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Abstract Comparing 5 publications from China that described knockdowns of the human

TPD52L2 gene in human cancer cell lines identified unexpected similarities between these

publications, flaws in experimental design, and mis-matches between some described

experiments and the reported results. Following communications with journal editors, two

of these TPD52L2 publications have been retracted. One retraction notice stated that while

the authors claimed that the data were original, the experiments had been out-sourced to a

biotechnology company. Using search engine queries, automatic text-analysis, different

similarity measures, and further visual inspection, we identified 48 examples of highly

similar papers describing single gene knockdowns in 1–2 human cancer cell lines that were

all published by investigators from China. The incorrect use of a particular TPD52L2

shRNA sequence as a negative or non-targeting control was identified in 30/48 (63%) of

these publications, using a combination of Google Scholar searches and visual inspection.

Overall, these results suggest that some publications describing the effects of single gene

knockdowns in human cancer cell lines may include the results of experiments that were

not performed by the authors. This has serious implications for the validity of such results,

and for their application in future research.
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Introduction

Scientific research progresses based upon results described within the peer-reviewed lit-

erature. The integrity of scientific publishing is of paramount importance, to ensure future

progress, avoid waste, and to maintain stakeholder and public support for scientific

research and the use of evidence in broader decision-making (Bik et al. 2016; Bowen and

Casadevall 2015; Kreutzberg 2004). Many threats to the integrity of scientific publishing

have been identified, which can be broadly categorised according to perceived intent

(Bornmann 2013; Fanelli 2009; Smith 2006). Flaws in experimental design, inadequate or

incorrect use of standards, incorrect statistical analyses and plagiarism of text may com-

monly arise through unintentional error (Casadevall et al. 2014). Deliberate attempts to

deceive include plagiarism (of text and/or data), duplicate publication, data manipulation

or omission and in extreme cases, data or study fabrication (Delgado López-Cózar et al.

2014; Fanelli 2009; Lesk 2015; Smith 2006). More recent efforts to manipulate scientific

publishing include selling of manuscripts by third parties to authors in China (Hvistendahl

2013), and so-called peer review scams, where authors propose peer-reviewer email

addresses that are either linked to colleagues or themselves (Ferguson et al. 2014). A major

driver of scientific fraud is considered to be the ‘‘publish or perish’’ culture that exists in

highly competitive environments (van Dalen and Henkens 2012). This is supported by

statistical analyses of journal impact factors of retracted articles due to suspected or

admitted fraud versus the journal impact factors of articles retracted due to error (Fang

et al. 2012; Steen 2011a). However, peer review scams have involved lower-impact

journals (Ferguson et al. 2014), possibly due to perceptions of lower peer-review and/or

editorial standards.

Although more publications are likely to be flawed through unintentional error than

scientific fraud (Steen 2011b), there has been extensive discussion of scientific fraud in the

research literature. This is in part because known instances of scientific fraud are likely to

represent the tip of a much larger iceberg (Fanelli 2009). Scientific fraud is likely to be

actively concealed, and therefore difficult to detect, and may be disguised in retraction

notices as inadvertent error (Casadevall et al. 2014). Manipulated or fabricated studies can

also be produced more rapidly and/or in greater numbers than genuine studies, and can

significantly alter the trajectory of future investigations (White 2005). There is therefore

serious and likely underestimated potential for some forms of scientific fraud to misdirect

future research efforts (Moore et al. 2010).

Given the damaging effects of scientific misconduct, the detection of actively flawed

publications is a major area of investigation. Automated or semi-automated tools are being

developed to identify various types of misconduct in science. Some tools aim to identify

automatically-generated publications (Amancio 2015; Fahrenberg et al. 2014; Labbé and

Labbé 2013), and have been adopted by publishers [Springer Nature with SciDetect1 as

well as the open archive ArXiv (Ginsparg 2014)]. The detection of plagiarism or hidden

‘‘intertextuality’’ between publications is another very active track (Citron and Ginsparg

2015; Labbé and Labbé 2012). Whereas commercial tools are widely employed and

efficient for detecting raw and direct plagiarism, targeted rewriting may be sufficient for

plagiarism to go undetected. To identify such forms of plagiarism, more complex tech-

niques are being developed to analyse the structure of texts and stylometry characteristics

(Amancio et al. 2012; Ausloos et al. 2016; Carpena et al. 2009; Mehri et al. 2012). To

highlight errors or dubious publications, one can also employ automatic approaches to

1 http://scidetect.forge.imag.fr.
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check the statistical validity of presented values (Nuijten et al. 2015).2 It has even been

claimed that pseudoscientific theories could be automatically detected using machine

learning techniques (Shvets 2014). While mining tools are clearly valuable in their ability

to identify or highlight questionable or off-track publications, such tools may also be

limited by the science chosen to feed the learning phase. An alternative approach is to

highlight errors and misconduct through the power of the crowd, using collaborative

websites to promote post-publication peer review by individuals (PubPeer).3 There is also

scope to combine individual and automated approaches, in order to extend the observations

or concerns of individual researchers to more comprehensively describe broader

phenomena.

