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1. INTRODUCTION 

This paper describes some preliminary 
experience gathered during the implementation and 
early use of a program composition and version 
control system. This system has been designed and 
implemented as a part of the Adele research 
project, s programming environment for the 
production of modular programs (Estublier 83). 
This project has four main components: a) a 
program editor, interpreter and debugger; b) s 
parameterized code generator; c) a user interface; 
d) a program base, the subject of this paper. The 
current version of this environment has been 
developped on a Multics system. 

The program base, including the system 
composition and version control mechanisms, has 
been used for six months, notably for its own 
development and maintenance. 

This part of the effort in the Adele project 
has been directed towards the problems of the 
development and evolution of large experimental 
systems. Its main objectives are: 

i) to provide a data base for the long-term 
storage of the components of a software system, 

2) to provide a language for the 
description of system composition, including a 
provision for the description of multiple 
versions and of user-specified constraints, 

3) to automate such operations as changing 
of versions and propagating the effects of a 
local modification, in a safe and efficient 
way. 

The f o l l o w i n g  g u i d e l i n e s  have been adopted f o r  
the d e s i g n :  

- the design is independent of the 
programming language, as long as the notions of 
separately defined interfaces and 
implementations are provided, 

- the dependency on the underlying 
operating system is confined to a low-level 
layer which implements a set of file-handling 
primitives, 

Experience in this area is still limited; 
related work is described in (Cristofor 80, Kaiser 
82, Lampson 83, Schmidt 82, Tichy 82a,b). 

The paper is organized as follows: 

- Section 2 presents the overall design end 
implementation principles of system composition 
and version control: definition of the 
components and relations, naming scheme, 
expression of consistency constraints, data 
structures. 

- Section 3 is a description of the two 
main algorithms used in the current operation 
of the version control system: the composition 
of a system, and the effect of a modification 
on a part of a compound system. 

Section 4 contains an account of the 
early experience gained in the use of the 
version control system, and some indications 
for improvements in its functions and internal 
Structure. 
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2. DESIGN OF THE VERSION CONTROL SYSTEM 

2.1 System components and relations 

Let us first briefly recall the principles of 
modular program composition; these principles are 
common to the current languages which offer the 
module construct, such as Mesa, Modulo-2 or Ada. 
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A system is defined as the association of an 
interface, which is a description of the resources 
provided by the system, and an implementation, 
which a c t u a l l y  p r o v i d e s  t h e s e  r e s o u r c e s .  An 
implementation may consist of a single 
"self-contained" module body, which provides by 
itself all the resources. However, a module body 
u s u a l l y  r e l i e s  on e x t e r n a l  r e s o u r c e s .  These a r e  
in turn described in other interfaces and provided 
by other implementations. Thus the implementation 
of the original system consists of a set of module 
bodies, whieh we call a coqfiquratioq. The user 
of a system only relies on the interface 
specifications; whether the interface is 
implemented by s single module body or by a 
configuration is irrelevant for the importer of 
the interface, as long as the specifications are 
m e t .  

In summary, the modular decomposition defines 
two c l a s s e s  of objects: interfaces and 
configurations (with "self-contained" module body 
as s special case of a configuration). Between 
these objects, two relations are defined: 

- a configuration implements an interface 
if it provides all resources described in that 
interface, 

- a module body requires an interface if it 
uses a resource described in that interface; 
the interfaces of the component module bodies 
of a configuration are said to be internal to 
the configuration; any other interface required 
by one of the component bodies is said to be 
required by the configuration. 

Let us assume, for the time being, that the 
module body which implements an interface is 
uniquely defined. The relation "requires" defines 
a directed acyclic graph; all the module bodies 
which make up a configuration may be obtained, 
starting from the interface, by constructing the 
transitive closure of the "requires" relation. 

We now introduce multiple versions for 
interfaces and configurations. For module bodies, 
we define the usual 2-level (version-revision) 
scheme (Cristofor 80, Kaiser 82). In addition, we 
allow a third level of evolution for interfaces 
(the notion of an interface family). 

The following notions are defined: 

a) a family is a set of related interfaces. 
Usually, a family consists of different subsets of 
a given set of facilities. Thus the resources 
provided by a file system may be described by a 
family; the different interfaces would describe 
subsets of this family (e.g. read only, or (open, 
close, read, write), or (create, delete)). 

b) a version defines a specific instance of a 
module body. 

c) any version may undergo a sequence of 
revisions. These revisions are numbered by 
successive integers. 

