
Persistent Shared Object Support in the Guide System: 
Evaluation & Related Work 

Daniel Hagimont *, P.-Y. Chevalier i A. Freyssinet, 
S. Krakowiak, S. Lacourte, J. Mossi&re, X. Rousset de Pina 

Bull-IMAG/Systdmes, 2 au. de Vignate, 38610 Gibes - France 
Internet: Daniel.Hagimont@imag.fr 

Abstract 

The purpose of the Guide project is to explore the 
use of shared objects for communication in a dis- 
tributed system, especially for applications that re- 
quire cooperative work. Since 1986, two prototypes 
have been implemented respectively on top of Unix 
(Guide-l) and Mach 3.0 (Guide-2). They have been 
used for the development of distributed cooperative 
applications, allowing us to validate or reject many 
design choices in the system. 

This paper gathers the lessons learned from our 
experience and compares the basic design choices 
with those in other distributed object-oriented sys- 
tems. The lessons may be summarized as fol- 
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lows. This system layer must provide a generic 
interface for the support of several object-oriented 
languages. It must manage fine grained objects 
and enforce protection between objects and pro- 
cesses. These requirements can be achieved with 
an acceptable trade-off between protection and ef- 
ficiency. 

1 Introduction 

Support for cooperative distributed applications is 
an important direction of computer systems re- 
search, involving developments in operating sys- 
tems as well as in programming languages and 
databases. One emerging model for the support 
of cooperative distributed applications is that of a 
distributed shared universe organized as a set of 
objects. In this paper, we report on our experience 
in designing, implementing, and using a system to 
support such a model. 

The main requirements for the class of applica- 
tions that we consider may be summarized as fol- 
lows. The system should provide access to shared 
information, with a fine granularity. Sharing may 
be concurrent, which involves fine-grained access 
synchronization and selective protection. The sys- 
tem should provide location-transparent long term 
storage. In addition, we are interested in systems 
that provide support for programming languages; 
the primary requirement here is related to persis- 
tence. 

We have selected an information structuring 
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model based on shared objects. Objects are pas- 
sive, i.e. active agents (processes or threads) are 
defined independently from objects. Every object 
is potentially persistent, i.e. its life span is unre- 
lated to that of the process or application in which 
it was created. Every resource or abstract entity 
is represented by an object, and all communica- 
tion between processes takes place through shared 
objects. Variations of this model have been ex- 
plored in several projects (e.g. Emerald [Black86]). 
Its main benefits are abstraction, modularity and 
reusability. 

Our research effort has been done in two phases. 
We started by building a prototype of an object 
support system (Guide-l), based on Unixr, and 
tuned to the needs of one specific language, also de- 
signed by our group. The experience gained from 
the use of this system was used to design a generic 
object support subsystem (Guide-2), developed on 
the Mach 3.0 micro-kernel [Acetta86]. 

The contributions of this paper are the following: 

 we present the implementation principles of 
object support in the Guide system, 

 we compare our approach with related work, 

 we gather the experience and the lessons 
learned. 

The next section presents an overview of the 
Guide project, including the motivations for each 
prototype implementation. Section 3 describes the 
design, implementation and lessons learned of the 
Guide sytem. It focusses on the object model, ob- 
ject management, object naming, object binding 
and object protection. We summarize and conclude 
in section 4. 

2 Overview of the Guide project 

The Guide project started in 1986 with the goal 
to experiment with the support of object-oriented 

‘Unix is a trademark of UNIX Systems Laboratories, Inc. 

languages at the system level for the development 
of cooperative distributed applications. 

As a first experience in shared object support, we 
designed and implemented the Guide-l prototype. 
This work was carried out from 1986 to 1990. Two 
basic design choices underlie the implementation of 
the Guide-l prototype: 

 First, the system was tuned to the needs of a 
single language. Defining our own language, 
rather than extending an existing language 
with the required facilities for concurrency, 
persistence, and distribution, provided the 
freedom of design required in an exploratory 
project. The Guide language has strong, static 
typing; this allows protection to be based on 
checking by a compiler. Types (interface de- 
scriptions) are distinct from classes (instance 
generators); a type may be implemented by 
several different classes. More details on the 
language can be found in [KrakowiakSO]. 

 Second, the Unix system was used for the im- 
plementation of this prototype. Actually, Unix 
was not chosen for its features regarding the 
Guide requirements, but rather for its ade- 
quacy for rapidly developing a platform for our 
experiments. 

After four years of efforts (1986 to 1990), a com- 
piler for the Guide object-oriented language and 
a runtime for this compiler were developed. This 
runtime provided object sharing and object per- 
sistence with distribution of naming, storage and 
execution. 

This platform allowed the development of full 
scale applications such as a distributed diary, a 
system for document circulation [Cahill93a], a di- 
rectory service, and a distributed cooperative ed- 
itor [Decouchant93]. It was also used to address 
some other problems such as garbage collection 
[Nguyen911 or concurrent application debugging 
[ Jamrozik931. 

