless communication), or recovery at the application
level has a high relative cost (e.g., broadcast).

Application-level availability is examined in Chapter 11.

4.3. COMMUNICATION SYSTEMS ARCHITECTURE 4-9

4.2.3 Security

Security is the quality of a system that allows it to resist attack by a malicious party.
Thus security related properties may only be defined by reference to the various classes of
attacks that the system should withstand.

Taking this approach, the following security properties may be identified for a commu-
nication system:

e (Confidentiality, i.e., resisting an attempt to obtain information that should be kept
secret. This information may be the contents of a message, the identity of the
communicating parties, and even the fact that two parties do communicate.

o Integrity, i.e., resisting an attempt to alter information. This may take many forms:
deleting messages, modifying the contents of legitimate messages, injecting spurious
messages, faking the identity of a legitimate party.

o Access protection, i.e., resisting an attempt to get access to a restricted service, e.g.,
a private network.

e Service preservation, i.e., resisting an attempt to deny access to communication
services to legitimate users. Service denial may again take several forms: flooding
the network or specific hosts with messages, penetrating communication equipment
and modifying its software.

Other properties may be derived from these: for example, authentification, ensuring
that a party (a person, an organization, a machine) is actually what it claims to be.
Authentification is used by algorithms that implement confidentiality, integrity and access
protection.

Consider a protocol that implements a communication channel at some level of the
hierarchy. Then one or more of the above security features may be implemented by a
protocol based on that level, making the channel secure, in a specific sense defined by the
set of selected features. All levels above that one now benefit from the security properties
of the secure channel.

In practice, secure channels are implemented at the application level, as each applica-
tion defines its own security requirements (another instance of the end to end principle).
However, security protocols have also been defined at the network level, and may become
common in future versions of the Internet.

Security in middleware is the subject of Chapter 13.

4.3 Communication Systems Architecture

In this section, we present an overview of the architecture of communication systems.
This is intended to be a summary, giving the application developer’s view, rather than a
detailed study of networking technology. We first introduce the notion of a protocol, and
then present the function and interfaces of the transport protocol, the base of the vast
majority of middleware systems.

4-10 CHAPTER 4. COMMUNICATION

4.3.1 Protocols and Layering

As explained in 4.1, a communication system is usually organized as a hierarchy of layers.
The term protocol refers to (a) a set of rules that apply to communication at a certain level
of the hierarchy; and (b) an implementation of such set of rules. Above the base level, a
protocol relies on the underlying protocols for its operation, using one of the variants of
the LAYERS pattern described in 2.2.1.

There are two views of a protocol.

e The external view (the user’s view), which defines the interface (API) that the pro-
tocol provides. At the current level, the interface specifies the available abstractions
(session, message, etc.), the available primitive operations (open, send, receive, etc.),
and the rules of usage (e.g., a session must be opened before a message may be
sent or received, etc.). A protocol may thus be seen as the definition of a specific
language.

e The internal view (the implementer’s view), which defines the internal operation of
the protocol, i.e., how its abstractions and operations are implemented in terms of
the APIs provided by the lower layers in the protocol stack.

At a given level, a user needs only be aware of the API and abstractions defined at
that level. The user’s view is that of a “horizontal” communication that takes place at the
current level. However (except at the physical communication level), this view is virtual:
actual communication involves the protocol layers below the current level. Typically, a
message sent is propagated down the hierarchy and ultimately transmitted at the physical
interface. At the receiving end, the message is propagated up the hierarchy, till the level
of the initial send. This is illustrated on Figure 4.2.

The processing of a message by a layer may involve adding some information in the
downward propagation phase (e.g., redundancy check for error detection or correction),
and removing this added information in the upward propagation phase after it has been
exploited. Thus a message sent up from a given level at the receiving end is identical to
the corresponding message that entered that level at the sending end.

wond R siea Site B =
interface /ﬁ /ﬁ
| level i level i
protocol « protocol —
\—) receive \—) receive
send interface interface
interface /ﬁ /ﬁ
— Ievu;:I i_ll <« level i1 4
RICIOCO protocol
- -
¢ Physical level f

Figure 4.2. Protocol layering

There is a fundamental difference between the send and receive operations: send is
usually synchronous, while receive is asynchronous, i.e., the receipt of a message triggers

4.3. COMMUNICATION SYSTEMS ARCHITECTURE 4-11

an asynchronous event. Thus the message flow in a layered communication system follows
the HALF SYNC, HALF ASYNC pattern (2.2.1). This pattern is illustrated by the example
presented in 4.6.1.

Communication between two users A and B may take two forms.

o (Connected. In order to exchange messages, A and B must first set up a session, i.e.,
a channel that provides send and receive primitives. A session usually guarantees
some properties, such as message ordering, reliable communication, and flow control.
After a session is closed, no further messages may be exchanged.

e (Connectionless. Messages may be exchanged without any preliminary operations.
Messages are independent of each other, and there is usually no support for message
ordering or quality of service.

These notions may be extended to communication involving more than two users.

At a given level, a number of different exchanges may take place at a given time
(e.g., a user may have started several sessions with different partners, and may also send
and receive messages in connectionless mode. Thus the lower levels must ensure message
multiplexing and demultiplexing, e.g., directing an incoming message to the right session
or to the right recipient.

A more general organization is that of a protocol graph, in which a protocol at level ¢
may use any protocol at a level j < ¢, and not only a protocol at level ¢ — 1. The graph is
thus acyclic, and protocols may be shared.

4.3.2 The Protocols of the Internet

The protocols used on the Internet illustrate the above notions. The Internet is an intercon-
nection of networks of various kinds and sizes, using a variety of physical communication
links. At the upper end, applications are organized in levels, and protocols carrying out
common functions are shared by several applications.

Web HTTP: HyperText Transfer Protocol
Services TFTP, FTP: (Trivial) File Transfer Protocol
TC: Transmission Control Protocol A
UDP: User Datagram Protocol :
SOAP IP: Internet Protocol !
application a Iiclation
specific N HTTP FTp || TFTP o
messages, transport
streams TCP UbP P
packets 1P network
frames link layer
bits Ethernet FDDI . physical

Figure 4.3. The Internet protocol stack

4-12 CHAPTER 4. COMMUNICATION

The key of the success of the Internet is the organization shown on Figure 4.3: a single
protocol, the Internet Protocol (IP) provides a common means for transferring packets
(fixed size chunks of bits) from one node to another one, regardless of the underlying
physical infrastructure and specific protocols. The level at which IP operates is called the
network level. At this level, the machines (or hosts) connected to the various networks are
designated by IP addresses, a naming scheme that uniquely identifies a (host, network)
pair. The networks are interconnected by communication devices called routers, which
implement the IP protocol by forwarding the packets to their destination. This forwarding
function is based on routing tables, which are periodically updated to reflect the current
traffic and link availability conditions.

At the next level up (the transport level), two protocols use IP to provide basic com-
munication facilities to applications. UDP (User Datagram Protocol) is a connectionless
protocol that allows single message exchange with no guarantees. TCP (Transmission
Control Protocol) is a connection-oriented protocol that allows the bidirectional transfer
of byte streams with order preservation, flow control, and fault tolerance capabilities.

TCP and UDP are called transport protocols. Contrary to IP, they are end to end
protocols, i.e., the intermediate nodes used for communication between two hosts are not
visible. End points for communication on each host are identified by port numbers; this
allows a host to be engaged in several different exchanges. In addition, port numbers are
used to identify a service on a server; fixed port numbers are allocated, by convention, to
the most common services, such as mail, telnet, ftp, etc.

Most applications use TCP and UDP through sockets, a common interface provided
by current operating systems (Figure 4.4).

Connection-based Connectionless
sockets interface sockets interface
TCP sockets UDP sockets
Connection-based Connectionless
transport interface transport interface
TCP UDP
IP
4 T N\

Figure 4.4. The transport interface

A socket is an end point of a two-way communication link set up between two processes,
which may run on the same machine or on different machines. A socket is associated with
a port number. There are two kinds of sockets: stream sockets (or TCP sockets), which
allow connection-oriented communication with character streams using TCP, and data-
gram sockets (or UDP sockets), which allow connectionless communication with messages
using UDP. Libraries and APIs for using sockets are available in common programming
languages, including C and Java.

Details on socket programming may be found in [Stevens et al. 2004]. The architecture
of the Internet is described in [Peterson and Davie 2003], [Kurose and Ross 2004].

4.4. MIDDLEWARE AND APPLICATION-LEVEL PROTOCOLS 4-13

4.4 Middleware and Application-level Protocols

Middleware, by its nature, consists of protocol stacks running at the application level. In
most cases, the base level of middleware protocols is the transport level, and the protocols
are implemented using the sockets interface. Examples of middleware protocols examined
further in this book are RTP (see 4.6.3) and GIOP /IIOP (see 5.3.1).

One particular way of implementing a middleware layer is by defining a new network on
top of an existing one, with additional properties. This is an instance of the virtualization
approach described in 2.2.1.

Such a virtual (or logical) network is called an overlay network. The term “overlay”
refers to the fact that the functions of the new network are implemented in a set of nodes
on the existing network, without interfering with the internal structure of that network.
Note that this principle is used at several levels in the Internet itself: for example, the
TCP transport layer is an overlay network built over the network (IP) layer, to provide
additional properties such as connection-oriented communication and flow control.

In this section, we briefly discuss the main uses and properties of overlay networks.
We then illustrate middleware or application-level protocols with the example of gossip
protocols, a class of algorithms that finds a number of applications in large scale networks.