The distinction between version and revision is 
somewhat arbitrary. In principle, versions 
correspond to significant changes (e.g. different 
operating environment, or different time-space 
tradeoff, etc), whereas revisions result from 
error corrections, enhancements, etc. We make 
this distinction more formal by specifying that 
all revisions of a version have the same required 
facilities. Any revision that involves a change 
in the resources required by a version implies the 
creation of a new, different version. 

The naming scheme for objects within a system 
is a hierarchical one; it is derived from the 
graph of the relation "requires" (also called 
dependency graph), as explained in the following 
example. At each level of naming, a default is 
specified. Thus frequently used options have 
short names and they are efficiently retrieved. 

Example. The notions presented in this section 
are illustrated by an example, which we shall use 
throughout the paper. The system described on 
figure 1 is a very simplified version of the 
program base manager. 

program_base 

struct "config 

Figure 1. The structure of a simple system 

The system is composed of 5 modules; its 
dependency graph is shown in full lines. The 
identifiers (program base, struct, etc) are family 
n a m e s .  

Let us make the following assumptions: 

- each family contains a single interface, 
except for manual_mgr, which has two interface 
versions intl (the default) and int2. 

- each interface is implemented by a single 
module body in a unique version, except for 
struct and for manual mgr-intl, each of which 
may be implemented by two versions vl and v2. 
In both cases, version vl is defined as the 
default. 

In this example, the naming scheme may be 
described as follows: 

l) A spanning tree is defined for the 
dependency graph; it is shown in dotted lines 
on figure 1. The choice of this tree is left 
to the user. 

2) Eaeh family is denoted by a full name 
derived from the tree (e.g. 
program base>struct>manual_mgr. 

3) Interface end body names are defined by 
the following syntax 
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<interface name>::= 
<family name>- <interface identifier> 

<body name> ::= <interface name>- 
<version identifier>.<revision number> 

The star convention may be used in names 
with its usual meaning (a star matches any 
identifier). 

4) If any of the optional elements is 
missing, the default is assumed. 

5) In addition, any node of the tree may be 
chosen as the root of a working environment, 
similar to a working directory in a file 
system. Family names are interpreted in the 
working environment. 

For instance, if struct is the current working 
environment: 

-v2 denotes the last revision of version v2 of 
the body which implements the (unique) interface 
of family struct 

manual mgr-- denotes the last revision of version 
vl of the body which implements interface intl of 
manual mgr (recall that intl and vl were defined 
as the default) 

The analogy with a file system is extended to 
include two notions: 

- Visibility: the naming tree also defines 
a pattern for visibility. Visibility along the 
arcs of the dependency graph which are not 
spanned by the tree must be explicitly 
specified. This provides some protection 
against uncontrolled evolution, 

Access rights: access lists are attached 
to each object and checked at each access 
against user rights. 

In a configuration which contains multi-version 
bodies, the relations "implements" and "requires" 
do not uniquely define a configuration any longer. 
The choice of the right component at each level of 
the hierarchy must be directed by some 
specification. This problem is the subject of the 
next section. 

2.2 Overall Eroqram.Atructure and consistency 
constraints 

2.2.1 Principles 

A well-known source of errors in multi-version 
systems is the internal inconsistency due to the 
coexistence of "incompatible" versions of some 
modules. We therefore need a means to define what 
a "consistent" system is. In order to assist the 
designer in the expression of consistency 
constraints, we define a set of attributes for 
each object. An attribute is usually a name-value 
pair. Some of the attributes are user-defined; 

others are automatically derived by the program 
base. 

The constraints on a program component express 
restrictions on the objects that this component 
may (transitively) require. These constraints 
take the form of logical expressions involving 
conditions on attribute values. Thus one may 
express implications (e.g. version x of module A 
requires, or excludes, version y of module B). 
Default conditions are also attached to each 
object; they are in effect if no other constraint 
is specified. 

A more detailed description of attributes and 
constraints, with examples, is given at the end of 
this section. 