However, Unix was found to be inadequate for 
the support of the Guide system, especially for the 
management of object sharing. Moreover, some 
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critical problems were poorly or not addressed in 
this first implementation: 

 Method call was not efficient in Guide-l. 

 Even if the Guide language was highly appre- 
ciated by its users, we felt the necessity to sup- 
port the most used object-oriented language, 
i.e. C++. 

 In Guide-l, object encapsulation was enforced 
by the Guide compiler and based on strong 
typing. If the system is intended to support 
untrusted compilers (such as a C f + one), then 
the system must be in charge of object isola- 
tion enforcement. 

 A system that allows object sharing must pro- 
vide mechanisms for access control. Such fa- 
cilities were not provided in the Guide-l pro- 
totype. 

Therefore, we began in the fall of 1990 the design 
of a new prototype (called Guide-2) on the Mach 
micro-kernel, based on the experience gained from 
the first implementation. 

At this time, this second implementation (1990 
to 1993) has been completed. The Guide-2 sys- 
tem is running on the Mach3.0 micro-kernel2 on a 
network of 486 PCs. The runtime implemented by 
this kernel provides the support required both for 
the Guide language compiler and for a C++ com- 
piler in which objects are persistent and may be 
shared between the execution structures. Object 
addressing is far more efficient; protection mecha- 
nisms have been integrated in the kernel and allow 
the enforcement of users and object isolation and 
the development of protected applications. 

We are currently working on porting the applica- 
tion set that was developed on the Guide-l proto- 
type and also on the completion of the development 
environment. 

2We benefited from the support of the OSF Research In- 

stitute of Grenoble. 

3 Design, implementation and 

lessons learned 

We now present the design and implementation of 
persistent shared object support in Guide. This 
presentation is composed of several subsections re- 
spectively devoted to different aspects of the sys- 
tem. For each of these subsections, the first part 
describes the Guide design (of both prototypes 
where applicable) and the second part provides a 
comparison with similar systems and the lessons 
learned from our experience. 

3.1 The Guide model 

3.1.1 Design 

The Guide system is based on shared, passive ob- 
jects. The choice of a passive object model was 
motivated by measurements of object sizes, which 
show that applications tend to use a large number 
of small objects. We considered that active ob- 
ject models would be more appropriate for “heavy- 
weight” objects such as servers. 

The execution model is organized in tasks (vir- 
tual address spaces in which the objects are 
mapped); concurrent activities run inside tasks. 
Both tasks and activities may be distributed. This 
model was chosen to investigate the paradigm of 
shared objects as a single means for communica- 
tion: thus activities (within a task or between 
tasks) interact through shared objects; synchro- 
nization constraints [DecouchantSl], expressed in 
the language and implemented by the run-time sys- 
tem, are associated with shared objets. 

Objects are persistent, i.e. their lifetime is in- 
dependent from that of the task in which they are 
created. This decision was essentially motivated by 
uniformity (managing only one kind of object). 

At the model level, the main difference between 
our two prototypes is in the interface between the 
system and the compiler(s). Guide-l defined a 
single-language virtual machine. A major goal of 
the design of Guide-2 was to provide a generic 
virtual machine allowing the support of different 
languages satisfying a minimal set of assumptions. 
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3.1.2 Lessons learned and related work 

Instance-object 

1 Class-object 

i-ml 
i-m2 

Code-libraw 

Figure 1: The generic object model 

This virtual machine (described in [FreyssinetSl]) 
provides a generic object model which includes the 
basic abstractions for building more complex ob- 
ject models. The practical goal was to support 
the Guide language and a persistent extension of 
c-t+. The model defines three basic abstrac- 
tions: instance-objects, class-objects, and code- 
libraries. The corresponding entities are persistent 
and named by universal system references (more 
details in section 3.3). Figure 1 shows the organi- 
zation of these entities. 

Class-objects and instance-objects are defined 
separately to enforce modularity; the system knows 
about the link between an instance object and 
its class object. An instance-object can only be 
accessed using the methods defined in its class- 
object. On the other hand, the system has no 
knowledge of inheritance, because of the wide di- 
versity of inheritance models. Inheritance is man- 
aged by the run-time system of the language. Thus 
the system does not manage relationships between 
class-objects. The code of the methods involved 
in class definitions is stored in code-libraries. A 
class-object is actually a descriptor for the class: it 
contains references to the code-libraries which in- 
clude the code of the class methods. Objects may 
contain references to other objects. A code-library 
may contain a reference to a procedure in another 
code-library. 

Shared persistent objects 

Shared, transparently distributed objects, with 
high level language support, were considered an 
extremely useful tool by the programmers of dis- 
tributed applications, in contrast to explicit mes- 
sages. In addition to the benefits specific to the 
language (strong typing, conformity, multiple im- 
plementations of a type, etc), the main advantages 
mentioned were: the higher degree of abstraction 
for the expression of distribution (an application 
developed on a single node could be ported to a 
network without change); the ability to build large 
structures with embedded object references and the 
ability to share substructures ; the separate expres- 
sion of synchronization constraints for shared ob- 
jects; the implicit management of persistence. The 
lessons are relevant for many similar systems (e.g 
Emerald [Black86], Orca [Ba187]). 