The aim of this study was to highlight a set of questionable papers/practices by

explaining why these papers are questionable and how they were identified. Through

reading the literature, one of us (JAB) identified 5 studies published between 2014 and

2015 that commonly described TPD52L2 knockdowns performed in 1–2 human cancer cell

lines representing different cancer types (Wang et al. 2014; He et al. 2015; Pan et al. 2015;

Xu et al. 2015; Yang et al. 2015). The TPD52L2 gene was first reported by JAB and

colleagues (Nourse et al. 1998) and is a member of the TPD52 gene family (Byrne et al.

2014). Over the past 18 years (1998–2016), only 19 publications in PubMed have referred

to TPD52L2 (and/or a recognised synonymous gene identifier) in the title and/or abstract,

and no published study had targeted TPD52L2 using gene knockdown approaches prior to

2014.

As 5 similar TPD52L2 publications would not have been expected to have been pub-

lished in less than 1 year, these were examined and compared in detail. As will be

described, visual inspection combined with nucleotide database homology searches iden-

tified both striking similarities between the individual publications, fundamental yet

apparently undetected flaws in experimental design, and implausible mis-matches between

some experiments described and the results shown. Using search engine queries, automatic

text-analysis, different similarity measures, and further visual inspection, we identified

examples of other highly similar papers published by investigators from China that

described the effects of single gene knockdown in human cancer cell lines. When com-

bined with a recent description of the ‘‘publish or perish’’ culture at some Chinese uni-

versities (Tian et al. 2016) and the retraction of one TPD52L2 publication (Pan et al. 2015;

Retraction 2016), these results predict that some authors in China may be obtaining data

and/or figures from sources such as biotechnology or education companies, and publishing

these results without disclosure. This has serious implications for the validity of these

results.

Methods

Identification and analysis of index corpus

Google Scholar alerts and PubMed searches were employed to identify index cases (the

index corpus, Table 1). Visual inspection of pdf versions of the index corpus focussed

upon the results described and their presentation in figures. Homology searches using

nucleotide sequences from index papers as queries were performed using Megablast [short

2 http://CRAN.R-project.org/package=statcheck.
3 http://pubpeer.com.
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hairpin RNA (shRNA) sequences] and/or Blastn [shRNA and reverse transcription poly-

merase chain reaction (RT-PCR) primer sequences]. During this analysis period, JAB

contacted the editors of each of the 4 journals that had published the 5 index papers.

Table 1 Descriptions of analysed corpora and numbers of common papers between corpora (diagonal size
of the corpus)

Corpus name and
description

Index
n = 5

IJCEM
n = 4094

Reference
n = 15

PubMed
n = 88a

Google
Scholar
sequence
A
n = 26a

Google
Scholar
sequence
D
n = 4

Identified
n = 48

Index corpus, n = 5
papers, all describing
TPD52L2 knockdown
in human cancer cell
lines

5 1 5 5 2 1 5

IJCEM corpus, n = 4094
papers, used as a
representative sample
of publications in the
field

4094 2 1 1 0 2

Reference corpus,
n = 15 papers,
includes index
corpus ? 10 other
highly similar papers
identified using
PubMed keyword
searches and visual
inspection

15 9 2 1 15

PubMed corpus, n = 88
papers identified by
PubMed as ‘‘similar’’
to one index paper
(Yang et al. 2015)

88 4 3 18

Google Scholar sequence
A corpus, n = 26
papers, identified by
Google Scholar to
contain sequence A

26 0 26

Google Scholar sequence
D corpus, n = 4
papers, identified by
Google Scholar to
contain sequence D

4 4

Identified corpus, n = 48
papers, includes
reference corpus,
Google Scholar
corpora, n = 18 papers
from PubMed corpus

48

a Numbers of papers represent numbers that were available for download and analysis
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Identification of similar publications

Reference corpus

Initial PubMed searches were performed using different combinations of key words that

retrieved index publications (‘‘lentivirus’’ ? ‘‘knockdown’’ ± ‘‘mediated’’ ± ‘‘prolifera-

tion’’ ± ‘‘cancer’’), with and without the gene identifier NOB1, which was relevant to one

short hairpin RNA (shRNA) sequence described in 2/5 index papers. A subset of the papers

identified was visually inspected as described above. Ten papers that showed a high degree

of similarity to the index corpus were combined with index cases to form a reference

corpus (Table 1).

PubMed corpus

PubMed ‘‘similar’’ searches were performed to identify papers that PubMed recommended

as similar to one index paper (Yang et al. 2015). The PubMed ‘‘similar’’ search4 is based

on a similarity function that differently weights words from the abstract, title and MeSH

words (Medical Subject Headings). When searching for papers ‘‘similar’’ to Yang et al.

(2015), the retrieved set may contain papers that are similar or quite dissimilar, as mea-

sured using intertextual distance (see below). Nevertheless, a PubMed ‘‘similar’’ search can

be viewed as a first step to identify a set of papers with a greater chance of being similar

(within the meaning of intertextual distance) to members of the index corpus. Of the 112

English-language publications identified, 88 publications were downloaded as the PubMed

corpus (Table 1). The 24 remaining papers were inaccessible (behind a paywall), and were

not analysed further. Publications from open-access publishers may therefore be over-

represented in the set of downloaded publications and thus in any subsequent set.