The following principles have been adopted for 
the representation of the attributes and 
constraints: 

- uniformity: the structure of the 
representation is uniform for all classes of 
objects (interfaces, module bodies, 
configurations), 

- locality: all the information relevant 
to the use of an object is attached to that 
object, 

- implicit or automatic derivation: the 
system makes use of whatever information that 
can be automatically collected in or derived 
from the data base; the information provided by 
the user is restricted to its minimum. 

The uniform structure for an object consists of 
two segments: a text and a manual. For a module 
body or an interface, the text segment contains 
the source text of the body or interface; for a 
configuration, the text contains a conf!qqration 
specification and a composition list. This list 
contains the names of all the bodies that compose 
the configuration; it is constructed by the system 
when the configuration is created, using the 
configuration specification provided by the user. 
This specification may be explicit (all components 
are specified by their full name) or implicit 
(some components are specified by relations on 
their attributes). The specification may even be 
empty, in which case all default options are 
chosen. Configuration specifications are 
described in section 3.1. 

The manual of  an ob jec t  conta ins two par ts :  
use r - spec i f i ed  a t t r i b u t e s  and cons t ra in t s  (as 
def ined above), and system-der ived in fo rmat ions .  
This l a t t e r  pa r t  conta ins the dependency l i s t  o f  
the ob jec t ,  which g ives the names of  the 
i n t e r f a c e s  requ i red by t h i s  ob jec t .  The contents 
of the manual is uniform for all classes of 
objects. 

2.2.2 A t t r i b u t e s  and cons t ra in t s  

We now g ive a more prec ise desc r i p t i on  o f  the 
form and meaning or the a t t r i b u t e s  and 
cons t ra i n t s ,  as they appear in a manual. 
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I) Attributes. The attributes of a module 
body may be classified as follows: 

Descriptive attributes may specify any 
property defined by the designer; in 
addition, a small number of attributes (e.g. 
date, status) are automatically maintained 
by the system. Descriptive attributes are 
prefixed by the keyword attribute. They 
have the form (attribute name : value). 

- Visibility attributes are prefixed by 
the keyword visible. They specify the list 
of environments (i.e. family names) from 
which the specified component is visible. 
They may be used for security reasons. 

2) Constraints, A constraint is the 
expression of the presence or absence of 
specified program components in the dependency 
list of the constrained object. The components 
are specified either explicitly (by their 
name), or implicitly (by a condition on their 
attributes). Three types of constraints may be 
specified. 

- Imperative constraints: the specified 
program components must be part of the 
dependency list of the object. 

Exclusive constraints: the specified 
program component must not be part of the 
dependency list of the object. 

Conditional constraints: these only 
apply to program components specified by 
conditions on their attributes. A 
conditional constraint only applies if these 
attributes exist; if not, the constraint has 
no effect. 

3) In addition, default conditions may be 
defined; they are used only if they do not 
conflict with a constraint. 

Example. We shall describe a typical contents 
for a manual, using the example system introduced 
in section 2.1. The manuals of some of the module 
bodies of this system are displayed on figure 2. 

Most of the information on figure 2 is 
self-explanatory. The constraints on module body 
struct--vl specify that any program component 
transitively required by this body must have the 
attributes concur end version, with values "true" 
and "83", respectively. Attribute allot is not 
required; but if it is present, it must have the 
value "dynamic" The module bodies which implement 
interfaces of the family manual mgr do not have 
any constraints since their dependency list is 
empty; they have a visibility attribute, which 
specifies that they are visible from any family in 
the program base environment. All revisions of a 
version have the same manual, except for two 
attributes, status and date, which are specific to 
a revision. The meaning and use of the status 
attribute is discussed in section 3.2. 

3. ALGORITHMS FOR SYSTEM COMPOSITION AND 
CONSISTENCY ENFORCEMENT 

In this section, we give an outline of the main 
algorithms used in the program base. A detailed 
description is given in (Ghoul 83). 

3.1 Conf~qqration specification 

A configuration specification has the same form 
as the constraints part in a manual. Thus the 
program components which make up a configuration 
may be specified either explicitly, by name, or 
implicitly, by imperative, exclusive, conditional 
or default selections. Configuration 
specifications are illustrated with the example of 
section 2.1. 

confiq program base--exl 
imperative 
* (version = 83) 
struct>manual mgr-intl-vl.02 
conditional 
* (concur = true) 

end 

confiq program_base--ex2 
imperative 
*((date > 6.20.83 ) 

or (status = approved)) 
exclusive 
(status = incoherent) 

end 

The specification of program base--exl 
constrains all components of this configuration to 
have the attribute version, with value 83; the 
module manual mgr must be used with interface intl 
and body vl.02; in addition, if any component has 
the attribute concur, its value must be true. 