Generic object model 

The Guide-2 system provides a generic ob- 
ject model for the support of several object- 
oriented programming languages (OOPLs). Sev- 
eral projects attempted to provide such a generic 
platform. 

Some earlier systems, such as 
Clouds [DasguptaSO] or COOL vl [HabertSO], tried 
to directly map OOPLs on abstractions provided 
by some system kernels, essentially address spaces 
or segments. Since OOPLs deal with fine-grained 
objects, these prototypes either provided two kinds 
of objects, local objects managed by the compilers 
and global system objects (global naming not being 
supported for local objects), or suffered from poor 
performance because of the mismatch between sys- 
tem provided abstractions and language required 
ones. 

More recent prototypes, such as Amadeus 
[CahillgSb] or COOL v2 [Lea93], provide fine- 
grained object support directly at the system level. 
But in order to avoid modifying the supported com- 
pilers and in particular to keep language specific 
invocation schemes, they both use an upcall mech- 
anism for the system to request information about 
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object management at the language level. Upcalls 
are notably used to locate external references in 
objects, and to replace these references by virtual 
addresses used in most of the languages. However, 
in most of the cases, the supported compilers have 
been modified (or a preprocessor added) in order 
to generate class specific upcall functions. 

While the Guide project shares the same ob- 
jectives, it implements the generic platform differ- 
ently. The upcall-based system layers which aim 
at avoiding compiler modifications do not actually 
reach this goal. Since compiler modifications are 
inevitable, it seemed preferable to focus on the ad- 
equacy and the efficiency of the provided mecha- 
nisms. Therefore, we decided to design a kernel 
that efficiently provides mechanisms for sharing, 
persistence and protection, without the constraint 
to keep compilers unchanged. The Guide-2 sys- 
tem implements a virtual machine that provides a 
generic object model. We believe that this generic 
object model is a common denominator of all the 
potentially supported languages. A new invoca- 
tion scheme has been designed; we have modified 
the Guide-l compiler and implemented a Cf+ pre- 
processor that generates application code for this 
virtual machine. 

3.2 Object management 

3.2.1 Design 

The most important problem in object manage- 
ment is to provide efficient support for sharing 
while ensuring protection. 

In Guide-l 

In the Guide-l prototype [BalterSl] on Unix, 
each activity was implemented by a Unix process. 
Activites (Unix processes) on one node were shar- 
ing objects by sharing a large memory region in 
which objects were loaded on demand. An ob- 
ject was loaded on only one node at a time and 
remotely-loaded object invocations were performed 
with remote procedure calls. 

Therefore, the address space of a task shared be- 
tween its activities had no concrete implementa- 
tion. On each node, all the running activities were 

sharing the same object space in which objects were 
loaded. Object isolation (encapsulation) relied on 
the safety of the code produced by the Guide com- 
piler . 

In Guide-2 

In the second prototype on top of Mach 3.0, 
Mach tasks (also called context in our jargon) and 
threads were used to implement our tasks. The 
main motivation was to enforce task and object 
isolation at the system level: 

An error in a task should not generate an error 
in another task with which it does not share 
any object. 

In one task, an error in an object should not be 
able to corrupt any object shared by the task. 
In particular, we wanted to enforce isolation 
between object owners. 

First, since we wanted to enforce isolation be- 
tween tasks, we rejected the solutions where tasks 
share entire address spaces, and especially solutions 
based on context sharing between tasks. Therefore, 
in the current version, a task is a set of contexts and 
object sharing is performed with the Mach map- 
ping mechanism (without isolation enforcement, it 
may be considered that there is one context per 
node where the task is represented). 

Second, in order to enforce isolation between ob- 
jects, we decided that objects of different owners 
must be mapped in different contexts. Thus, a task 
may be composed of several contexts on one node, 
each of them associated to a different object owner. 
When an activity spreads from an object owned by 
user X to an object owned by Y, it must execute 
a cross-context invocation, which is interpreted by 
the system. Thus, an addressing error in a method 
of an object can only affect objects having the same 
owner. Although this management does not pro- 
vide complete object isolation, we think that such 
an isolation on a per-owner basis is a good trade- 
Off. 

The last basic choice for object management re- 
lates to object clustering. Our experience with 
Guide-l showed that most of the Guide passive ob- 
jects are small (i.e. less than 300 bytes). Using 

133 



Task Tl r 
OwnerX OwnerY 

Task T2 
Owner Y Owner X Owner Z 

,psq*\ 

I 

J’- mapping 

er I I I 
Node 1 Node 2 

Figure 2: Object management in Guide-2 

objects as units of sharing would mean support- 
ing the cost of a mapping for each object binding. 
We therefore decided to use an object clustering 
scheme. A cluster is a set of (logically related) ob- 
jects and the unit of mapping is the cluster. A 
cluster is mapped in a task when one of its objects 
is first used in that address space. If clustering can 
be used at a higher level to group logically related 
objects, then the mapping of an object implies the 
mapping of a working set of the object. Notice that 
since the cluster is the unit of mapping in contexts, 
all the objects stored in a cluster must belong to 
the same owner. 