IJCEM corpus

As a testbed to delineate thresholds for further comparisons, 4094 publications were

downloaded from the open-access journal International Journal of Clinical and Experi-

mental Medicine (IJCEM), these being all publications from volume 1 number 2 (2008) to

volume 9, number 1 (2016). The IJCEM corpus was used a representative sample of

publications in the field, as one index publication (Pan et al. 2015) was published in the

IJCEM (Table 1).

Intertextual distance analysis

Intertextual distance has been used previously to detect publications produced by the SCIgen

computer program (Labbé and Labbé 2013) and is the basis of the SciDetect software5

currently used by Springer Nature to discover text generated by SCIgen and other fake-paper

generators such as Mathgen.6 The intertextual distance between two texts measures the

proportion of word-tokens (strings of alphanumeric characters separated by spaces or

punctuation) shared by the two texts. For computing intertextual distances, pdf files were

4 More information of the PubMed similar function: https://www.ncbi.nlm.nih.gov/books/NBK3827/
#pubmedhelp.Computation_of_Similar_Articles.
5 http://scidetect.forge.imag.fr.
6 http://thatsmathematics.com/mathgen/.
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converted to plain text files using pdftotxt software (part of the Xpdf software suite).7During

this operation, footers and headers were retained, but figures, graphs and formulae were lost,

but often left traces in the extracted text in the form of isolated sequences of words, letters or

numbers. As an example of the sizes of texts analysed, reference publications (n = 15)

contained a mean number of 3384 words per article (range 2973–5223 words), and the total

word size of the reference corpus was 50,763. Raw texts were then segmented into word-

tokens using the procedure of the Oxford Concordance Program (Hockey and Martin 1988).

Stop-words were not removed, as it has been shown that stop-words play an important role in

identifying sources and topics (Argamon and Levitan 2005; Ginsparg 2014; Labbé and

Labbé 2013; Stamatatos 2009; Tuzzi 2010). Intertextual distance can be interpreted as

follows: after randomly choosing 100 words in each text, the d distance is the expected

proportion of common words between the two sets of 100 words. A 0 distance is reached

when the same vocabulary is used in the two texts at the exact same frequency. A distance

equal to 1 is achieved when the two texts share no words.

Intertextual distances were computed between the 4094 publications of the IJCEM

corpus, and the 15 publications of the reference corpus. For the IJCEM corpus, the

observed mean (and median) intertextual distance was 0.65 with a standard deviation of

0.039. Only 1% of the observed distances were\0.55, and 0.25% of the observed distances

were\0.51 (Fig. 1). It was therefore inferred that an intertextual distance\0.55 is very

unusual. In contrast, the mean intertextual distance between the 15 papers of the reference

corpus was 0.44 (range 0.34–0.51).

These results were used to define thresholds for the analysis of the PubMed corpus. The

adopted approach can be related to a nearest-neighbour classification (Cover and Hart 1967)

with similarity thresholds to fix class boundaries. Here, if the intertextual distance between a

member of the PubMed corpus and its nearest neighbour within the reference corpus was

\0.44 (the mean reference corpus distance), this flagged the paper as being ‘‘possibly related

to reference papers’’. A distance of 0.44–0.55 (themost similar 1% of distances in the IJCEM

corpus) flagged the paper as having ‘‘elements related to reference papers’’. No decision was

taken for papers with distances greater than 0.55. Papers with intertextual distances B0.55

were visually examined, and as a result, papers with intertextual distances of\0.50 were

subsequently visually inspected for hallmarks of the index corpus.

Google Scholar searches

We performed Google Scholar searches to identify other possible instances of shRNA

sequences described in the index corpus within the published literature (Google Scholar cor-

pora, Table 1). Intertextual distance analyses were then performed as described for the PubMed

corpus. Additional Blastn searches were also performed using shRNA and RT-PCR primer

sequences contained within publications within the Google Scholar and PubMed corpora.

Results

Visual analysis of index corpus

Google Scholar alerts and PubMed searches identified 5 TPD52L2 studies (the index

corpus) published in 4 different journals between 2014 and 2015, with no apparent overlap

7 http://www.foolabs.com/xpdf/home.html.
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in authorship (He et al. 2015; Pan et al. 2015; Wang et al. 2014; Xu et al. 2015; Yang et al.

2015). The articles’ stated aims were to perform gene knockdowns of TPD52L2 in cancer

cell line(s) corresponding to different cancer types (breast cancer, gastric cancer, glioma,

liver cancer, oral squamous cell carcinoma) (Table 2). Most publications performed gene

knockdowns in a single human cancer cell line, although He et al. (2015) repeated some

experiments in a second cell line (Table 2). The 5 publications reported successful

TPD52L2 knockdown at the transcript and protein level using lentiviral shRNA vectors,

resulting in reduced cell proliferation and colony formation, and altered cell cycle profiles

(Table 2). Most studies found that TPD52L2 knockdown resulted in increased percentages

of cells in sub-G1 and G1/G0 phases, and reduced percentages of cells in S phase and G2/

M phases (Table 2). Each study concluded that TPD52L2 is an important gene to study

further in the context of cancer, and that TPD52L2 could have future therapeutic relevance.