The specification of program base--ex2 
constrains all components to have either a date 
later than 6.20.83 or to have the status 
"approved"; it excludes any component with status 
"incoherent". 

3.2 System composition 

The following algorithm constructs a 
configuration which implements a given interface, 
starting from a configuration specification. The 
system attempts to cons t ruc t  the t r a n s i t i v e  
closure of the dependency relation by a 
breadth-first search. For each interface, it must 
select a single implementation. This is done as 
follows: 

I) Process the consistency constraints that 
apply to the interface (these constraints are 
found either in the specification of the 
configuration being built or in the manual of 
already selected implementations). This 
processing is done in three steps. 

(process conditional constraints): if 
a module body has an attribute name 
specified in a conditional constraint, this 
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manual struct--v l  manual struet--v2 

<user-defined> 

attr ibute 
~ p l B ~  = tree) 
(concur = true) 
(version : 83) 

imperative 
*(concur = t rue) 
* ( ve rs ion  : 83) 

conditional 
* (a l loe = dynamic) 

<user-defined> 

attr ibute 
('implem = l inear) 
(concur : false) 
(vers ion : 84) 

default 
*~eoncur : false) 
* ( ve rs ion  : 84) 

<system-derived> 
( d e p l i s t  = manual_mgr--intl) 
(ineludingLconf = ) 

<revisions> 
Ol : (date = 6.20.83) 

(status = approved) 

<system-derived> 
( d e p l i s t  = manual_mgr-int2) 
(includingLconf = ) 
° . , ,  

<ray isions> 
Ol : (date : 12,8.83) 

(status : experimental) 

e qd end 

manual manual mgr- int l -v l  

<user-defined> 

attr ibute 
~alloc = static) 
(concur = false) 
(version = 83) 

visible 
progLbase>* 

<system-derived> 
(dep_list = ) 
(including conf = ) 

<revisions> 
Ol : (date = 08,03.83 

(status = experimental) 

02 : (date = 09.05,83) 
(status = approved ) 

manual manual_mgr-intl-v2 

<user-defined> 

attr ibute 
~alloc : dynamic) 
(concur = t rue )  
(version : 83) 

y.!sihle 
prog_base>* 

<system-derived> 
(dep_list = ) 
(including conf = ) 

<revisions> 
Ol : (date = II,02.83) 

(status = experimental) 

02 : (date = 12,01.83) 
(status = approved) 

manual manual_mgr- int2-vl  

<user-defined> 

attr ibute 
(alloc= dynamic) 
(concur = t rue)  
(vers ion = 84) 

visible 
progbase>* 

<system-derived> 
(dep l i s t  = ) 
(including conf = ) 

<revis ions> 
O1 : (date = 11.30.83) 

(s ta tus  = approved) 

en__d end end 

Figure 2, Examples of manuals for module bodies 
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constraint is added to the list of 
imperative constraints, 

- (process i m p e r a t i v e  c o n s t r a i n t s ) :  
cons t ruc t  the l i s t  o f  a l l  components ( i . e .  
module body  revisions) that match the 
imperatives constraints (any module body 
matches an empty list of constraints), 

- (process exclusive constraints): 
delete from the above list all components 
that match the exclusive constraints. 

In this process, any conflicting (i.e. 
incompatible) constraints are detected and 
marked. 

2) Scan the component l i s t  eonstructed in 
step I .  

- if s conflict was detected, the 
configuration is marked as "inconsistent"; s 
warning is issued to the user. 

- if the list contains a single 
component, select it; if several choices are 
possible, use the default rules (e.g. most 
recent revision or user defined default 
rule), 

if the list is empty, the 
configuration is marked as "incomplete"; a 
warning is issued to the user, 

During this process, the composition list and 
the system-defined part of the configuration 
manual are constructed. If the algorithm 
succeeds, the configuration is attached to its 
interface; it can now in turn be selected 
(according to the contents of its manual) if the 
interface is used in the construction of an 
enclosing configuration. 