A tag associated with each cluster indicates 
whether the cluster can be mapped on different ma- 
chines. If an activity needs to access a remotely 
mapped cluster that can only be shared on one 
node, the requesting activity will extend to that 
node and map the cluster locally. The extension 
of the activity may require the creation of a new 
context on that node. 

Figure 2 illustrates object management in the 
Guide-2 prototype. 

3.2.2 Lessons learned and related work 

User and Object isolation 

The Guide-l prototype may be compared to the 
Emerald system [Black861 in the sense that they 
both implement a language machine and both sys- 
tems achieve node-wide sharing of an object space. 
In both cases, the system trusts the compiler used 

for application development. 
In the Guide-2 design, the support of unsafe lan- 

guages required protection mechanisms at the sys- 
tem level. Therefore, the Guide-2 system maintains 
a strong isolation between execution structures and 
objects. Its design may be compared to issues em- 
ployed in similar projects. 

Systems such as Argus [Liskov85] or Clouds 
[DasguptaSO] enforce isolation for coarse-grained 
objects, each context being associated with a 
unique object. Since local objects are managed at 
the language level, we may compare their objects 
to our clusters. As previously noted (section 3.1.2), 
the major difference is that Guide-2 manages a 
global naming for fine-grained objects. Moreover, 
Guide-2 manages clusters that may be of various 
sizes (even small, i.e few pages) and these clusters 
may be mapped in the same context (if they belong 
to the same owner). It ensures a more efficient 
object invocation between objects from differents 
clusters when mapped in the same context, since it 
avoids a systematic cross-context invocation. 

In some other systems (e.g. Amadeus 
[Cahill93b]), contexts are used as clusters servers: 
a cluster is dynamically mapped in the first con- 
text which requests it and every further method 
call on objects stored in this cluster occurs in this 
context. We rejected this solution in order to en- 
force our task isolation and also for the following 
reasons: 

 The management of isolated tasks (in which 
clusters are dynamically mapped) allows an 
easier identification of the state of the run- 
ning application. In a server based organiza- 
tion, application threads may be running in 
contexts (servers) that are shared between ap- 
plications. 

In particular, this task isolation has simplified 
user authentication in the system (since a con- 
text is only running for one task on the account 
of one user) and the management of user level 
I/O. 

 It also allowed us to perform selective bind- 
ing according the user’s rights on the called 
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object. At binding time, an access path in 
the current context is build according protec- 
tion informations, and this path depends on 
the user associated with the task the context 
belongs to (detailed in section 3.5). 

Object clustering 

Because of the mismatch between abstractions 
provided by system kernels such as Unix, Mach or 
Chorus and the OOPLs requirements, object clus- 
tering is inevitable and is implemented in most of 
the systems. However, clustering is more or less 
easy to manage according the kernel provided fea- 
tures. 

In the Guide-l system (on Unix), clustering per- 
sistent objects would have meant loading a possibly 
large set of objects in a Unix shared memory seg- 
ment; since this would have been wasteful, objects 
were loaded on demand. 

In the Guide-2 design, Mach 3.0 provides the 
ability to handle page faults in a task called the 
“external pager”. Therefore, it is possible to map 
a cluster in a context and to load a page from the 
persistent storage when requested from the exter- 
nal pager [Balter93]. The external pager facility is 
one of the more valuable Mach features: it allows 
a clear separation between the object as a unit of 
addressing, the cluster as a unit of sharing and the 
page as a unit of I/O. 

3.3 Naming and locating objects 

3.3.1 Design 

The design of a naming scheme must take two con- 
straints into account: 

 The size of the object identifiers. Object iden- 
tifiers must provide the ability to name a large 
number of objects, but the size of these iden- 
tifiers must be kept small in order to reduce 
disk occupation and CPU time. 

 The purpose of migration. In our case, object 
migration is principally used to gather objects 
in clusters and to gain on futher accesses. An 
object migration must shorten the object lo- 
cation (i.e. make it faster). 

In Guide-l 

In Guide-l, the object space in secondary stor- 
age is divided into containers. Objects are named 
by 32 bit object identifiers (Oi(as) allocated at cre- 
ation time; these identifiers contain the creation 
container identifier. A System Reference (SysRefi 
that points to an object is a 64 bit variable, the 
first 32 bits being the Oid of the pointed object 
and the last 32 bits being an hint for the current 
location of the object. 

Therefore, SysRef comparisons use only the Oid 
field of the SysRef without the need to access the 
object, and object location from a SysRef is imme- 
diate if the hint is up-to-date. If not, an up-to-date 
hint that is always stored in the creation container 
is used and the hint in the SysRef is updated. 

This scheme is good for migration in the sense 
that it will always converge to the cheaper location 
cost (when the hint in the SysRef is up-to-date). 
However, its major drawback is that it only allows 
the naming of objects on 32 bits with some 64 bit 
system references. The support of users that de- 
veloped large scale applications showed us that 32 
bit Oids were not enough. 