More detailed visual analysis revealed other similarities between index publications, in

terms of the methods employed and how the results were displayed in individual fig-

ures (Tables 3, 4). In an early figure, all index publications included both bright-field and

corresponding green fluorescent protein (GFP) images of shRNA-transfected cells, and

confirmed TPD52L2 knockdown at the transcript and protein level (Table 3). In the next

figure, cell proliferation results were shown in a graph, and the results of colony formation

assays were shown as a histogram (Table 3). As part of the same figure, images were also

commonly shown of cell colonies on a six-well plate, and of crystal violet staining, as well

as bright field and corresponding fluorescent images of individual cell colonies (Table 3).

A subsequent figure showed cell cycle profiles and histograms (Table 3). These

Intertextual distances distribution (Corpus ijcem)

Intertextual Distance

A
b

s
o

lu
te

 F
re

q
u

e
n

c
y

0.0 0.2 0.4 0.6 0.8 1.0

0
5

0
0

0
0

0
1

0
0

0
0

0
0

1
5

0
0

0
0

0
2

0
0

0
0

0
0

Fig. 1 Histogram showing the absolute frequency of intertextual distances between publications of the
IJCEM corpus, representing 4094 papers downloaded from the International Journal of Clinical and
Experimental Medicine (publications from volume 1 number 2, 2008 to volume 9, number 1, 2016). The Y
axis shows the absolute frequency at which intertextual distance values (shown on the X axis) were observed

Scientometrics

123



Table 2 Summary of results reported in TPD52L2 knock-down (KD) studies (index corpus)

Study, cancer
type, cell
line(s) examined

PubMed
ID

TPD52L2

KD at
transcript
level

TPD52L2
KD at
protein
level

Cell
proliferation
post
TPD52L2

KD

Cell colony
formation
post
TPD52L2

KD

Cell % in
G1/G0
phases post
TPD52L2

KD

Cell % in
S phase
post
TPD52L2

KD

Cell % in
G2/M
phases post
TPD52L2

KD

Sub-G1
cell %
post
TPD52L2

KD

Other results shown

aHe et al. (2015)
Oral, CAL27,
KB

25262828 H H ; ; ; : $ : :cleaved PARP detection
post-TPD52L2 KD,

TPD52L2 KD using second
TPD52L2 shRNA
produced ;cell
proliferation in CAL27
and KB cells

aPan et al.
(2015)

Liver, SMMC-
7721

25932170 H H ; ; : ; $ : ND

Xu et al. (2015)
Gastric,
MGC80-3

25746840 H H ; ; : ; ; : TPD52L2 detection in 4
gastric cancer cell lines,

:cleaved PARP detection
post-TPD52L2 KD

Yang et al.
(2015)

Breast, ZR-73-
30

24842331 H H ; ; : ; ; ND TPD52L2 detection in 5
breast cancer cell lines,

Pathscan arrays,
Rescue shRNA experiment

Wang et al.
(2014)

Glioma, U251

25629696 H H ; ; : ; ; ND TPD52L2 KD using second
TPD52L2 shRNA,

;proliferation post
TPD52L2 KD

ND not done
a Article has since been retracted

S
cien

to
m
etrics

1
23



Table 3 Summary of figures showing experimental results in TPD52L2 knockdown (KD) studies (index corpus)

Study,
cancer
type,
PubMed ID

Cell
images
post
shRNA
transfection

Histogram
showing
TPD52L2 KD
at transcript
level

Immunoblot
showing
TPD52L2 KD
at protein
level

;Cell
proliferation
post
TPD52L2

KD

Cell
images
post
TPD52L2

KD

;Cell
colony
formation
post
TPD52L2

KD

FACS cell
cycle plots
post
TPD52L2

KD

Cell cycle
histograms
post
TPD52L2

KD

Cell cycle
histograms,
:sub-G1
population post
TPD52L2 KD

Other results
shown

aHe et al.
(2015)

Oral,
25262828

Figure 1A Figure 1B Figure 1C Figure 2A Figure 2B Figure 2C Figure 3A Figure 3B Figure 3C Figure 4
Cleaved
PARP
detection

Figure S1
TPD52L2 KD
in CAL27 and
KB cells

aPan et al.
(2015)

Liver,
25932170

Figure 1A Figure 1B Figure 1C Figure 2A Figure 2B Figure 2C Figure 3A Figure 3B Figure 3C ND

Xu et al.
(2015)

Gastric,
25746840

Figure 1B Figure 1C Figure 1D Figure 2A Figure 2B,
2C

Figure 2D Figure 3A Figure 3B Figure 3C Figure 1A
TPD52L2
detection
using
immunoblot