3. )  Propagat ion of changes 

We now spec i f y  the e f f e c t  of  a mod i f i ca t i on  of 
a par t  of a configuration. 

l) Modification of a module body: the effect 
is to create s new revision for this body. 

2) Modification of a manual: the modification 
may affect the consistency of the configuration in 
two ways (upwards or downwards in the dependency 
graph). 

3) Modification of an interface: in this case, 
nothing can be done automatically except 
inconsistency detection. 

A reconstruction algorithm proceeds in two 
steps. In the first step, the components which 
are involved by the modification (e.g. because 
they depend on a modified object) are marked. In 
the second step, the marked components are 
processed in bottom-up order  (wi th  respect  to the 

dependency graph). Typical reconstruction 
algorithms (e.g. (Feldman 79)) use timestemps to 
detect the modified objects. 

We have chosen to introduce a more elaborate 
status information, and to maintain this status up 
to date, including the automatic propagation of 
changes; however, the reconstruction itself, which 
is a fairly expensive operation, is only carried 
out on user request. After a modification has 
been prepared, but before its execution, its 
effect on the status of the system is displayed to 
the user, who may then decide either to cancel the 
modification or to have it carried out. The user 
may now request the reconstruction of the system. 

The status information of a component is 
described in a status attribute, which is attached 
to each object. It may take the following values: 

- incoherent, if the object is subject to 
eonflieting constraints, or if its text is 
syntactically incorrect, 

- incomplete (for configurations only) if the 
composition algorithm was unable to select a 
revision for the implementation of some family, 

- mod int, if an interface required by the 
object has been modified, 

- obsolete (for configurations only), if none 
of the above applies, and if, in addition, the 
reconstruction of the configuration would change 
its composition list. 

- experimental, if none of the above 
conditions apply. 

In addition, the user may modify the value of 
the status attribute. These modifications preempt 
those made by the system. At user request, the 
system may list, for each objet, the modifieations 
which changed its status. 

The status information may be used to 
characterize a consistent system. We define two 
forms of consistency: 

- a system is otronql~ consistent if all 
its components have the "experimental" status, 

- a system is weakly consistent if all its 
components have either the "experimental" or 
the "obsolete" status. 

A weakly consistent system may not conform to 
the latest changes in the constraints, but it 
still may be used for testing or debugging, 
without having to carry out a reconstruction. 

3.4 The user ' s  view 

In order to i l l u s t r a t e  the func t ions  o f  the 
program bose, we descr ibe a t y p i c a l  user session 
for the construction of the simple system 
described as an example in section 2.1. The 
source text of the interfaces and module bodies is 
assumed to be initially stored in a set of files. 
System prompts ore preceded by --; texts betweeA 
<> are comments or abstracts of o sequence of 
actions. 
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i) (Define tree) Define a spanning tree far the 
dependency graph; the tree defined by the user was 
shown in dotted lines on fig. i. It is 
essentially used for naming the modules. 

2) (Initialize) For each component (interface 
or body), execute the command: 

create <object name> <file name> 

This creates program base objects far the system; 
the dependency lists in the manuals ere 
automatically constructed from the import 
declarations. 

3) (Create con f i gu ra t i ans )  

createconf <conf.name> (<file name>) 

The file specified by the optional <file name> 
contains the configuration specification expressed 
by a set of constraints. 

createconf program base--exl exl.conf 

--unable to find a body in manual_mgr-intl: 
--constraints: -intl.vl.02 concur = true 
--program base--exl will be incomplete. 
--De you confirm (y/n)? y 

4) (Execute) 

exec program base--exl "initiate" 

--program_base--exl is incomplete: 
--a body for manual_mgr is missing. 
--Do you confirm (y/n)? y 

5) (Modify module) 

reserve config-- <lacks the module> 
<modification sequence under editor> 

release and store <unlock and store> 

--this operation will make obsolete: 
--program base--exl. 
--De you confirm (y/n)? y 

6) (Modify manual) 

r e s e r v e  struc--vl.man 
<modification sequence under editor> 

release and store 

--your operation will make obsolete: 
--progrem base--exl progrem base--ex2 
--Do yau confirm (y/n)? y 

4. EXPERIENCE AND CONCLUSIONS 

4.1 C antex t  o [  the . experience 

The program base has been used for six months, 
mostly by the members of its development group. 
The main program supported by the base has been 
its own program, which consists of about 20 000 
lines of source code, divided in 45 modules. The 
depth of the composition tree is I0. Three 
versions of this system are currently supported; 

some of the modules have revisian numbers as high 
as 20. Two other programs are also currently 
developped; each of them consists of about 15 
modules and 5000 lines of source code. A total af 
ii00 segments is maintained by the program base. 