4.4.1 Overlay Networks

Overlay networks have been used to implement a variety of functions, some of which are
listed below.

e Resilience. Resilience is the ability to continue operation in the presence of failures.
A resilient overlay network [Andersen et al. 2001] allows an application deployed on
a set of nodes to work in spite of failures of the underlying network. This is achieved
by detecting path failures and finding alternate routes.

o Experiments with new protocols and network architectures. This may be done at
various levels. For example, the MBone [Svetz et al. 1996] (now no longer used) has
been developed as an experimental overlay network to implement the IP Multicast
protocol before multicast-enabled routers were available. At a higher level, virtual
testbeds [Peterson et al. 2004] allow a set of overlay nodes to be multiplexed between
several concurrently running experiments.

e Application level multicast. Multicast may be implemented as an overlay network
at the host level: the member nodes directly cooperate to minimize message du-
plication. This approach contrasts with the above-mentioned IP Multicast, which
involves routers instead of hosts.

e Content delivery. The function of a content distribution network is to allow efficient
delivery of data stored on back-end servers, by caching the most frequently accessed
data on a set of widely distributed “surrogate” servers. A client wanting to access
a stored information is directed to the surrogate that will most likely minimize its
access time. This function of routing is done by an overlay network, whose nodes
maintain information on the current load and redirect the requests accordingly.

4-14

CHAPTER 4. COMMUNICATION

e Distributed structured storage for Peer to Peer networks. A Peer to Peer (P2P)

network is one in which all nodes are both clients and servers, and cooperate in an
autonomous, decentralized manner. Locating data in a P2P network may be achieved
by using a structured overlay network, i.e., one in which the location of a piece of
data is determined by a key derived from its contents. This amounts to building a
distributed hash table (DHT). Various organizations have been proposed for DHT's
[Stoica et al. 2003, Ratnasamy et al. 2001, Rowstron and Druschel 2001]. A refer-
ence framework for structured overlay networks is proposed in [Aberer et al. 2005].

Most existing overlay networks either implement a transport layer (i.e., they are built
on top of a network layer, usually IP), or an application-level layer (i.e., they are built on
top of a transport layer).

The advantages and drawbacks of overlay networks may be appreciated by comparing
two alternative ways of providing a given function to applications in a network: through
programs running on the nodes of an overlay network or through code in the routers. This
discussion is inspired from [Jannotti et al. 2000], to which we refer for further details.

An overlay network has the following benefits:

e [t is incrementally deployable: nodes may be added to the overlay network without

changing the existing infrastructure.

e It is adaptable, since its routing characteristics may be constantly optimized accord-

ing to the needs of the application.

e It is robust, since redundancy may be added (e.g., by providing at least two inde-

pendent paths between any two nodes), and since it has permanent control over its
state, so it may react immediately.

e It uses standard protocols, in contrast to solutions based on reprogramming the

routers

On the other hand, the designer of an overlay network is faced with the following
problems.

Management complexity. This is a general problem of distributed system admin-
istration (see Chapter 10); the manager of the network has to deal with a set of
physically remote nodes.

Security barriers. Many nodes of an actual network are behind firewalls or Net-
work Address Translators (NAT). This complicates the task of deploying an overlay
network.

Efficiency. An overlay network has a performance penalty with respect to an imple-
mentation based on code in the routers.

Information loss. This is the counterpart of virtualization. Since an overlay network
runs on top of IP or of a transport protocol, the actual topology of the underlying
network is not easily visible.

4.4. MIDDLEWARE AND APPLICATION-LEVEL PROTOCOLS 4-15

It is difficult to draw a uniform conclusion, since the trade-off between benefits and
defects must be appreciated for each single application. However, the ease of deployment
and adaptability of overlay networks makes them a major asset for experiments. In many
cases (e.g., if the size of the network is limited), the efficiency is acceptable, so that the
overlay network may be used as a long standing solution as well.

4.4.2 Gossip Protocols

Gossip (also called epidemic) protocols are a class of application-level communication
protocols based on probabilistic methods. Their main use is information dissemination in
a large scale, dynamically changing network, which makes them well suited for peer to
peer environments.

Gossip protocols are based on the paradigm of random propagation in a large popula-
tion, examples of which are the epidemic spread of a contagious disease or the propagation
of a rumor via gossip talk.

Consider the problem of multicasting a message to a given population of recipients
(e.g., nodes on a network). A gossip protocol works as follows. When a member of the
population receives the message, it forwards it to a randomly selected set of other members.
The initial sender starts the process in the same way. The process of random selection
is central in a gossip algorithm. In the standard version of the protocol, the subset of
recipients at each stage has a fixed size, called the fanout (noted f), and the members of
the subset are chosen with uniform probability among the whole population.

The above algorithm is a form of flooding, and a given member will likely receive
the same message several times. Since resources are finite, some bounds need to be set.
Therefore, additional parameters of the protocol are the buffer capacity (noted b) of a
member (i.e., the maximum number of messages that it may hold), and the number of times
(noted t) that a member propagates a given message (the cases t = 1 and ¢ unbounded
are known as “infect and die” and “infect forever”, respectively, with the epidemic disease
analogy).

A central question is the following: under which conditions will a gossip-based broad-
cast protocol approach the coverage of a deterministic one? Define an atomic broadcast
as one that reaches every member of the population. Let n be the size of the population.
Assuming that b, the buffer size, is unbounded, the proportion p of broadcasts that are
atomic (or the probability of a given broadcast to be atomic), is determined by the value
of t and f. It can be shown that, to maintain the value of p when n increases, either f
or t must increase as a function of n. As an example, suppose t = 1. Then the algorithm
exhibits a bimodal behavior when f varies for a fixed n: when f is less than log(n), the
proportion of atomic broadcasts is close to 0; when f > log(n), the proportion increases
with f, and reaches 1 for a high enough value of (typically 2log(n)).

Thus, gossip-based broadcast appears to be a powerful tool, with the advantages of
simplicity and independence on the topology of the network. The load for each participant
is moderate. Because of their highly redundant nature, gossip protocols tolerate node
failures. The random selection of receivers at each stage also makes them resistant to
transient network failures.

The actual situation is more complex than the above simple model. In particular:

4-16 CHAPTER 4. COMMUNICATION

e The population may change: members may enter or leave; they may experience
permanent or temporary failure.

e The uniform random selection of recipients at each stage of the propagation implicitly
assumes that each member knows the whole population. This is usually not the case,
specially in large, dynamic networks.

e The protocol relies on a correct operation of each member, and is therefore vulnerable
to attacks or misbehavior.

Various solutions exist to the random selection problem. Interestingly, many solutions
rely on gossip itself, as each node may propagate lists of nodes that it knows. In many cases,
the protocol relies on selection in a local cache, and it has been shown that this process
is roughly equivalent to that of a global selection. The robustness of gossip protocols to
failures and attacks, and ways to improve it, is surveyed in [Alvisi et al. 2007].

Applications of gossip protocols may be roughly divided in three classes [Birman 2007]:

e Information spreading. Examples are discussed in 6.3 (event dissemination) and
10.3.3 (multicast protocols).

e Anti-entropy, for reconciling differences in replicated data. This was one of the
earliest applications of gossip protocols [Demers et al. 1987].

e Protocols that compute aggregates, i.e., system-wide values (e.g., a mean) derived
from values collected from each member. See an example (observation) in 11.4.4 .

Gossip protocols are the subject of active research. A collection of recent articles
[Kermarrec and van Steen 2007a] gives a picture of some recent results and open questions.
In particular, [Kermarrec and van Steen 2007b] propose a general framework to describe
and classify gossip protocols and [Birman 2007] discusses the advantages, limitations, and
promises of gossip protocols.

4.5 Building a Communication System

In this section, we examine some architectural aspects of the process of building a com-
munication system. The approach that we describe is based on abstraction and modular
composition. Making explicit the structure of the communication system as an assembly
of parts has a number of advantages: conceptual elegance; flexibility, including dynamic
adaptation to changing operating conditions; provision of a testbed for alternative designs.
A potential drawback is the performance penalty imposed by crossing the boundaries be-
tween parts; however, optimization techniques allow this overhead to be reduced to an
acceptable level in most cases. A more detailed discussion of system composition may be
found in Chapter 7.

In 4.5.1, we briefly present the z-kernel, a framework that pioneered the area of a
modular approach to the construction of communication systems. In 4.5.2, we describe
more recent work, which exploits further progress in component-based models and building
tools.

4.5. BUILDING A COMMUNICATION SYSTEM 4-17

4.5.1 The xz-kernel, an Object-based Framework for Protocols

The z-kernel project [Hutchinson and Peterson 1991] has defined a systematic way of
building a communication system, using a generic framework.

The framework is object-oriented, i.e., the abstractions that it supports are represented
by objects (the notion of an object is defined in 2.2.2). The framework is based on
three main notions: protocols, sessions, and messages. As explained in 4.3.1, a protocol
defines an abstract channel through which messages may be sent. A session is a concrete
representation of such a channel: it exports the API that allows a user of the protocol to
send and receive messages. A given protocol may support a number of different sessions,
corresponding to different groups of participants.

The general organization of the framework is as follows. A protocol graph is initially
created, according to the specified protocol hierarchy; the arcs of the graph provide an
explicit representation of the links between the protocols. Each protocol then acts as
a session factory: it exports operations that allow sessions to be created and deleted
according to the communication needs of the participants. An example of a protocol
graph is shown on Figure 4.5

Figure 4.5. A protocol graph

A session represents a communication channel operating under a certain protocol, and
used by an application to exchange messages on a network. Like protocols, sessions are
organized in levels, and a number of sessions may be simultaneously operating under a
given protocol. At each level, a session provides an API through which messages may be
sent or received. A message sent by an application using a session is propagated downwards
in the protocol hierarchy, using an xPush operation at each session level. A message that
arrives at the receiving end of a session on a site is propagated upwards in the protocol
hierarchy, towards the application, using an xPop operation at each session level. The
xPush and xPop operations actually implement the communication algorithms at each
level of the protocol stack.

As explained in 4.3.1, send and receive are not symmetrical. A session is aware of the
sessions below it (because session creation is a top-down process), but not of the sessions
above it. Therefore a message propagating upwards needs to be demultiplexed, using the
xDemux operation of the protocol at the next level up, to be propagated to the right session
(or to the application, at the top level). This is done using a key present in the message.
This process is summarized on Figure 4.6, which shows a message being received in Session

4-18 CHAPTER 4. COMMUNICATION

1 and a message being sent in Session 2.

xPush
Sessiont Session2
level i level i
Protocol i)‘ xPop

xDemux

XPush y

Session2
level i-1

Session1
level i-1

Protocol i-1 xPop

xDemux

Figure 4.6. Message flow in the z-kernel

There are two approaches to organizing the processes in a communication system.

e Associating a process with each protocol: the send or receive operations are executed
by protocols, and the messages are passive data.

e Associating a process with each message: the process represents the flow of the
message across the protocol layers, and executes the send or receive operations as
the message moves down or up the hierarchy.