Figure 3D
Cleaved
PARP
detection

S
cien

to
m
etrics

1
23



Table 3 continued

Study,
cancer
type,
PubMed ID

Cell
images
post
shRNA
transfection

Histogram
showing
TPD52L2 KD
at transcript
level

Immunoblot
showing
TPD52L2 KD
at protein
level

;Cell
proliferation
post
TPD52L2

KD

Cell
images
post
TPD52L2

KD

;Cell
colony
formation
post
TPD52L2

KD

FACS cell
cycle plots
post
TPD52L2

KD

Cell cycle
histograms
post
TPD52L2

KD

Cell cycle
histograms,
:sub-G1
population post
TPD52L2 KD

Other results
shown

Yang et al.
(2015)

Breast,
24842331

Figure 2A Figure 2B Figure 2C Figure 3A Figure 3B Figure 3C Figure 4A Figure 4B ND Figure 1 qRT-
PCR
detection of
TPD52L2

Figure 5
Pathscan
arrays

Figure S1
Rescue
shRNA
experiment

Wang et al.
(2014)

Glioma,
25629696

Figure 1A Figures 1B,
S1A

Figure 1C Figures 2A,
S1B

Figure 2B Figure 2C Figure 3A Figure 3B ND Figure S1
TPD52L2 KD
using second
TPD52L2

shRNA

ND not done
a Article has since been retracted

S
cien

to
m
etrics

1
23



Table 4 shRNA identities according to Blastn analyses and use of shRNAs in TPD52L2 knockdown studies (index corpus)

Study
Cancer type
examined

PubMed
ID

Sequence A
50-GCGG…
TPD52L2 targeting

Sequence B
50-CCGG…
TPD52L2

targeting

Sequence C
50-CCAT…
LOC105373896 ncRNA,
chr 2

Sequence D
50-CTAG…
NOB1 targeting

Sequence E
50-TTCT…
LOC105370714 ncRNA,
chr 15

Sequence F
50-CTCT…
TPD52L2

targeting

aHe et al. (2015)
Oral

25262828 TPD52L2 targeting Non-targeting

control

TPD52L2

targeting
aPan et al. (2015)
Liver

25932170 TPD52L2 targeting
Non-targetingb

control

Xu et al. (2015)
Gastric

25746840 TPD52L2 targeting Non-targeting

control

Yang et al. (2015)
Breast

24842331 Non-targeting

control

TPD52L2

targeting
TPD52L2 rescue

Wang et al. (2014)
Glioma

25629696 TPD52L2 targeting Non-targeting control TPD52L2

targeting

a Article has since been retracted
b Incorrect use of shRNA’s is highlighted in bold text

S
cien

to
m
etrics

1
23



experiments were shown in the same sequence in the figures of each index publication

(Table 3). In 4/5 index publications, figures were annotated using a bold font similar to

Times New Roman (He et al. 2015; Wang et al. 2014; Xu et al. 2015; Yang et al. 2015).

Blastn analyses of nucleotide sequences within index corpus

As all index publications mentioned the use of lentiviral constructs to perform gene

knockdowns, the 6 shRNA sequences described were examined in detail (Table 4). Initial

Megablast homology searches failed to identify any homology between shRNA sequences

and sequences in the non-redundant nucleotide database, but subsequent Blastn searches

identified homology between the 6 shRNA sequences and human sequences (Table 4). All

index publications included an shRNA sequence 50-GCG GAG GGT TTG AAA GAA TAT

CTC GAG ATA TTC TTT CAA ACC CTC CGC TTT TTT-30 (henceforth referred to as

sequence A, Table 4). Three index publications employed sequence A as a TPD52L2-tar-

geting shRNA, and paired this with ‘‘scrambled’’ shRNA’s which were identified to either

contain sequences homologous to the NIN1/PSMD8 Binding Protein 1 Homologue or NOB1

gene (sequence D, Table 4) (He et al. 2015; Xu et al. 2015), or LOC105370714 on chro-

mosome 15 (sequence E, Table 4) (Wang et al. 2014). Pan et al. (2015) employed sequenceA

as both the TPD52L2-targetting and ‘‘negative siRNA’’ control, whereas Yang et al. (2015)

employed sequence A as a non-targeting control, and an alternative TPD52L2-targeting

shRNA (sequence B) with homology to TPD52L2 (Table 4). Issues with shRNA knockdown

and ‘‘rescue’’ experiments performed are briefly summarised in Table 4. In addition, RT-

PCR primers with 100% homology to Anillin (ANLN, Table 5) were used to amplify

TPD52L2 transcripts by Yang et al. (2015). Thus despite the use of the same (Pan et al. 2015)

or different (Yang et al. 2015) TPD52L2 shRNA sequence(s) as both targeting and negative

controls, or despite comparing TPD52L2 knockdowns with those achieved using NOB1

shRNA instead of non-targeting controls (He et al. 2015; Xu et al. 2015) (Table 4), all index

studies reported significant effects of knocking down TPD52L2 (Table 2).