In the current version (january 1984), the 
management of documentatian and the facility for 
concurrent use have nat yet been implemented. 

4.2 Evaluation of the System 

The early experience with the system can be 
summarized under two headings 

i) Methodological impacts 

It was noted that the availability of the 
configuration management tools had a definite 
influence on the process af system design and 
construction. Since it was possible ta rebuild 
rapidly and efficiently a system after a 
component was changed, experiments with 
alternate versians of modules were made easy; 
this in turn had a positive influence on the 
design process, as the designers were 
encouraged to draw module boundaries so as to 
allow such variations, and thus to isolate 
significant design decisions. 

Another discovery was the general 
applicability of the tools, lhe configuration 
and version control system was initially 
designed for languages with separately defined 
interfaces and implementations. The language 
used in the Adeie programming environment is a 
modular extension of Pascai. However, the 
program base has alsa been used far PL/I 
programs (about i0% of the tatal code); in that 
case, the interface descriptian must be 
expIicitly provided. The program base, which 
was initially olasely integrated in the AdeIe 
programming environment, is currently being 
redesigned as an autonomous system with a wider 
applicability. 

2) Expression and enfarcement 
consistency constraints. 

of 

Configuration consistency is a key concept 
in a multi-version programming enviranment. 
However, due to lack af experience, this 
concept is not yet stabiiized. In our 
approach, consistency is defined as conformity 
to two sets of constraints: user-defined 
specifications, such as attribute selection, 
and structural constraints, such as conformity 
of exported and imported resources. As a 
configuration evolves by a succession af 
modifications, its consistency must be 
preserved. Our experience has Ied us to define 
two forms of consistency. I) "stronq" 
consistency: at any time t, the configuration, 
as resuits from its evolution, is exactly in 
the same state as if it were reconstructed from 
its camponents, at time t, by the algorithm 
described in 3.2. 2) "weak" consistency: the 
configuration conforms ta structural 
constraints, but some of its components are 
obsolete, in the sense that some user-defined 
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constraints may not be satisfied any longer 
after modifications. The notion of weak 
consistency allows us to limit the "ripple 
effect" of modifications during the debugging 
and integration phase. 

Another concept whose usefulness was 
discovered by experience is that of a downwards 
inheritance mechanism for constraints. A 
constraint defined as "heritable" would 
propagate down the dependency graph. This 
would both simplify the modification algorithms 
and help prevent conflicts between constraints. 
The inclusion of this mechanism is currently 
contemplated. 

4.3 Conclusion 

Our approach may be compared to other efforts 
in the same direction. The philosophy of the 
Unix-based tools (Feldman 79) has provided the 
general inspiration for the automatic 
reconstruction; the notion of composition list is 
from (Cristofor 80). Another, more ambitious, 
system based on similar ideas is the Cedar 
Modeller (Lsmpson 83, Sohmidt 82); multi-version 
systems are also supported by Gandalf (Kaiser 82). 
The main original points in our approach lie in 
the expression of multi-version system composition 
by constraints on attributes rather than by 
component names (the attributes being locally 
attached to any component or configuration), and 
in the extended notion of status. We believe that 
such an implicit definition if often a more 
natural specification means for the designer than 
the explicit naming of components (which is still 
possible in our system). The price of this 
increased generality is paid in the complexity of 
the reconstruction algorithms. Our approach may 
also be regarded as an extension to that described 
in (Tichy 82b), where the expression of 
constraints is restricted to and/or conditions on 
the nodes of the dependency graph. Our 
preliminary experience is leading us to take a 
step backwards in the generality of constraint 
expression, while preserving our main design. We 
hope that the current experimentation shall mark 
some progress in the search of a suitable means of 
expression for "programming in the large". 
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