The organization of the z-kernel follows the latter model. This choice is motivated
by efficiency reasons: in the process-per-protocol model, crossing a layer in the protocol
hierarchy incurs the cost of a context switch, while in the process-per-message model the
cost is that, much lower, of a procedure call. The cost of process (or thread) creation may
be amortized by using pools.

A related approach is taken by the Scout system [Mosberger and Peterson 1996], in
which execution is organized in “paths” (sequences of processing units, or stages, at the
different protocol levels). Each path is run by a single thread.

The z-kernel has provided inspiration to a number of communication systems, among
which Jonathan (described in more detail in 4.6), Appia [Miranda et al. 2001], Horus
[van Renesse et al. 1996]. It is also the starting point of a more recent generation of
frameworks, described in the next section.

4.5.2 Component-based Frameworks for Protocols

After the early contribution of the z-kernel and related systems, the evolution of the area
of decomposition of network protocols has been influenced by two major trends:

e The transition from objects to components as a decomposition unit. In contrast
with objects, components put stress on architectural aspects (e.g., explicit specifi-
cation of required resources, explicit representation of structural relationships), and
preservation of the decomposition units at run time (see 7.1 for a detailed discussion).

4.5. BUILDING A COMMUNICATION SYSTEM 4-19

e The requirements for customization, flexibility, and dynamic adaptation of com-
munication protocols, imposed by the increased visibility of these protocols at the
application level (e.g., in the construction of overlay networks). There is a need for
a finer grain decomposition: while the composition units in the z-kernel are whole
protocols, recent frameworks allow a protocol itself to be decomposed in elementary
components.

Several benefits result from this approach (see [Condie et al. 2005] for a more de-
tailed discussion):

— Application-level protocols may have requirements that are not well met by the
existing standard transport protocols such as TCP. In that case, an application
may construct its own transport protocol by assembling predefined components,
leaving out unneeded functions. A variety of protocols may thus be assembled,
and components may be shared between protocols for economy.

— By preserving the component structure at run time, a protocol may be dy-
namically reconfigured to react to changing conditions such as overload or link
failure.

— By isolating the various functions of a protocol (such as congestion control, des-
tination choice, recovery from failure) in separate components, various combi-
nations of these functions may be implemented according to the needs, possibly
within a single application.

We illustrate the component-based organization of communication protocols with three
examples of experimental systems.

e (Click, a framework for the construction of routers.
e Dream, a framework for the construction of asynchronous middleware.
e SensorNet, a framework for the construction of sensor networks.

These systems share the objectives of economy, flexibility, and explicit architectural rep-
resentation, applied to various usage contexts.

The Click Modular Router

Click [Kohler et al. 2000] is a framework dedicated to the construction of configurable IP
routers. The main function of a router is to implement the IP protocol by forwarding
incoming packets to their appropriate next destination, which may be a host or another
router. In addition, a router often performs other functions, such as packet tunneling and
filtering, or implementing a firewall.

The objective of Click is to allow the program of a router to be easily configured and
adapted. To that end, a router is built as an assembly of packet processing modules
called elements. This assembly takes the form of a directed graph, whose edges represent
the connections between the elements. This graph is an explicit representation of the
architecture of the router.

4-20 CHAPTER 4. COMMUNICATION

Each element provides interface units called input and output ports, and a connection
links an input port to an output port. Packets are sent on the connection, from the
output port (source) to the input port (destination). There are two types of connections,
“push” and “pull”, according to whether the transfer of a packet is initiated by the source
element or the destination element, respectively. Likewise, the type of a port may be
defined (at router initialization time) as push, pull, or agnostic (i.e., neutral). An agnostic
port behaves as push or pull if connected to a port of the push or pull type, respectively.
The type of a connection is that of its ports. In addition to ports, an element may have a
procedural interface accessible to other elements.

Validity rules define correct router configurations: a push output or a pull input port
may not be the endpoint of more than one connection; a connection may not be set up
between a push and a pull port; if an element acts as a filter between two agnostic ports,
these ports must be used in the same way (push or pull). When the router is initialized,
the connections are checked for validity, and the ports that were initially agnostic are set
to the proper type according to the connections.

Contrary to the usual implementations of “ports”, Click ports do not have built-in
queues. A queue must be explicitly implemented as a Queue element, with a push input
port and a pull output port.

A Click configuration is described by a simple declarative language, which allows el-
ements and connections to be defined. Classes are defined for the usual elements, and
compound classes may be defined by composing existing classes. A configuration descrip-
tion is used by the Click kernel to create and to initialize a configuration.

[TT—f o

Queue

FromDevice_1

FromDevice_2

(a) Merging two input flows

=[]t =
Queue_1 i Scheduler

(b) Scheduling two input flows

Queue_2

Figure 4.7. Elementary constructions in Click

Figure 4.7 illustrates two elementary configurations in Click. Output ports are repre-
sented by rectangles, input ports by triangles; push ports are black, pull ports are white.
In configuration (a), packets coming from two devices are merged in a single flow, which
is directed to an input device through a queue. In configuration (b), two input flows are
input to a scheduler, which successively inputs packets from either flow according to its
policy, and sends them on its output port. Note that in (a) the order of the packets en-
tering the input device is determined by the order in which the packets are pushed into
the queue, whereas in (b) the order of packets in the output flow is determined by the

4.5. BUILDING A COMMUNICATION SYSTEM 4-21

scheduler.

Elements are the units of CPU scheduling: an element that needs CPU time (e.g.,
because its push or pull methods are called) enters a task queue. A single thread is used
to run this queue.

The Click framework has been used to construct actual IP routers. A typical router is
made of a few tens of elements, and is highly configurable. Adding extensions and redefin-
ing scheduling and routing policies involve adding or reordering a few elements. Experience
shows that the overhead due to the modular structure of the router is acceptable.

Dream: A Framework for Configurable Middleware

Dream [Leclercq et al. 2005] is a component-based framework dedicated to the construc-
tion of communication middleware. It provides a component library and a set of tools to
build, configure and deploy middleware implementing various communication paradigms:
group communication, message passing, event-reaction, publish-subscribe, etc. Dream
builds upon the Fractal component framework (see 7.6).

Dream inherits the advantages of Fractal, among which hierarchical composition with
component sharing, explicit definition of both provided and required interfaces, provision
of an extensible management interface, which allows fine-grained control on binding and
life-cycle at the component level.

Figure 4.8 shows the architecture of a simple Dream system (which is also a component,
by virtue of hierarchical composition).

management
| | | | interface
functional T T T T
interface
input [>—|:I> output
a shared —
subcomponent — component "_
binding
»l

Figure 4.8. System composition in Dream (from [Leclercq et al. 2005])

This figure illustrates the main aspects of composition in Dream: composite compo-
nents (i.e., components containing other components), component sharing, connections
(or bindings, in the Fractal terminology) between components. A binding may connect
a required interface to a provided one (for synchronous method call), or an output port
to an input port (for asynchronous message passing). Conformity rules (see 7.6) specify
compatibility between the interfaces and therefore define legal bindings.

In addition, Dream provides features that facilitate the construction of communication
systems:

e A component library, which contains components ensuring the functions most com-
monly fond in an asynchronous communication system, and components for man-

4-22 CHAPTER 4. COMMUNICATION

aging resources (e.g., memory chunks for message management and schedulers for
activity management).

e A specific type system, together with tools for type checking. The type system
allows the designer of a communication system to attach semantics to messages and
to components. The system guarantees that a “well formed” configuration (whose
components conform to their types) will not be subject to run time failures.

e Tools for deployment, based on a structural description of the architecture of a
system using an Architecture Description Language (ADL).

While the overall composition structure of Dream is close to that of Click, there are a
few important differences.

e The use of of a sound underlying component model, Fractal, provides an explicit,
well-structured, representation of the architecture, together with flexibility, including
run time reconfiguration.

e The Dream type system allows a rigorous specification of the semantics of a system,
and enables early detection of incorrect constructions.

e Dream provides flexible resource management facilities, which allow control over
quality of service.

Dream has been used for full size experiments, among which a reimplementation of Jo-
ram (Java Open Reliable Asynchronous Messaging), a JMS compliant, industrial strength,
open source middleware (6.8). This allows the Dream-based Joram to be easily reconfig-
ured, possibly at run time. This benefit comes with a negligible penalty (about 2 percent
in execution time and a fraction of a percent in memory footprint).

A Modular Network Layer for SensorNets

Wireless sensor networks, which are being developed for various applications, pose specific
communication problems: achieving efficient and reliable communication with the con-
straint of scarce resources and noisy, time varying links. One proposal [Culler et al. 2005,
Polastre et al. 2005] in response to these problems has been a unifying “narrow waist”
architecture inspired by that of the Internet, with a single protocol, SP (Sensornet Proto-
col) providing an abstract layer for building higher level protocols while allowing multiple
low-level protocols to coexist. SP differs from IP in two ways: it sits at an intermediate
level between the link and network layers (i.e., it allows multiple network-level layers);
and it does not impose a single format. Rather, it provides a set of services that abstract
properties of the link layer (such as MAC format) and allow resource sharing between
multiple link and network layer protocols operating simultaneously.

Building on SP, a modular network layer has been proposed [Ee et al. 2006], with the
objective of minimizing redundancy by sharing fine-grain elements between protocols.

To that end, a decomposition of the network layer has been proposed, which identifies
a “control plane” and a “data plane” (Figure 4.9). The data plane defines a data path
between a dispatcher to an output queue through a forwarding engine. The control plane

4.6. CASE STUDY: THE JONATHAN COMMUNICATION FRAMEWORK 4-23

controls the forwarding engine and the output queue, through two modules: the routing
engine and the routing topology. While the dispatcher and the output queue are unique,
multiple instances of the other components may coexist.