Retractions

One article (He et al. 2015) was retracted in March 2016, by agreement between the

authors, editor and publisher, on account of the use of an incorrectly identified cell line for

experiments shown within the supplemental data (He et al. 2016). This cell line mis-

identification had been previously reported in 2014 by Dr Amanda Capes-Davis, a

recognised expert in cell line authentication (Capes-Davis and Neve 2016), using the

Comment function of PubMed. The published retraction notice incorrectly stated the nature

of the cell line mis-identification (He et al. 2016), and did not reference concerns raised by

JAB. A second article (Pan et al. 2015) was subsequently retracted by the International

Journal of Clinical and Experimental Medicine in 2016 following an editorial decision

(Retraction 2016). The retraction notice mentioned the existence of other similar articles,

and that the experiments of Pan et al. (2015) had been out-sourced to a biotechnology

company (Retraction 2016).

Identification of similar publications

Given the incorrect use of a NOB1 shRNA as a negative control (He et al. 2015; Xu et al.

2015), despite no obvious link between NOB1 and TPD52L2 gene or protein function, we

hypothesised that other publications with similar figures and erroneous use of shRNA
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Table 5 Summary of characteristics of the 48 articles within the identified corpus

Human gene
targeted using
shRNA or siRNA

Cancer cell line
type studied

Similarity
using
SCIdetect

Google Scholar or text analysis
identifies TPD52L2 shRNA sequence
A used as control?

Core
figures from
index
corpus?

Times New
Roman font used
within figures?

Other

ADRBK1 Breast 0.40 Google Scholar Yes Yes

ANLN Breast 0.41 No Yes Yes Google Scholar
Sequence D (NOB1) used as control

ASNS Breast 0.40 No Yes Yes

CDK8 Breast 0.36 No Some
elements

No

CEP55 Breast Referencea Text analysis Yes Yes

eIF3d Lung 0.41 Google Scholar Yes Yes

GPR137 Pancreatic 0.40 No Yes Yes Google Scholar
Sequence D (NOB1) used as control

Bladder 0.42 Google Scholar Yes Yes

Colon 0.42 No Yes Yes shRNA very similar to sequence D
(NOB1) used as control

Medulloblastoma 0.43 Google Scholar Yes Most elements

HNRNPA1 Lung 0.45 Google Scholar Most
elements

Yes

ICT1 Glioblastoma 0.45 Google Scholar Yes No

IL1R2 Osteosarcoma 0.43 Google Scholar Yes Yes

Long Noncoding

RNA KIAA0125

Gallbladder 0.49 Google Scholar Some
elements

No

Long Non-coding
RNA Linc-ITGB1

Gallbladder 0.43 Google Scholar Some
elements

Some elements

Breast 0.46 Google Scholar Some
elements

No
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Table 5 continued

Human gene
targeted using
shRNA or siRNA

Cancer cell line
type studied

Similarity
using
SCIdetect

Google Scholar or text analysis
identifies TPD52L2 shRNA sequence
A used as control?

Core
figures from
index
corpus?

Times New
Roman font used
within figures?

Other

MPP8 Colon 0.39 Google Scholar Yes Yes

Thyroid 0.46 Google Scholar Yes Yes

MYO6 Glioma 0.41 Google Scholar Yes Yes

Lung 0.44 Google Scholar Yes Yes

Liver 0.43 Google Scholar Yes Yes

Colorectal 0.42 Google Scholar Yes Yes

NOB1 Glioma Reference No Yes Yes One NOB1 siRNA sequence included
within sequence D

Breast Reference No Yes No NOB1 shRNA targetting sequence
includes Sequence E

Prostate Reference Unknown Most
elements

Yes shRNA sequences not provided

Liver Reference No Most
elements

Yes

Ovarian Reference No Most
elements

No

Osteosarcoma Reference No Yes Yes NOB1 targetting shRNA predicted to
target PNO1, not NOB1

PDLIM5 Gastric 0.38 No Most
elements

Yes Google Scholar
Sequence D (NOB1) used as control

PP5 Colorectal 0.42 Google Scholar Yes Yes

PPM1D Lung 0.42 No Yes Yes

PTGR1 Gastric 0.42 Google Scholar Yes No

PPP4R1 Breast 0.39 Text analysis Yes No
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Table 5 continued

Human gene
targeted using
shRNA or siRNA

Cancer cell line
type studied

Similarity
using
SCIdetect

Google Scholar or text analysis
identifies TPD52L2 shRNA sequence
A used as control?

Core
figures from
index
corpus?

Times New
Roman font used
within figures?