In Guide-2 

In Guide-2, we wanted to use 64 bit object iden- 
tifiers and to manage object migration without ex- 
tending system references to 128 bits. 

Similar to the previous prototype, an object 
name is allocated at creation time and contains the 
initial location of the object. Assuming that object 
migration is infrequent, an object is often found in 
its creation cluster. 

In order to allow object migration, we use a tech- 
nique based on migration catalogs and forwarders 
to locate migrated objects. An object that mi- 
grates from its creation cluster is registered in a 
catalog associated with its new location cluster and 
a forwarder is left in its creation cluster. The cat- 
alog is part of the data of the cluster. 

Suppose an object 02 is invoked and 02 has to 
be located. If the creation cluster of 02 (given 
by the name of 02) is already mapped, then we 
try to locate 02 in it (this is the default case); if 
02 migrated to another cluster, a forwarder will be 
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found in the creation cluster. If the creation cluster 
of 02 is not already mapped, then the catalogs of 
the already mapped clusters in the current context 
are used to check if 02 migrated to one of these 
clusters. If not, the creation cluster of object 02 is 
mapped and 02 is searched. 

With this strategy, we never remap a cluster for a 
migrated object that resides in an already mapped 
cluster. Moreover, we only pay for a lookup in 
the migration catalogs when a cluster mapping is 
required. Remember that the cost of a map oper- 
ation is much greater than the cost of a lookup in 
the catalogs of the currently mapped clusters. 

3.3.2 Lessons learned and related work 

The main motivations for the design of our naming 
scheme were the naming of a large object space, 
the efficiency of the location process, a migration 
function which speeds up object location when ob- 
jects are grouped in clusters, and to keep the size 
of object identifiers small. 

The solution we implemented is based on 64 bit 
identifiers; it reduces the location cost for a mi- 
grated object when the object is already mapped, 
and it does not degrade location performance for 
objects that do not migrate, since there is overhead 
only when a cluster has to be mapped (the location 
of an already mapped object that did not migrate is 
unchanged). However, the solution needs to keep 
a forwarder to the actual location of a migrated 
object in its creation cluster. This means that the 
location process of an object is highly dependent 
on the object’s creation cluster and its availability. 
This scheme should be improved by the manage- 
ment of reliable migration servers that register mi- 
grations for objects that need this high availability. 

This solution may be compared to three classical 
ones: 

 Forwarders. The use of simple forwarders 
deals with migration, but it never reduces the 
cost of locating migrated objects. 

 Location independent naming. These solu- 
tions are often based on location servers. The 

location cost is then constant whenever the ob- 
ject migrated or not, but it is a detriment to 
objects that never migrate. 

 Content dependent identifiers. With this so- 
lution, each object identifier (contained in an 
object state) is local to the current cluster, i.e. 
it always refers to an object in the same clus- 
ter. A reference to an object located in an- 
other cluster is a local identifier to a special 
object which is a forwarder (it contains the 
identifier of the cluster and the local identifier 
of the referenced object in this cluster). An 
object migration is then very simple: the ob- 
ject state is copied, the initial state is replaced 
by a forwarder and references to this object in 
the destination cluster (that were through a 
forwarder) are replaced by the new local iden- 
tifier of the object. The system can shortcut 
chains of forwarders when they exist. There- 
fore, the gathering of related objects in the 
same cluster reduces the location cost. More- 
over, this solution has the advantage to re- 
duce the size of object identifiers, since they 
only need to name objects that reside in the 
same cluster (a lot less than the whole uni- 
verse!). This naming scheme is used in the 
Mneme [MossSO], Thor [Day921 and Amadeus 
[Cahill93b] projects with 32 bit local identi- 
fiers. 

However, this scheme has a serious drawback: 
two different local identifiers in two different 
clusters can point to the same object, and the 
same local identifier in two different clusters 
can point to different objects. Then, at exe- 
cution time, the system needs to associate a 
global name to each object identifier; an oper- 
ation on an object identifier (assignment, com- 
parison) requires a binding, if not to the object 
at least to a proxy, i.e a binding from the lo- 
cal identifier to a global one, even if the ob- 
ject is not used for method invocation. In 
the Amadeus system, when an object’s data 
is made accessible in an address space, local 
identifiers are eagerly swizzled (i.e. replaced 
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by virtual addresses which are unique identi- 
fiers in the current address space); all the iden- 
tifiers that may be used in memory need to be 
translated. 

3.4 Object binding 

3.4.1 Design 

The main motivations in the design of our generic 
virtual machine [FreyssinetSl] are to provide dy- 
namic binding of references (in order to accommo- 
date polymorphism rules of languages), and to sup- 
port persistent shared objects that may be used to 
build more complex structures by embedding refer- 
ences to external objects within the instance data 
of an object. This current design is based on the 
following decisions: 

 In the first prototype [BalterSl], each method 
call was interpreted, i.e. the binding of code 
and data was checked by the kernel before the 
actual call. In order to improve performance, 
interpretation is now only done at first call. 