ﬂ Transport Layer A

Routing
Topology

[Dispahcherg[Forwarding Engine gﬂﬁlu;
[
1N}

Data Link Layer

Routing
Engine

Network Layer
|
|
7 “
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
Data plane Control plane

=—=> Dala packels == Control packets — Control info

Figure 4.9. Architecture of the Sensornet network layer (from [Ee et al. 2006])

The routing engine determines whether a packet should be forwarded, and, if that is
the case, its next hop. The routing topology module exchanges information with its peers
on other nodes to determine and to maintain the network topology. The forwarding engine
queries the routing engine to obtain the next hop to which a packet must be sent.

In the experiments reported in [Ee et al. 2006], various existing protocols have been
decomposed using specific instances of the basic elements described above. Experience
shows that the objective of code reuse is actually achieved, with significant gains in memory
occupation. As expected, there is a performance overhead with respect to a monolithic
architecture. This penalty is considered acceptable in the context of sensor nets.

Conclusion on Component-based Communication Frameworks

The three case studies briefly discussed above illustrate a common trend in component-
based communication systems, characterized by a search for common abstractions, an
emphasis on architectural description with explicit structure and composition rules, and
fine grain decomposition and sharing. The benefits are flexibility, adaptability, and econ-
omy (both conceptual and in terms of resources). There is a cost in terms of performance,
which may be mitigated in most cases. A further step would be to derive the structure of
the communication system from higher-level requirements. An example of research in this
direction is described in [Loo et al. 2005]

4.6 Case Study: the Jonathan Communication Framework

Jonathan [Dumant et al. 1998] is a set of frameworks for building Object Request Brokers
(ORBs). An overview of Jonathan, and a description of its binding framework, based
on the export-bind pattern, is presented in 3.4. Here we describe the communication
framework.

4-24 CHAPTER 4. COMMUNICATION

4.6.1 Principles of the Communication Framework

The Jonathan communication framework follows the general pattern introduced by the
xz-kernel and described in 4.5, i.e., a protocol graph whose base layer is at the transport
level, used through Java sockets. We are not concerned about the lower levels.

Sessions

The main communication abstraction provided by Jonathan is a session (4.5), which rep-
resents a communication channel. A session supplies an interface for sending and receiving
messages; actually two different interfaces (Session_Low and Session High) are respec-
tively provided for incoming and outgoing messages. In Jonathan, a protocol is essen-
tially a session manager: it creates sessions, acts as a naming and binding context for
these sessions, and provides them with communication resources. Like protocols, sessions
are organized in a hierarchy. At the lowest level, a session relies on a basic communica-
tion mechanism called a connection, which provides an interface to send and to receive
elementary messages (sequences of bytes). For instance, in the TCP-IP protocol suite, a
connection provides the IpConnection interface and encapsulates a socket.

The main communication primitives are message send and receive. As explained in
4.3.1, they operate in different ways, due to the asynchronous nature of receiving. A read
operation (implemented by a receive() method on a connection) blocks the executing
thread until data is available on the input channel associated with the connection. When
data becomes available (a message has arrived), the thread is unblocked, causing the
message to be passed up the protocol stack by calling the “lower” interfaces of the sessions,
in ascending order. On the other hand, an application process sends an outgoing message
by calling the “higher” interface provided by a session. The message is then sent down the
protocol stack by calling “higher” interfaces in descending order, down to the call of an
emit method on the connection. Figure 4.10 gives an overview of this mechanism, which
is described in further detail in Section 4.6.2.

outgoing @
message

send

Session_High

application

Session_Low
send

session

send
; : Session_Low
Session_High =
send
session
incoming
emit message

connection ooy

Figure 4.10. Sending and receiving messages

Sessions are set up according to the Jonathan binding framework. On the server side,
a protocol graph is first constructed by assembling elementary protocols. The protocol
graph is a naming context, which provides the export method. The exported interface

4.6. CASE STUDY: THE JONATHAN COMMUNICATION FRAMEWORK 4-25

(srv_itf) is the “lower” interface of a session (of type Session_Low), which provides the
functionality of the server. The export method returns a session identifier (a name for the
exported interface), which contains all the information needed to set up a communication
with the server (e.g..for TCP/IP, the IP address of the server and a port number). This
information may be transmitted over the network and decoded by a client.

In order to be able to access the interface exported by a server, a client must call
the bind method provided by a session identifier that designates the server, passing the
client application’s “lower” interface (clt_itf) as a parameter. The session identifier may
be obtained from the network (e.g., through a name service), or it may be constructed
locally using the server address and port number if these are known. The bind method
returns an interface session of type Session High, which may be used by the client to
call the server. Messages from the server are directed to the client application, through
the interface clt_itf provided as a parameter of the call to bind.

A general picture of the export-bind mechanism is outlined on Figure 4.11. Many
details are omitted; these are provided in Section 4.6.2.

session=cltsession_id.bind(clt_itf) srvsession_id=protocol_graph.export(serv_itf)
CltSession_id . SrvSession_id
[server host, port] Client [server host, port] Server
clt_itf Session_Low ProtocolGraph Session_Low serv_itf
H_}
session Session_High Session_High
created CltSession created SrvSession
by bind ‘ by export *
. N .
connection network connection

Figure 4.11. The export-bind pattern for session setup

Actual communication relies on two services: chunks and (un)marshallers, that are
provided, respectively, by the Jonathan resource library and the Jeremie presentation
library. We describe these services briefly.

e Chunks. A chunk represents a part of an array of bytes. Chunks are linked to form
messages that may be sent from an address space to another. Using chunks avoids
unnecessarily copying arrays of bytes, and helps recovering these arrays without
resorting to garbage collection (thanks to chunk factories).

e Marshallers and unmarshallers. Marshallers are used to convert typed data into
a standard serialized form suitable for transmission on a network. Unmarshallers
perform the reverse function. Thus a Marshaller is used as an abstract (i.e., net-
work independent) output device, whose interface provides methods to write data
of various types; likewise, an Unmarshaller acts as an abstract input device, whose
interface provides methods to read data of various types.

4-26 CHAPTER 4. COMMUNICATION

Typically, marshallers and unmarshallers are used as follows (this is a simplified ex-
ample).

Sending a message composed of an integer i followed by a 8-byte string str
followed by an object obj.

Session_High session ...
StdMarshallerFactory marshaller_factory ...

Marshaller m = marshaller_factory.newMarshaller();
marshaller.writeInt(i);
marshaller.writeString8(str);
marshaller.writeValue(obj);
session.send(marshaller);

Receiving the message sent by the above program sequence; the follow-
ing sequence is supposed to be part of a method having Unmarshaller
unmarshaller as a parameter.

i=unmarshaller.readInt();}
str=unmarshaller.writeString8() ;}
obj=unmarshaller.readValue();}
unmarshaller.close();}

Marshallers and unmarshallers are created by marshaller factories. A marshaller fac-
tory is usually provided in the bootstrap configuration of Jonathan (see the configuration
framework tutorial).

The Communication Infrastructure: Java Sockets

The first example (using Java sockets) does not involve Jonathan at all. It illustrates, at
a fairly low level, the export-bind pattern of interaction that is further expanded in the
following use cases. Consider a server that provides a service to a single client at a time
(multiple clients are considered later on). The server selects a port (port 3456 in this
example) and creates a server socket associated with that port. It then waits for client
connections by calling accept () on the socket. When a client connects to port 3456 (this
is done in the Socket constructor), accept () returns a new socket dedicated to exchanges
with the client. The original socket remains available for new connections (if we do not
create a new thread per client, only one client connection may be opened at a time).

Server

// create a new server socket associated with a specified port
server_socket = new ServerSocket (3456);

4.6. CASE STUDY: THE JONATHAN COMMUNICATION FRAMEWORK 4-27

// wait for client connections:~a ‘‘pseudo-export’’ operation
Socket socket = server_socket.accept();
// socket is now available for communication with client

Client

// connecting to server: a ‘‘pseudo-bind’’ operation

Socket socket = new Socket(hostname, 3456);
// socket is now available for communication with server

In effect, the accept () call in the server program is equivalent to our export primitive,
while the connect () implicitly called in the Socket constructor in the client program is
equivalent to our bind primitive.

Note that the binding process always relies on an information shared by the client and
the server (here, the host name and the port number). In the present case, this shared
information is hardwired in the code. More elaborate methods are introduced in further
examples.

The complete code of an example using this pattern (a simple echo server) may be
found in the Sun Java tutorial:

http://java.sun.com/docs/books/tutorial/networking/sockets/

4.6.2 The TCP-IP Protocol

In this section, we present the implementation of the TCP-IP communication protocol in
Jonathan. This is a typical example of the way communication frameworks are defined
and used in Jonathan.

Overview of the TCP-IP Framework

The libs.protocols.tcpip package implements the session level, together with the
“chunk provider” which allows a session to get input data from a connection. The
libs.resources.tcpip package implements the connection level. The session and con-
nection levels are described in the following sections.

The Session Level

Since sessions play a central part in the communication framework, it is important to
understand the interplay between sessions at different levels. We illustrate this by the
example of TCP-IP (Figure 4.12). The general pattern outlined on this figure applies both
on the client and on the server side. The main difference is that the server-side sessions
are typically created by export, while the client-side sessions are created by bind.

At the lower level, we have a Tcplp session, which essentially encapsulates a connection
to the network. It has two functions:

e to receive messages from the network and to pass them up to the upper level (“ap-
plication”) session;

4-28 CHAPTER 4. COMMUNICATION

——» method send (message)

[unmarshall message_in]
[process message_in, producing Application Session

Session_Low message_ouf] (Client or Server)

N —‘— [marshall message_out]
interface 3 sender . send (message_ou

T

method run () hIsI Tcplp Session
Session_High N (CltSession or SrvSession)

. . hls . send (message_in)
interface L

L—p method send (message)

method send (message;
{ ge) TcplpProtocol . this . send(...) ‘
1
t

connection . emit (...) |g
7

TcplpProtocol TeplpChunkProvider
| IPConnection
(encapsulates a socket)
network

Figure 4.12. Sessions in the TCP-IP Jonathan framework

e to implement an interface (called Session High) allowing the application session to
send messages through the network to its “sibling” application session (i.e., client to
server and server to client). In this sense, the Tcplp session acts as a surrogate to a
(remote) application session.