Other

RPS15A Lung 0.44 Google Scholar Yes Yes

Glioblastoma 0.43 Google Scholar Yes Yes

TCTN1 Medulloblastoma Reference Text analysis Yes Yes Sequence A missing most 30 nucleotide

Glioma Reference No Yes Yes

Pancreatic Reference Text analysis Yes Yes

TPD52L2 Oral Indexb No Index Yes Google Scholar identified sequences A,
D, used as targeting and control
sequences, respectively

Liver Index Google Scholar Index No Sequence A used as both targeting and
control sequence

Gastric Index No Index Yes Sequence D (NOB1) identified by text
analysis, used as control

Breast Index Text analysis Index Yes

Glioma Index No Index Yes

TPTE2P1 Gallbladder 0.45 Google Scholar Some
elements

Yes

USP39 Thyroid 0.44 Google Scholar Some
elements

Yes

Liver 0.42 Google Scholar Yes Yes

ZFR Pancreatic 0.41 Google Scholar Yes Yes

ZFX Breast 0.41 No Some
elements

Yes

a Article from reference corpus
b Article from index corpus
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sequences may exist within the literature. PubMed searches were performed as described in

the Methods to identify 10 other similar publications (Tables 1, 5). These publications all

examined single genes [NOB1, tectonic family member 1 (TCTN1), or centrosomal protein

of 55 kDa (CEP55)] using gene knockdown approaches in human cancer cell lines,

included a similar series of figures, and were published by authors from China (Table 5).

Seven (70%) of these papers (Table 5) included all core figures that characterised index

cases (Table 3). In addition, 3/10 publications employed the TPD52L2 shRNA sequence A

as a non-targeting control (Table 5), as did 2/5 index publications (Table 4).

As described by in the Methods, intertextual distance analysis was performed to define

thresholds for the analysis of the PubMed and other corpora. As a result, publications with

intertextual distances of\0.50 were subjected to detailed visual inspection. This identified

18 publications from the PubMed corpus [‘‘similar’’ to Yang et al. (2015)] that included the

index corpus and 4 additional reference publications (Table 1). Nine additional papers

were also published by groups of authors from China, reported the consequences of

knocking down single genes in 1–2 human cancer cell lines, and included some or all of the

data elements common to the index publications (Tables 3, 5).

Google Scholar searches

Google Scholar searches were performed to identify other instances of the shRNA

sequences A–F (Table 4) within the published literature. These searches identified that

sequence E, used as a non-targeting control by Wang et al. (2014) (Table 4), has been

widely used as a non-targeting control, so this sequence was not analysed further. Sequences

B, C and F were not identified in any publications beyond index publications (Table 4).

Google Scholar searches identified sequence A (TPD52L2 shRNA) in 28 publications,

which included 2/5 index publications (He et al. 2015; Pan et al. 2015) (Table 4). Two of

these 28 publications were behind a paywall, and could not be analysed. In each of the

other 24 publications examining a total of 17 different human genes, the TPD52L2 shRNA

sequence A was used as a negative/non-targeting control (Table 5). Visual inspection

followed by Blastn analyses identified additional publications where sequence A was

employed as a non-targeting shRNA (Table 5). In total, 30/48 (63%) of the identified

cohort may have incorrectly used the TPD52L2 shRNA sequence A as a non-targeting

control (Tables 4, 5). Sequence D (NOB1 shRNA) was also incorrectly employed as a

negative control in 2/5 index publications (He et al. 2015; Xu et al. 2015). Google Scholar

searches identified sequence D in one index publication (He et al. 2015) (Tables 4, 5), and

in 3 additional publications examining 3 other genes (Table 5). In all these cases, sequence

D was employed as a non-targeting control (Table 5). All papers within Google Scholar

corpora were published by groups of authors from China, described single gene knock-

downs in human cancer cell lines, included some or all data elements shared by index

publications, and showed intertextual distances\0.5 (Fig. 2; Table 5).

Discussion

Summary of study findings and their potential significance

We have used a number of approaches to identify 48 examples of publications from China

that show stringent similarities in terms of topic, text and data presentation, despite the fact
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that they are authored by individuals with little overlap or apparent relationship. We now

consider how the relatively rapid appearance of such highly similar publications may have

occurred. It is possible that plagiarism could account for these similar studies (Tables 3, 5),

and from the degree of text overlap between studies, text plagiarism may have taken place

in some cases. However, a characteristic feature of these papers is the inclusion of similarly

formatted and presented figures, which often include a font similar to Times New Roman

used in bold (Table 5). It would not be expected that figures deriving from independent

laboratories should have such a strikingly similar appearance, particularly when published

in different journals. The very similar appearance of figures, combined with inconsistencies

between data descriptions versus data shown in figures, suggest some degree of uncoupling

between the production of figures versus text. This could be consistent with the use of

external suppliers of research data.
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Fig. 2 Dendrogram for cluster analysis of the identified corpus (n = 48), including the 15 reference
publications (coloured blue). Degrees of red colour are used to identify those publications that were closest
to reference papers. Black denotes 5 publications with intertextual distances of C0.5 that show overlap with
either the topics and/or techniques employed by the 15 reference papers. PubMed identifiers are shown for
the 5 index publications, and for publications with intertextual distances of C0.5 (Wilson et al. 2001;
Shehata et al. 2008; Verma et al. 2009; Konwisorz et al. 2010; Boyer-Guittaut et al. 2014). Truncated
PubMed identifiers are shown for all other publications
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All of the similar publications that we identified feature authorship teams from China.