 Since we only have a 32 bit address-space, we 
reuse space by dynamically mapping clusters 
in address spaces. An object may be mapped 
at different addresses, thereby precluding the 
use of traditional pointer swizzling. The solu- 
tion was to simulate a Multics-like segmenta- 
tion mechanism [Organick72]. 

A reference in an object 01 to another object 
02 mapped in the same context Cis made through 
a linkage segment associated with 01 in this con- 
text. This linkage segment is built at the first use of 
01 in C, using a model generated by the compiler. 
For each external reference in 01, the compiler in- 
cludes an entry in its linkage segment; this entry 
is filled (i.e. the reference is bound in 01) at the 
first method call from 01 to the object pointed by 
this reference. After binding, further method calls 
to the object use indirect addressing through the 
linkage segment of 01, without further interpreta- 
tion. 

Figure 3: Object binding and method call 

In fact, all the abstractions of the virtual ma- 
chine are managed in this way. .A code-library 
refers to other code-libraries through its linkage 
segment, and a class-object refers to code-libraries 
in the same way. 

In Fig. 3, object 01 contains an external refer- 
ence to object 02 in a field z (or variable). When 
this reference is bound, the entry i-z associated 
with z in the linkage segment of 01 points3 to 
object 02 in the current context. In the same 
way, class C2 contains the external references to 
the code of the defined methods; these references 
are also dynamically bound. When all the involved 
references are bound, an object invocation from ob- 
ject 01 to object 02 is performed with pointer 
indirections through the linkage segment of 01, 

02 and C2. Thus, if R is a register that points 
to the linkage segment of the current object 01, 

then the invocation of method ml on the object 
pointed by x will execute the method at the ad- 
dress : R[i-x].ls->ls[i-ml].s 

Some measurements were made with a set of ap- 
plications written in the Guide language. An ob- 
ject call in the same protection domain when all the 
involved references are bound costs 4.4 ps4, while 
an object fault costs between 22 and 55 ps accord- 
ing to the state of the caches managed in the kernel. 
This can be compared to the cost of a procedure 

3An entry of a linkage segment has two fields s and 1s that 

respectively point to the referenced segment and its linkage 

section. 

4These measurements were made on Bull-Zenith P.C. 486 

(33 MHz). 
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call on the same processor (0.9 ps) and to the cost 
of the virtual method call on a C++ object (1.5 
pus) where sharing, persistence and protection are 
not managed. 

We also measured the frequency of direct calls in 
the supported applications, and we obtained very 
good results (between 75 and 90 % for most of the 
applications). A more complete evaluation is given 
in [Chevalier93]. 

3.4.2 Lessons learned and related work 

The segmentation scheme introduced in the second 
prototype significantly improved method call per- 
formance. A comparable approach has been used in 
the E project [Schuh90] where an object invocation 
can only be performed using a local variable (man- 
aged on the stack). This local variable is swizzled 
when first used as our linkage segments are. 

This technique avoids the classical problem of 
pointer unswizzling when pointers are swizzled in 
the object’s state and also allows the mapping 
of objects in several address spaces at different 
addresses. It may be compared to the solution 
adopted in the COOL v2 system [Lea93]. In this 
system, objects (in fact clusters) may be mapped 
in several contexts at the same time and all the 
objects identifiers in the cluster are eagerly swiz- 
zled. A cluster is always mapped at the same ad- 
dress in all the contexts that share it. If a memory 
clash occurs when a context tries to map the clus- 
ter, the cluster has to be unmapped in the contexts 
that map it, in order to allow its mapping at an- 
other address in the context that requested it. The 
main drawback of this solution is the complexity 
of unswizzling object identifiers when a cluster is 
unmapped. 

Our approach can also be compared to the 
emerging one adopted in projects that aim to ex- 
ploit the 64 bit address space processors. The key 
idea is to allocate at creation time the virtual mem- 
ory area in which the object will be mapped when 
accessed. Therefore, an object is always accessed at 
the same virtual address irrespective of the process 
that shares the object, and there is no translation 

between object identifier and virtual addresses to 
do, since the object identifier is the virtual address 
where the object is or should be mapped. This 
new approach is very promising and many projects 
[Chase92][Heiser93][Inohara93] are in progress, but 
if this technique provides a fast addressing scheme, 
it has to be integrated in a real system that also 
takes care of other aspects such as protection and 
persistence. We plan to investigate 64 bit address 
space based systems in the future. 

3.5 Object protection 

3.5.1 Design 

An important drawback in the first prototype was 
the lack of protection mechanisms for the devel- 
opment of protected applications. Mechanisms for 
the control of access rights on objects was an im- 
portant goal in the second design. We placed the 
following requirements on the protection model: 

The system must allow the control of user’s 
rights on shared objects managed in the sys- 
tem. These rights must be defined in terms of 
methods applicable to objects. 

The system must solve the delegation problem. 
In other words, it must be possible to extend 
a user’s rights on an object for the execution 
of a specific operation. 

The game example given in [KowalskiSO] illus- 
trates this problem. An object game exports 
an operation play. Every user who wants to 
play invokes play on the object game. An ob- 
ject score is used to store the highest scores. 
The object score is updated using the opera- 
tion edit-score (user-id, new-score) at the end 
of the game. Every user who has the right 
to play the game must have the right to call 
edit-score on object score, but a user must not 
be able to update score by invoking edit-score 

from an object other than game. 