The Tcplp session has two slightly different forms (TcpIpProtocol.CltSession and
TcplpProtocol.SrvSession) on the client and server side.

At the upper level, we have an application session, which provides the client or server
functionality. The application session

e sends messages on the network by calling the send method provided by the Tcplp
session in its Session High interface.

e receives messages from a lower level session through the Session_Low interface that
it implements. However, there is no explicit receive operation; instead, the Tcplp
session delivers an incoming message to the application session by calling the send
method of that session’s Session Low interface.

It is important to emphasize the difference between the Session High and Session Low
interfaces (especially since both interfaces include a method called send, which may seem
confusing at first sight).

e Session High is used by the application session to send messages “downwards”.
If lower is a variable that designates a Tcplp session in the application session,
lower.send(message) sends a message down to the network (eventually to the re-
mote application session for which the Teplp session is a surrogate).

e Session Low is used by the Tcplp session to send messages “upwards”. If hls
(standing for “higher level session”) is the variable that designates an application

4.6. CASE STUDY: THE JONATHAN COMMUNICATION FRAMEWORK 4-29

session in the Tcplp session, hls.send(message) sends a (presumably incoming)
message up to the application session.

The classes ServerSession and ClientSession that implement the server and client
application sessions of the Echo application have the following general outline.

class ServerSession implements Session_Low{

ServerSession();
static MarshallerFactory marshaller_factory;
private int counter; //internal state of session

// the server method for accepting requests:
// - unmarshaller: the request message
// - sender: the local interface to the client

public void send(UnMarshaller unmarshaller, Session_High sender){
String theOutput = null;
String theInput = unmarshaller.readString8();
theOutput = counter + ":" + thelnput;
unmarshaller.close();
Marshaller marshaller = marshaller_factory.newMarshaller();
sender.prepare (marshaller);
marshaller.writeString8(thelOutput);
sender.send(marshaller);

class ClientSession implements Session_Low {
static MarshallerFactory marshaller_factory;
BufferedReader reader; // for terminal input by client
ClientSession(BufferedReader reader);
this.reader = reader;}

// the client method for accepting messages from server
// - unmarshaller: the message
// - session: the local interface to the server

public void send(UnMarshaller unmarshaller, Session_High session){
String fromServer,input;
System.out.print("Client: "); // prompting client
System.out.flush();
input = reader.readlLine();
Marshaller marshaller = marshaller_factory.newMarshaller();
session.prepare(marshaller);
marshaller.writeString8(input) ;
session.send(marshaller);
fromServer = unmarshaller.readString8(Q);
unmarshaller.close();

4-30 CHAPTER 4. COMMUNICATION

The actual programs include, in addition, provision for exception handling and for
nice termination of client sessions. They also contain provision for multiple clients, to be
explained later on (cf. Section 4.6.2).

Setting up sessions

The mechanism for session setup uses the binding framework based on the export-bind
pattern (3.3.2).

Both the server and the client start by an initial configuration phase and create an
instance of TcpIpProtocol. Then each side instantiates a session as follows.

e On the server side, an instance of ServerSession (the application session) is created.
Then, a protocol graph is created with a single node (the instance of TcpIpProtocol).
Finally, this graph exports the newly created application session: it creates an
instance of SrvSession, with the ServerSession instance as its higher level session,
and returns a session identifier that designates the exported session. Here is the
code sequence that does this:

Server:
// configuring the system: creating factories
// (described in the configuration tutorial)
// creating a protocol instance (a naming context for sessions)
TcpIpProtocol protocol =
new TcpIpProtocol(<parameters, to be described later>);

// creating and exporting a new session
Sessionldentifier session_id =
protocol.newProtocolGraph(port) .export (new ServerSession());
// if no port specified, selects an unused port

e On the client side, a new session identifier (participant) is created to designate
the remote server (In this version, we still assume that the name of the server host
and the server port are known by the client). An instance of ClientSession (the
application session) is created. Finally, the bind method is called on the participant
identifier: it creates a new instance of C1tSession, with the ClientSession instance
as its higher level session, and returns a session identifier that designates the exported
session. Here is the code sequence that does this:

Client:

// configuring the system: creating factories

// (described in the configuration tutorial)

// creating reader, getting server hostname and port

// creating a protocol instance (a naming context for sessions)
TcpIpProtocol protocol =

new TcpIpProtocol(<parameters, to be described later>);

// preparing for connection to server

4.6. CASE STUDY: THE JONATHAN COMMUNICATION FRAMEWORK 4-31

IpSessionldentifier participant =
protocol.newSessionIdentifier (hostname,port) ;

// creating client-side session and connecting to server
Session_High session = participant.bind (new ClientSession(reader)) ;
// session is now available for communication with server}

From this point on, the core of the program runs in the application programs, i.e., the
ClientSession and ServerSession classes, as described above.

The Connection Level

The interfaces provided by the session level abstract away (in the send methods) the low-
level message transmission mechanism. This mechanism is defined at the connection level
and (in the current implementation) relies on two classes: JConnectionMgr defines generic
mechanisms for using socket-based connections, and IPv4ConnectionFactory provides a
specific implementation of these mechanisms. The main abstraction at this level is the
connection (instance of IpConnection), which encapsulates a socket.

For completeness, we now give a summary explanation of the mechanisms for mes-
sage input. Recall that CltSession and SrvSession are the client and server incar-
nations, respectively, of the generic Tcplp session described above (in the code, both
classes derive from a common abstract class, TcpIpProtocol.Session). This class ex-
tends Runnable, i.e., its instances are executed as independent threads activated by
a run() method, which is called when a message is received. This is done through
the TcpIpProtocol.TcpChunkProvider class, which encapsulates a socket input stream
(through an IpConnection), and delivers messages as “chunks” (a Chunk is the abstrac-
tion provided by Jonathan to efficiently use data of variable length). This class has two
main methods, prepare() and close(), which are respectively called as a prelude and
postlude of all input operations performed through an Unmarshaller on the input stream.
A TcpChunkProvider contains a data cache,which is used as follows.

e prepare() delivers the contents of the cache (if not empty) and attempts to read
further data into the cache from the underlying connection(the input stream);

e close() is used to close the chunk provider if it is no longer used; if the cache is
not empty, the session thread is reactivated, so the session may read the remaining
data.

Thus the chunk provider effectively acts as a data pump that injects incoming messages
into the Tcplp session, which in turn sends them to the upper level application session.

Putting it all together

We now describe in detail the internal workings of the export-bind operations. An
overview of these operations is given in Figure 4.13 which gives a more detailed picture of
the process outlined on Figure 4.11.

Calling the export method on ProtocolGraph has the following effect (sl, cl, etc.
refer to the tags that designate the server and client operations on Figure 4.13).

4-32

CHAPTER 4. COMMUNICATION

ProtocolGraph e?e"s’;’;:“ irgs
CltSessionldentifier export --¥ <. 53 (new) l
(identifies remote L, N

host and port) P

participant " ClientSession ServerSession SrvSes.;,i\on\Id

bind ---» < S bind returns

PR NNt i
€2.” f c5 (run) ?\ e I " session T I

oA ;
/ 4 SrvSession
i TeplpProtocol O CltSession

s1h
\

i . TcplpProtocol
s5 1 Q
Y I e (new)\, 8 (run) p4 ' e I h
\ o < 4 1 /’
)} (it o~ Y / ¥
wait for - .
JConnectionMgr :" connect)]_ & JConnectionMgr
N H '
\\c3 (new) i N v s2 (new)
N ! ! RS S lat
by c4 (connect) ! SrvSessionFactory l s6 (accept) S g:rr;‘;arzsolt:k:ts)

(encapsulates i;’ . (encapsulates Pt

client socket) T T a6 socket socket) ll _n;;v— " TcplpSrvConnectionFactory
. connection is set up .
IpConnection IpConnection
b) client-side session setup a) server-side session setup

Figure 4.13. Creating client and server sessions

The newSrvConnectionFactory(port) method is called on JConnectionMgr (sl).
This creates a new instance of a TcpIpSrvConnectionFactory (s2), which encapsu-
lates a server socket bound to the port provided as parameter (if 0, an available port
is selected).

A new instance (session_id) of SrvSessionId is created (s3); it contains the host
name of the server and the port number of the server socket.

A new instance of SrvSessionFactory is created (s4); it has references to
session_id, to the exported ServerSession and to the TcpIpProtocol.

A new thread is started to execute the run() method of the SrvSessionFactory.
The first action of this method is to create a new instance of SrvSession (s5).

The newConnection method is called on the TcpIpSrvConnectionFactory. This
method actually calls an accept() on the underlying server socket (s6). This is a
blocking call. The server now waits for a connect () operation from a client.

When connect () is called from a client (see client description below, step c4), a new
socket is created and connected to the client socket (s7-c6).

A new thread is created to execute the run() method of SrvSession (s8). This
in turns starts reading messages from the socket, as explained in the description of
connections.

Calling the bind method on CltSessionIdentifier has the following effect.

e A new instance of CltSession is created (cl).

e The newCltConnection method is called on JConnectionMgr (c2). This cre-

ates a new socket (c3), encapsulated in a Connection, an implementation of the
IpConnection interface.

4.6. CASE STUDY: THE JONATHAN COMMUNICATION FRAMEWORK 4-33

e The socket tries to connect () to the remote server, whose hostname and port number
are included in the CltSessionIdentifier (c4).

e Finally, a new thread is created to execute the run() method of CltSession (c5).
This in turns starts reading messages from the socket, as explained in the description
of connections.

Serving multiple clients

Two patterns may be used for serving multiple clients, according to whether the server
maintains a common state shared by all clients or a distinct state for each client.

Multiple connections with shared state. The mechanism described above allows several
clients to connect to a single server, through the connection factory mechanism. If a new
client binds to the server, a new connection is created (using the socket accept mech-
anism), as well as a new SrvSession instance encapsulating this connection, together
with a new thread. However, there is still a unique application session (ServerSession) ,
whose state is shared between all clients (Figure 4.14). This is illustrated in the example
programs by adding state to the application session, in the form of an integer variable
counter that is incremented after each client call. Multiple clients see a single instance
on this variable.

SR

ServerSession
(shared state)

A A

SrvSession
Bad Q
new run
WS)
\
(wait for \ -
connect)]_ ‘ TcplpSrvConnectionFactory ‘
‘:-:{.:;__ accept
SrvSessionFactory C PR e server socket)

(encapsulates
socket)

IpConnection
client 1
client 2
client 3

Figure 4.14. Multiple clients sharing a session state

If the application needs a per-client session state, then it is necessary to explicitly
manage multiple sessions at the application level. This is done in the following example.

Multiple connections with private state In this example, each client is associated with
a distinct application-level session that maintains the client’s own version of the state (in
this case, the counter variable). This is achieved, on the server side by an instance of

4-34 CHAPTER 4. COMMUNICATION

SrvProtocol, which has two functions: it acts as a factory that creates a new instance of
the client session, OwnSession, when a new client connects; it acts as a demultiplexer that
forwards the incoming messages to the appropriate OwnSession according to the identity
of the sender. The factory is implemented as a hash table that contains an entry per
session. The body of the application (in this case, the incrementation of the counter) is
implemented by OwnSession.

SrvProtocol

OwnSession
(private state)

creates OwnSessions
demultiplexes messages

‘ TcplpSrvConnectionFactory ‘

et i accept

7
\
(wait for M
connect) N
/ i - ': (encapsulates
. Pk server socket
SrvSessionFactory .-t)

““new

(encapsulates
socket)

IpConnection
client 1
client 2
client 3

Figure 4.15. Multiple clients, with a server session per client

The client side is identical to that of the previous application.

4.6.3 Other Communication Protocols

In this section, we examine the implementation in Jonathan of two other protocols: the IP
Multicast Protocol and the Real Time Protocol (RTP). These implementations conform
to the export-bind pattern as described in Section 4.6.1, with local variations. Then we
present the Event Channel use case, which combines both protocols. A brief presentation
of the GIOP protocol may be found in 5.5.1.

The IP Multicast Protocol

As defined in IETF RFC 1112, “IP multicasting is the transmission of an IP datagram to a
“host group”, a set of zero or more hosts identified by a single IP destination address”. IP
addresses starting with 1110 (i.e., 224.0.0.1 to 239.255.255.255) are reserved for multicast.
Groups are dynamic, i.e., a host may join or leave a group at any time; a host may be a
member of several groups. A host need not be a member of a group to send a message to
that group.

A particular class of Java sockets, java.net.MulticastSocket, is used in Jonathan as
the base layer for implementing IP Multicast. A multicast socket s may subscribe to a host
group g by executing s.joinGroup(g) and unsubscribe by executing s.leaveGroup(g).

4.6. CASE STUDY: THE JONATHAN COMMUNICATION FRAMEWORK 4-35

In order to send a message msg to a group g, a datagram must first be created by
DatagramPacket d = new DatagramPacket(msg, msg.length, g, port), where port
is the port to which socket s is bound. The datagram is then sent by executing s.send(d).

The Jonathan MulticastIpProtocol class manages MulticastIpSession sessions.
Each session is dedicated to a (IP Multicast address, port) network endpoint. A
session may optionally be associated with an upper level session. In that case, it may
send and receive messages, and a per session thread is used to wait for incoming messages.
Otherwise, the session is only used to send messages.

In the TP Multicast protocol, there are no separate client and server roles; there-
fore there is no need to separate protocol graphs (which export servers) from ses-
sion identifiers (which are used by clients to bind to servers). A single data
structure, MulticastIpSessionIdentifier, is used for both functions (it implements
SessionIdentifier and ProtocolGraph and thus provides both export and bind).

The sessions managed by this protocols are instances of class MulticastIpSession,
which essentially provides two methods, send and run. In the current implementation,
a single thread is created with each instance and waits on the multicast socket. The
constructor is as follows:

MulticastIpSession(MulticastIpSessionIdentifier sid,
Session_Low prev_protocol) throws IOException {
socket=new MulticastSocket(sid.port());
socket. joinGroup(sid.InetAddress());
this.sid=sid;
this.prev_protocol=prev_protocol;
if (prev_protocol!=null) {
reader =new Thread(this);
cont = true;
reader.start();
}
}

The reader threads executes the run() method which is a loop with the following
overall structure (exceptions not shown):

while (true) {
socket.receive(packet); \\ a DatagramPacket
extract message from packet
send message to upper session, i.e., prev_protocol;

}
The send(message) method does essentially this:

encapsulate message into a DatagramPacket packet;
socket.send(packet) ;

A MulticastIpSessionIdentifier contains three fields: address, port, and
session. As explained above, the export and bind methods are very similar. Both
create a new socket with an associated session. They only differ by the type of the re-
turned value (an identifier for export, a session for bind); in addition, export needs to
supply an upper level interface.

4-36 CHAPTER 4. COMMUNICATION

118 public SessionIdentifier export(Session_Low hls) throws JonathanException {
119 if (hls != null) {

120 try {

121 session = new MulticastIpSession(this,hls);

122 return this;

123 } catch (IOException e) {

124 throw new ExportException(e);

125 }

126 } else {

127 throw new ExportException("MulticastIpSessionIdentifier: no protocol low interface specif
128 }

129 }

135 public Session_High bind(Session_Low hls) throws JonathanException {

136 try {

137 return new MulticastIpSession(this,hls);

138 } catch (IOException e) {

139 throw new org.objectweb. jonathan.apis.binding.BindException(e);
140 b

141 }

As shown above, this creates a multicast socket using the port associated with the
identifier, and spawns the reader thread if an upper (receiving) interface (hls) is provided
(if not, the socket is only used for sending and does not need a waiting thread).

The RTP Protocol

RTP (Real-time Transport Protocol) is the Internet standard protocol for the transport
of real-time data, including audio and video. RTP works on top of an existing transport
protocol (usually UDP) and is designed to be independent of that protocol. RTP is
composed of a real-time transport protocol (RTP proper), and of an RTP control protocol,
RTCP, which monitors the quality of service.

Jonathan provides a partial implementation, RTPProtocol, of the RTP protocol (not
including RTCP). RTP packets have a 12 byte header (defined by the RTPHeader class),
which includes such information as sequence number and timestamp.

RTPProtocol provides the usual export and bind operations to its users:

e export(Session Low hls) is borne by a protocol graph built over the underlying
protocol, and is called by a client providing hls interface for receiving messages.
It returns a new RTPSessionIdentifier, which identifies an RTP session. It also
creates a receiving front end for the hls interface, in the form of a decoder, an
instance of the internal class RTPDecoder. The decoder extracts the header from an
incoming message and forwards the message to the upper level interface (here hls).

e bind(Session Low client) is borne by an RTPSessionIdentifier. Its effect is
to bind client to a new RTPDecoder (for receiving messages), and to return a
coder implementing the Session High interface for sending messages. This coder
(an instance of the internal class RTPCoder) allows the client to prepare a header

4.6. CASE STUDY: THE JONATHAN COMMUNICATION FRAMEWORK 4-37

to be prepended to an outgoing message, incrementing the sequence number and
timestamp as needed.

Use Case: Event Channel

Introduction An event channel is a communication channel on which two types of
entities may be connected: event sources and event consumers. When a source produces
an event, in the form of a message, this message is delivered to all the consumers connected
to the channel. The channel itself may be regarded as both an event source and consumer:
it consumes events from the sources and delivers them to the consumers.

Two communication patterns may be used:

e the “push” pattern, in which events are pushed by the sources into the channel,
which in turn pushes them into the consumers;

e the “pull” pattern, in which events are explicitly requested (pulled) by the consumers
from the channel, which in turn tries to pull them from a source (this operation may
block until events are produced).

In this example, we use the push pattern. The interface provided by the channel to
event sources is that of a representative (a proxy) of the interface provided by the event
consumers (Figure 4.16). Particular implementations of the event channel may provide
specific guarantees for message delivery, in terms of reliability, ordering, or timeliness.

consumer
Source Consumer

proxy_consumer

Event channel

Consumer) \ Consumer

consumer consumer

Figure 4.16. An event channel based on the “push” pattern

Jonathan provides two implementations of a simple event channel, using a CORBA
implementation (David, see 5.5) and a Java RMI implementation (Jeremie, see 5.4), re-
spectively. Both rely on the same binder and event model; they essentially differ by the
communication protocol. This presentation is based on the Jeremie version of the event
channel.

The event channel provides the following interface, which defines the methods needed
by event sources and consumers to connect to the channel using the “push” pattern:

public interface EventChannel extends java.rmi.Remote { // for use by RMI

4-38 CHAPTER 4. COMMUNICATION

void addConsumer (Object consumer)

throws JonathanException; // adds a new consumer to the event channel
void removeConsumer (Object consumer)

throws JonathanException; // removes a consumer (will no longer receive events)
Object getConsumerProxy ()

throws JonathanException; // returns a consumer proxy to be used by a source

Event channels are built by event channel factories. Class EventChannelFactory pro-
vides, among others, the following method:

public EventChannel newEventChannel (String address, int port, String type)
throws JonathanException

which creates a new event channel built on the supplied host address and port. It also
provides a class that implements the EventChannel interface defined above.

Using an Event Channel Like in the “Hello World” case described in the binding
tutorial, a name server (in Jeremie, a registry) is used to register event channels. In this
example, an event source creates the channel, registers it under a symbolic name of the
form <//<registry host><channel name>>, and starts producing events. A prospective
consumer retrieves a channel from the name server using its symbolic name, and subscribes
to the channel; it then starts receiving messages transmitted on this channel.