The system must manage the cooperation be- 
tween untrusted users. If user Ul gives rights 
on his objects to user U2, U2 must not be 

138 



given more than those rights. In particular, 
U2 must not be allowed to tranfer these rights 
to another user. Additionally, Ul must not 
get additional rights on U2 (i.e. we don’t want 
to manage a hierarchical organization of users 
since users are all equal regarding protection). 

 Protection must be enforced without trust- 
ing the compilers used for application devel- 
opment . 

Users’ access control 

In order to keep our efficient invocation scheme, 
we used the following design. 

We defined the notion of view as a set of autho- 
rized methods. A view is a restriction of a class in- 
terface; the definition of views is stored in the class. 
The rights associated with an object are stored in 
an access control list (Acl) that defines for this ob- 
ject the view of itself that it provides to the existing 
users. 

The general principle of our implementation is 
to use the protection information associated with 
an object to build an access path to an object at 
binding time, as seen in Multics. Thus the protec- 
tion rights are set up when the object is bound, 
and remain valid for subsequent accesses. 

At execution time, the access control according 
to such an access list is achieved as follows. For 
each class, a sub-section of its linkage segment is 
devoted to each view defined in the class. If the 
class defines NM methods and NV views, then the 
linkage segment of the class will contain NM*NV 
entries. We say that the linkage segment of the 
class contains NV views. In each of these views, 
the Nth entry corresponds to the same method, 
and the binding of the reference to this method in 
this view is only performed if the view definition in 
the class authorizes the method. 

When the reference from an instance-object to 
its class is bound, the access list of the object is 
consulted to find out the view associated with the 
current user. Then the binding of this reference up- 
dates the linkage segment of the object5 and makes 

5The entry that corresponds to the class reference is al- 

ways the first in the linkage segment of an instance. 

Lib 

Fl ( ( Userl, R-d-only ) ( User2, Read-Write) (Others, No-right) 

Figure 4: Protection based on access control lists 

it point to the view associated with the current 
user. 

This implementation is illustrated on Fig. 4. The 
class File defines three views: No-right, Read-only 

and Read-Write. An instance (Fl) of the class File 

is mapped in a task that runs on the account of 
Useri’. Fl’s access list specifies that User1 should 
use Fl through the view Read-Only. Then, the 
binding of the reference from Fl to its class points 
to the view Read-only in the linkage segment of 
the class File. In this view, an attempt to bind the 
second method will return an error. 

With this implementation, the scheme used for 
an object invocation is unchanged. Protection 
checks are only made at binding time. However, 
a modification in an access list will only be taken 
into account in the next binding, but we think this 
is an acceptable trade-off between functionality and 
performance. 

One of the requirements we made in the begin- 
ning of the section related to the safety of the pro- 
vided mechanisms. In the Guide system, object 
isolation is provided through user isolation: objects 
owned by different owners are mapped in different 
contexts within a task. This implies that a method 
that executes on an object in one context will only 
have the possibility (if it breaks object encapsula- 
tion) to address objects that belong to the same 

‘Note that since contexts are never shared between Guide 

tasks, a context always runs on the account of a unique user 

and all the bindings in this context are made according to 

this user. 
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owner. Therefore, a user that runs a program can 
only corrupt its own data and can only access ob- 
jects of other owners through methods, since access 
is achieved through an inter-context call. Note that 
the creation of an instance of a class implies trust 
by the user of the methods defined in that class. 

Delegation problem 

In the delegation problem, the purpose is to be 
able to extend user rights to some protected objects 
through some well defined entry points, the pro- 
tected objects being not directly accessible. Since 
this ability is generally used to provide protected 
services, it has to be safe and this protection safety 
can only be obtained using context separation. 

When an object invocation involves objects from 
different owners, it implies a cross-context call that 
is interpreted. Moreover, the owner of the calling 
object can be authenticated by the system, since 
an object owner is statically associated with each 
context in a task. The principle of our mechanism 
is to make rights depend on the calling object, and 
in particular to make rights depend on the owner 
of the calling object. A boolean tag called the vis- 
ibility tag is attached to each object. This tag in- 
dicates whether the object to which it is attached 
can be invoked from an object owned by another 
owner. 

In the example of the game, the game adminis- 
trator creates the object score with a false visibility 
tag and the object game with a true visibility tag. 
The game administrator is the owner of score and 
game. So, when a player task invokes the method 
play on game, it executes play in a context associ- 
ated with the game administrator, and object score 
can be invoked from object game because they re- 
side in the same context. Score cannot be invoked 
directly from an object that belongs to the player. 

The implementation of this mechanism consists 
in a simple check to verify, whenever an inter- 
context call involves different owners7, if the called 
object has a true visibility tag. 

‘An inter-context call may involve two contexts associ- 

ated with the same owner, but when these contexts are run- 

ing on different nodes. 