The core of the main method of NewsSource, the program for event sources, is:

EventChannel channel;

EventChannelFactory channelFactory =
EventChannelFactoryFactory.newEventChannelFactory(NewsSource.class) ;

channel=channelFactory.newEventChannel (address,port, "NewsChannel") ;

Naming.rebind("//"+args[3]+"/"+args[2], channel); // //<registry host><channel name>

System.out.println("Ready...");

NewsTicker ticker=(NewsTicker)channel.getConsumerProxy() ;
NewsSource producer=new NewsSource(ticker);
producer.produce();// produce is the event generator method of NewSource class

// it includes a call to the NewsTicker method: ticker.latestNews

The core of the main method of NewsConsumer, the program for event consumers, is:

System.setSecurityManager (new RMISecurityManager()) ;
channelName=args[0] ;
EventChannel channel=
(EventChannel) Naming.lookup("//" + args[1] + "/" + channelName);
if (channel==null) {
System.err.println("Channel "+ channelName + " not found");
System.exit(1);
}

channel .addConsumer (new NewsConsumer()) ;

4.6. CASE STUDY: THE JONATHAN COMMUNICATION FRAMEWORK 4-39

The NewsTicker interface shared by source and consumer classes consists of the method
latestNews (String msgs[]) activated when an event is produced. This method is im-
plemented in the NewsConsumer class; it simply displays the incoming messages on the
screen:

public void latestNews(String msgs[]) {
for(int i=0;i<msgs.length;i++)
System.out.println(msgs[i]);

Event Channel Implementation The implementation of the event channel relies on
two components that closely interact: the event channel factory, EventChannelFactory,
and the event binder, EBinder. The role of the factory is to deliver implementations of
the EventChannel interface, both in the form of actual instances and in the form of stubs.
The role of the binder is to provide an interface allowing both sources and consumers to
connect to an event channel. The current implementation is hardwired to work with the
RTP protocol on top of the IP Multicast protocol.

EBinder provides a specific class of identifiers, EIds. An EId designates an event
channel built on a particular IP address and port number used by the underlying IP
Multicast protocol. The two main methods are getProtocolGraph() and bind(), which
are used as follows:

e An event source that needs to connect to an event channel designated by EId
channel_id executes channel_id.bind (), which returns a (Session High) session
on which the source will send events.

e An event consumer that needs to connect to an event channel designated
by EId channel_id executes EBinder.bindConsumer (consumer, channel_id),
where consumer is the (Session_Low) interface provided by the consumer to receive
events (note that this is a “push” interface, including a method send). bindConsumer
is implemented as follows:

ProtocolGraph protocol_graph = channel_id.getProtocolGraph();
protocol_graph.export (consumer) ;

The usual export-bind pattern is again used here; getProtocolGraph() returns the
protocol graph of the underlying RTP protocol, itself relying on IP Multicast; bind ()
returns a stub, created by a stub factory using the underlying RTP session.

An EventChannelFactory is created by an EventChannelFactoryFactory, which as-
sociates it with an EBinder. It implements special instances of stubs and skeletons targeted
towards one-way invocation, and provides a specific implementation of EventChannel, that
works as follows.

An instance of EventChannel is created by the constructor:

289 EventChannellImpl(String address, int port, String type,

290 EventChannelFactory binder) throws JonathanException <{
291 id=(EBinder.EId)binder.getEBinder() .newId(address,port,type);
292 SessionIdentifier ep=id.getSessionIdentifier();

4-40 CHAPTER 4. COMMUNICATION

293 Context hints = JContextFactory.instance.newContext();

294 hints.addElement ("interface_type",String.class,type, (char) 0);
295 proxy=binder.newStub(ep,new Identifier[] {id}, hints);

296 hints.release();

297 this.binder=binder;

298 }

On line 291, a new EId is created by the EBinder, with the given address and port.
On line 292, a new session is associated with this EId, using the underlying RTP and IP
Multicast protocols. Finally, a proxy (stub) is created using this session. This proxy is
ready to be delivered to any source willing to send events to the channel, through the
following method:

328 public Object getConsumerProxy() throws JonathanException {
329 return proxy;
330 }

A consumer connects to the event channel by calling the following method:

301 public void addConsumer (Object consumer) throws JonathanException {
302 a: if (binder==null) {

303 if (proxy instanceof StdStub) {

304 Identifier[] ids =

305 ((JRMIRef) ((StdStub) proxy).getRef()).getIdentifiers();
306 Object cid;

307 for (int i = 0; i < ids.length; i++) {

308 cid = ids[i];

309 while (cid instanceof Identifier) {

310 if (cid instanceof EBinder.EId) {

311 id = (EBinder.EId) cid;

312 binder = (EventChannelFactory) id.getContext();
313 break a;

314 } else {

315 cid = ((Identifier) cid).resolve();

316 }

317 }

318 }

319 }

320 throw new BindException("Unbound channel");

321 }

322 binder.getEBinder () .bindConsumer (new OneWaySkeleton(consumer),id);
323 }

The key operation here is on line 322: the consumer builds a skeleton that will act
as an event receiver interface for it, then binds that skeleton to the event channel using
the bindConsumer method of the EBinder, as described above. Lines 302 to 321 illustrate
another (classical) situation in the binding process: if the factory associated with the
channel is not known (e.g., because the event channel reference has been sent over the
network), the method tries to retrieve it using one of the identifiers associated with the
stub, by iteratively resolving the identifier chain until the factory (binder) is found, or
until the search fails.

4.7. HISTORICAL NOTE 4-41

4.6.4 Conclusion

Jonathan is based on the ideas introduced by the z-kernel, but improves on the following
aspects:

e [t follows a systematic approach to naming and binding through the use of the
export-bind pattern (3.3.33.3.3)

e It is based on an object-oriented language (Java); the objects defined in the frame-
work are represented by Java objects.

The aspects related to deployment and configuration have not been described.
Jonathan uses configuration files, which allow a configuration description to be separated
from the code of the implementation.

Although Jonathan itself is no longer in use, its main design principles have been
adopted by Carol [Carol 2005], an open source framework that provides a common base
for building Remote Method Invocation (RMI) implementations (5.4).

4.7 Historical Note

Communication systems cover a wide area, and a discussion of their history is well outside
the scope of this book. In accordance with our general approach, we restrict our interest
to networking systems (the infrastructure upon which middleware is built), and we briefly
examine their evolution from an architectural point of view.

Although dedicated networks existed before this period, interest in networking started
in the mid 1960s (packet switching techniques were developed in the early 1960s and the
first nodes of the ARPAnet were deployed in 1969). The notion of a protocol (then called
a “message protocol”) was already present at that time, as a systematic approach to the
problem of interconnecting heterogeneous computers.

As the use of networks was developing, the need for standards for the interconnection
of heterogeneous computers was recognized. In 1977, the International Standards Orga-
nization (ISO) started work that led to the proposal of the 7-layer OSI reference model
[Zimmermann 1980]. By that time, however, the main protocols of the future global In-
ternet (IP, TCP, and UDP) were already in wide use, and became the de facto standards,
while the OSI model essentially remained a common conceptual framework.

The Internet underwent a major evolution in the mid-1980s, in response to the increase
in the number of its nodes: the introduction of the Domain Name System (DNS), and the
extension of TCP to achieve congestion control. A brief history of the Internet, written
by its main actors, may be found in [Leiner et al. 2003].

The 1990s were marked by important changes. The advent of the World Wide Web
opened the Internet to a wide audience and led the way to a variety of distributed ap-
plications. At about the same time, the first object-based middleware systems appeared,
stressing the importance of application-level protocols. New applications imposed more
stringent requirements on the communication protocols, both on the functional aspects
(e.g., multicast, totally ordered broadcast) and on quality of service (performance, relia-
bility, security).

4-42 CHAPTER 4. COMMUNICATION

In the 2000s, two main trends are visible: the development of new usages of the Internet,
exemplified by overlay networks (e.g., [Andersen et al. 2001]) for various functions, from
content distribution to peer to peer systems; and the rise of wireless communications
[Stallings 2005], which generates new forms of access to the Internet, but also wholly new
application areas such as sensor networks [Zhao and Guibas 2004] or spontaneous ad hoc
networks. Both trends are leading to a reassessment of the basic services provided by the
Internet (whose main transport protocols are still basically those developed in the 1980s)
and to the search for new architectural patterns, of which the SensorNet research (4.5.2)
is a typical example. Peer to peer and ad hoc networks call for new application-level
protocols, such as gossip-based algorithms [Kermarrec and van Steen 2007a).

On the architecture front, the z-kernel [Hutchinson and Peterson 1991,
Abbott and Peterson 1993] and related systems opened the way to a systematic ap-
proach to the modular design of communication protocols. Initially based on objects in
the 1990s, this approach followed the transition from objects to components and is now
applied to the new above-mentioned applications areas. The trend towards fine-grain
protocol decomposition (as illustrated in 4.5.2) is imposed both by economy of resource
usage and by the search for increased adaptability and customization. The strive for a
balance between abstraction and efficiency, an everlasting concern, is still present under
new forms.

References

[Abbott and Peterson 1993] Abbott, M. B. and Peterson, L. L. (1993). A language-based approach
to protocol implementation. IEEE/ACM Transactions on Networking, 1(1):4-19.

[Aberer et al. 2005] Aberer, K., Alima, L. O., Ghodsi, A., Girdzijauskas, S., Hauswirth, M., and
Haridi, S. (2005). The essence of P2P: A reference architecture for overlay networks. In Proceed-
ings of 5th IEEE International Conference on Peer-to-Peer Computing, pages 11-20, Konstanz,
Germany.

[Alvisi et al. 2007] Alvisi, L., Doumen, J., Guerraoui, R., Koldehofe, B., Li, H., van Renesse, R.,
and Tredan, G. (2007). How robust are gossip-based communication protocols? ACM SIGOPS
Operating Systems Review, Special Issue on Gossip-Based Networking, pages 14-18.