3.5.2 Lessons learned and related work 

A more complete study of protection in object 
based systems in presented in [Hagimont93]. How- 
ever, we now summarize the comparison with other 
approaches which justifies our design. Operating 
systems that provide mechanisms for access rights 
control may be roughly divided in two trends: 

Systems which make the rights depend on the 
calling object . 

A first instance of this class of systems is ca- 
pability based systems (e.g. Hydra [Wult74]). 
In capability-based systems, a method invo- 
cation is authorized if the calling object or 
method has a capability which authorizes the 
call. Access control for users and the exten- 
sion of user’s rights are easy to formulate, but 
capabilities have a drawback: when a server 
gives access rights to a client C, there is no 
way for the server to be sure that C will not 
give rights to some other clients on his own ob- 
jects. When an invocation comes to the server 
from client C, the invocation may have been 
initiated by another client. Even if the server 
trusts Cand if Cis trustworthy, the server may 
not want to rely on the client safety, and the 
client may also not want the server protection 
to rely on the safety of its own objects. 

Another instance of this class of systems is 
systems which protection is based on access 
lists that contain object owners (e.g. Melam- 
pus [LuniewskiSl]). A n access list is associated 
with each object and lists the users whose ob- 
jects may invoke that instance. Then, they 
have similar problems to capability-based sys- 
tems, since no check on the original issuer 
(user) of a request is made. 

Systems which make the rights depend on the 
calling user. 

In these systems, an access list is associated 
with each object and gives the users who 
may invoke that instance. Thus, an addi- 
tional mechanism must be provided to solve 
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the delegation problem and allow the protec- 
tion of subsystems. For instance, in Multics 
[Organick72], the ring’s mechanism allows the 
development of protected subsystems, but not 
the management of mutually suspicious sub- 
systems. If a subsystem Sf is protected from 
a subsystem S2, Si must be in an ring inferior 
to S2 and SZ is not protected from Sl. 

In the Guide-2 system, we provide protection 
mechanisms based on access-lists that contain 
users, and the delegation problem is solved with 
the visibility-tag mechanisms. These mechanisms 
allow the development of mutually suspicious sub- 
systems. The objects managed by such a subsys- 
tem belong to a pseudo-user (the administrator). 
Only the entry points of the subsystem (with a true 
visibility-tag) can be called by clients and access 
lists define the rights of the clients of the subsys- 
tem. 

4 Conclusion and perspectives 

In conclusion, we first summarize the lessons 
learned from our effort for providing shared object 
support in the Guide project. We next outline our 
plans and perspectives for the continuation of this 
work. 

Summary 

The basic message of this paper may be summa- 
rized as follows: 

 Shared, transparently distributed objects, 
with high level language support, is an ex- 
tremely useful tool for the development of dis- 
tributed applications. We have implemented a 
generic system layer which allows the support 
of several object-oriented languages (Guide 
and C++). 

 An object support system layer must provide 
a good trade-off between efficiency and pro- 
tection. Fine-grained shared object support 
must not sacrify isolation between execution 
structures and between objects. In Guide-2, 

tasks are separate execution structures and ob- 
ject isolation is enforced on a per-owner basis. 
Moreover, a clustering scheme improves object 
management when logically related objects are 
grouped together. 

 While the system must be able to manage a 
large amount of objects, the size of object iden- 
tifiers must be kept small to reduce disk occu- 
pation and CPU time. Moreover, the system 
must provide migration facilities that allow ob- 
jects to migrate between clusters. In Guide-2, 
objects are named by 64 bit identifiers; ob- 
jects may migrate and the location time of a 
migrated object is shortened when its cluster 
is already mapped. 

 An addressing scheme with lazy binding at 
first call allows the execution of most object 
invocations without any calls to the kernel. 
We simulated a Multics-like segmented ma- 
chine which benefits from the locality of the 
references used for object invocations. 

 In a system where objects may be shared be- 
tween multiple users, it is indispensable to pro- 
vide mechanisms for the control of user’s rights 
on objects. Since our system does not rely on 
language provided safety, protection must be 
enforced by the system which must provide 
support for mutually suspicious subsystems. 
Protection in the Guide-2 system is based on 
access lists associated with objects and on vis- 
ibility restrictions for the management of pro- 
tected applications. The integration of these 
mechanisms does not incur any extra cost on 
method call within an address space. 

Perspectives 

From these two prototype implementations on 
Unix and Mach 3.0, we gained a more precise idea 
of what a micro-kernel should provide for the sup- 
port of an object-oriented operating system such as 
Guide. A new project, alongside the Guide project, 
is under design and aims at providing this sup- 
port. This kernel should be a common denomi- 
nator for object support in distributed operating 
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systems and distributed data bases as well. It 
should integrate recent technology improvements 
such as 64 bit address spaces and high-speed net- 
works which wiIl allow a more intensive use of dis- 
tributed shared memory with data replication and 
weak consistency. 

Availability. Papers written in English de- 
scribing the Guide system and the Guide lan- 
guage are accessible via ftp anonymous on the 
machine imag.fr. They are stored in the direc- 
tory: /pub/GUIDE/dot 
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