[Andersen et al. 2001] Andersen, D. G., Balakrishnan, H., Kaashoek, M. F., and Morris, R. (2001).
Resilient Overlay Networks. In Proceedings of the Fighteenth ACM Symposium on Operating
Systems Principles (SOSP’01), Banff, Canada.

[Babaoglu and Marzullo 1993] Babaoglu, O. and Marzullo, K. (1993). Consistent Global States
of Distributed Systems: Fundamental Concepts and Mechanisms. In Mullender, S., editor,
Distributed Systems, pages 55-96. Addison-Wesley.

[Birman 2007] Birman, K. (2007). How robust are gossip-based communication protocols? ACM
SIGOPS Operating Systems Review, Special Issue on Gossip-Based Networking, pages 8—13.

[Carol 2005] Carol (2005). Common Architecture for RMI ObjectWeb Layer. The ObjectWeb
Consortium. http://carol.objectweb.org.

[Chockler et al. 2001] Chockler, G. V., Keidar, I., and Vitenberg, R. (2001). Group Communica-
tion Specifications: a Comprehensive Study. ACM Computing Surveys, 33(4):427-469.

[Condie et al. 2005] Condie, T., Hellerstein, J. M., Maniatis, P., Rhea, S., and Roscoe, T. (2005).
Finally, a use for componentized transport protocols. In Proceedings of the Fourth Workshop on
Hot Topics in Networks (HotNets IV), College Park, MD, USA.

REFERENCES 4-43

[Coulouris et al. 2005] Coulouris, G., Dollimore, J., and Kindberg, T. (2005). Distributed Systems -
Concepts and Design. Addison-Wesley, 4th edition. 928 pp.

[Culler et al. 2005] Culler, D., Dutta, P., Ee, C. T., Fonseca, R., Hui, J., Levis, P., Polastre, J.,
Shenker, S., Stoica, I., Tolle, G., and Zhao, J. (2005). Towards a Sensor Network Architecture:
Lowering the Waistline. In Proceedings of the Tenth International Workshop on Hot Topics in
Operating Systems (HotOS X), Santa Fe, NM, USA.

[Demers et al. 1987] Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis,
H., Swinehart, D., and Terry, D. (1987). Epidemic algorithms for replicated database mainte-

nance. In Proceedings of the Sizth ACM Symposium on Principles of Distributed Computing
(PODC ’87), pages 1-12, New York, NY, USA. ACM.

[Dumant et al. 1998] Dumant, B., Horn, F., Tran, F. D.; and Stefani, J.-B. (1998). Jonathan: an
Open Distributed Processing Environment in Java. In Davies, R., Raymond, K., and Seitz, J.,
editors, Proceedings of Middleware’98: IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing, pages 175-190, The Lake District, UK. Springer.

[Ee et al. 2006] Ee, C. T., Fonseca, R., Kim, S., Moon, D., Tavakoli, A., Culler, D., Shenker,
S., and Stoica, I. (2006). A modular network layer for sensornets. In Proceedings of the Sev-
enth Symposium on Operating Systems Design and Implementation (OSDI’06), pages 249-262,
Seattle, WA, USA.

[Eugster et al. 2003] Eugster, P. Th., Felber, P., Guerraoui, R., and Kermarrec, A.-M. (2003). The
Many Faces of Publish/Subscribe. ACM Computing Surveys, 35(2):114-131.

[Hadzilacos and Toueg 1993] Hadzilacos, V. and Toueg, S. (1993). Fault-Tolerant Broadcasts and
Related Problems. In Mullender, S., editor, Distributed Systems, pages 97-168. Addison-Wesley.

[Hutchinson and Peterson 1991] Hutchinson, N. C. and Peterson, L. L. (1991). The 2-Kernel: An
architecture for implementing network protocols. IEEFE Transactions on Software Engineering,
17(1):64-76.

[Jannotti et al. 2000] Jannotti, J., Gifford, D. K., Johnson, K. L., Kaashoek, M. F., and O’Toole,
Jr.; J. W. (2000). Overcast: Reliable multicasting with an overlay network. In Proceedings of the

Fourth Symposium on Operating Systems Design and Implementation (OSDI), pages 197212,
San Diego, CA, USA.

[Kermarrec and van Steen 2007a] Kermarrec, A.-M. and van Steen, M., editors (2007a). Gossip-
Based Computer Networking, volume 41(5), Special Topic of ACM Operating Systems Review.

[Kermarrec and van Steen 2007b] Kermarrec, A.-M. and van Steen, M. (2007b). Gossiping in
distributed systems. ACM SIGOPS Operating Systems Review, Special Issue on Gossip-Based
Networking, pages 2-7.

[Kohler et al. 2000] Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kaashoek, M. F. (2000).
The Click modular router. ACM Transactions on Computer Systems, 18(3):263-297.

[Kurose and Ross 2004] Kurose, J. F. and Ross, K. W. (2004). Computer Networking: A Top-
Down Approach Featuring the Internet, 2nd ed. Addison-Wesley.

[Lamport 1978] Lamport, L. (1978). Time, Clocks, and the Ordering of Events in a Distributed
System. Communications of the ACM, 21(7):558-56.

[Leclercq et al. 2005] Leclercq, M., Quéma, V., and Stefani, J.-B. (2005). DREAM: a Component
Framework for the Construction of Resource-Aware, Configurable MOMs. [EEE Distributed
Systems Online, 6(9).

4-44 CHAPTER 4. COMMUNICATION

[Leiner et al. 2003] Leiner, B. M., Cerf, V. G., Clark, D. D., Kahn, R. E., Kleinrock, L., Lynch,
D. C., Postel, J., Roberts, L. G., and Wolff, S. (2003). A Brief History of the Internet. The
Internet Society. http://www.isoc.org/internet /history/brief.shtml.

[Loo et al. 2005] Loo, B., Condie, T., Hellerstein, J., Maniatis, P., Roscoe, T., and Stoica, I. (2005).
Implementing declarative overlays. In Proceedings of the 20th ACM Symposium on Operating
System Principles (SOSP’05), pages 75-90, Brighton, UK.

[Miranda et al. 2001] Miranda, H., Pinto, A., and Rodrigues, L. (2001). Appia: A flexible protocol
kernel supporting multiple coordinated channels. In Proc. 21st International conference on
Distributed Computing Systems (ICDCS’01), pages 707-710, Phoenix, Arizona, USA. IEEE
Computer Society.

[Mosberger and Peterson 1996] Mosberger, D. and Peterson, L. L. (1996). Making paths explicit
in the Scout operating system. In Operating Systems Design and Implementation (OSDI’96),
pages 153-167.

[Peterson et al. 2004] Peterson, L., Shenker, S., and Turner, J. (2004). Overcoming the Internet
impasse through virtualization. In Third Workshop on Hot Topics in Networking (HotNets-1II),
San Diego, CA.

[Peterson and Davie 2003] Peterson, L. L. and Davie, B. S. (2003). Computer Networks — a Sys-
tems Approach. Morgan Kaufmann, 3rd edition. 815 pp.

[Polastre et al. 2005] Polastre, J., Hui, J., Levis, P., Zhao, J., Culler, D., Shenker, S., and Stoica,
I. (2005). A unifying link abstraction for wireless sensor networks. In Proceedings of the Third
ACM Conference on Embedded Networked Sensor Systems (SenSys).

[Ratnasamy et al. 2001] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker., S.
(2001). A scalable content-addressable network. In Proceedings of the ACM SIGCOMM Sym-
posium on Communication, Architecture, and Protocols, pages 161-172, San Diego, CA, USA.

[Rowstron and Druschel 2001] Rowstron, A. and Druschel, P. (2001). Pastry: Scalable, decentral-
ized object location and routing for large-scale peer-to-peer systems. In IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms (Middleware), pages 329-350, Heidelberg,
Germany.

[Saltzer et al. 1984] Saltzer, J. H., Reed, D. P., and Clark, D. D. (1984). End-to-end arguments
in system design. ACM Transactions on Computer Systems, 2(4):277-288.

[Stallings 2005] Stallings, W. (2005). Wireless Communications & Networks. Prentice Hall, 2nd
edition.

[Stevens et al. 2004] Stevens, W. R., Fenner, B., and Rudoff, A. M. (2004). Uniz Network Pro-
gramming, vol. 1. Addison-Wesley.

[Stoica et al. 2003] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M., Dabek,
F., and Balakrishnan, H. (2003). Chord: a scalable peer-to-peer lookup protocol for Internet
applications. IEEE/ACM Transactions on Networking, 11(1):17-32.

[Svetz et al. 1996] Svetz, K., Randall, N., and Lepage, Y. (1996). MBone: Multicasting Tomor-
rows’s Internet. IDG Books Worldwide. Online at http://www.savetz.com/mbone/.

[Tai and Rouvellou 2000] Tai, S. and Rouvellou, I. (2000). Strategies for integrating messaging and
distributed object transactions. In Sventek, J. and Coulson, G., editors, Middleware 2000, Pro-
ceedings IFIP/ACM International Conference on Distributed Systems Platforms, volume 1795
of Lecture Notes in Computer Science, pages 308-330. Springer-Verlag.

REFERENCES 4-45

[Tanenbaum and van Steen 2006] Tanenbaum, A. S. and van Steen, M. (2006). Distributed Sys-
tems: Principles and Paradigms. Prentice Hall, 2nd edition. 686 pp.

[van Renesse et al. 1996] van Renesse, R., Birman, K. P., and Malffeis, S. (1996). Horus: a flexible
group communication system. Communications of the ACM, 39(4):76-83.

[Wang 2001] Wang, Z. (2001). Internet QoS. Morgan Kaufmann. 240 pp.

[Zhao and Guibas 2004] Zhao, F. and Guibas, L. (2004). Wireless Sensor Networks: An Informa-
tion Processing Approach. Morgan Kaufmann.

[Zimmermann 1980] Zimmermann, H. (1980). OSI Reference Model-The ISO Model of Architec-
ture for Open Systems Interconnection. IEEE Transactions on Communications, 28(4):425-432.