While the assessment of publication numbers as opposed to quality occurs in many

countries, sometimes with undesired results (Anderson et al. 2007; Butler 2003; Djuric

2015; van Dalen and Henkens 2012), it has been recognised that Chinese doctors and

researchers are under particularly stringent pressure to publish (Hvistendahl 2013; Lin

2013; Tian et al. 2016; Ye et al. 2013; Zeng and Resnik 2010). This can take the form of

being required to publish a quota of articles per year, while also being required to teach and

fulfil other requirements (Tian et al. 2016). Recent interviews with de-identified young

Chinese academics identified a number of strategies that academics were using to meet

publication quotas (Tian et al. 2016). These included working very long hours, which has

been independently supported (Wang et al. 2012), or repeatedly applying the same method

to maximise publication output (Tian et al. 2016), such as performing meta-analyses of

existing published data (Ye et al. 2013). Although no medical doctors were interviewed by

Tian et al. (2016), reference was made to medical doctors in China using education

companies to obtain research results, and then asking others to write the ensuing manu-

script. This approach resembles the sale of research manuscripts in China, as uncovered by

Hvistendahl (2013). Uncertainty was expressed as to whether education company-supplied

results were real, or fabricated (Tian et al. 2016). The retraction notice for Pan et al. (2015)

subsequently claimed that the described experiments had been out-sourced to a biotech-

nology company (Retraction 2016). It is currently unknown as to whether data supplied by

any education/biotechnology company would represent the results of bona fide laboratory

experimentation, data falsification, invention, or a combination of these activities. How-

ever, the fact that the descriptions of some gene knockdown experiments (Tables 4, 5)

were entirely inconsistent with the results obtained suggests that at least some of these

experiments were not performed as described.

Unrealistic pressure to publish could generate a significant demand for ‘‘assisted’’

manuscripts, particularly if academics in China are expected to publish multiple articles

per year (Tian et al. 2016). One strategy to meet this demand could include content

development using a ‘‘theme and variations’’ model. For example, content could be

developed around particular human genes (‘‘themes’’) that have been under-investigated

relative to others, but can nonetheless be linked with a topic of broad interest, such as

human cancer. TPD52L2 is an example of such a gene, but others may have been similarly

targeted (Table 5). Due to the lack of existing publications, understudied genes could then

be targeted in multiple cancer types (the ‘‘variations’’), giving rise to multiple publications.

Targeting under-studied genes or processes could also increase the likelihood that content

errors go undetected during peer review, although nonsensical ‘‘rescue’’ experiments

(Yang et al. 2015) (Table 4), and use of an identical shRNA for TPD52L2 targeting and as

a non-targeting control (Pan et al. 2015) (Table 4) should not have required restricted

expertise for their detection. Simultaneous production and then submission of related

manuscripts may then prevent text similarities from being detected by plagiarism-detecting

software. Journals that do not screen submitted manuscripts for text plagiarism could also

be actively targeted. Other developments within scientific publishing may be creating a

more receptive market for poor quality research, such as increasing numbers of both

academic journals (Michels and Schmoch 2012) and publications in some fields (Pautasso

2012), leading to both information and peer-reviewer overload (Anderson et al. 2007;

Parolo et al. 2015; Pautasso 2012; Siebert et al. 2015).

A ‘‘theme and variations’’ model could also allow content to be generated with greater

efficiency, at less cost. If the intent of content generation is to meet demand and gain profit,

both aims would be more efficiently served if research content were largely or entirely
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fabricated. Based on past experience (Roslan et al. 2014; Shehata et al. 2008), the core

experiments described by index studies (Tables 1, 2) could require 6 months–1 year of

laboratory work. If manuscripts are then sold in China for US$1600–$26,300 (Hvistendahl

2013), the cost of generating bona fide experimental data could exceed the market’s

capacity to pay. This fact, combined with other errors identified in these papers (Tables 4,

5), suggests that at least some of these gene knockdown data could be fabricated.

Widespread ‘‘scientific’’ content manufacture occurred through use of the SCIgen

algorithm (Bohannon 2015; Djuric 2015; Labbé and Labbé 2013), and while such non-

sensical manuscripts can be distracting, they are unlikely to lead to further research.

However, misreporting the results of gene knockdowns in human cancer cell lines could

have very different consequences. Pre-clinical cancer research results are drawn upon for

the translation of research to patients. Novel pre-clinical results supported by multiple

recent, independent reports (Tables 2, 5) may encourage others to replicate or extend such

findings. Indeed, all 5 TPD52L2 publications encourage further research, and highlight the

possible clinical relevance of their findings (He et al. 2015; Pan et al. 2015; Wang et al.

2014; Xu et al. 2015; Yang et al. 2015). At worst, such an approach may endanger patient

safety, if only by stopping or delaying more promising research. At best, this could lead to

financial and human research resources being wasted in research environments that are

increasingly competitive (Anderson et al. 2007; Fang and Casadevall 2015; Kornfeld

2012). Finally, systematic data invention and reporting could have broader adverse con-

sequences to specific trust in pre-clinical cancer research, overall trust in science, and use

of scientific results in broader decision making.

Strengths and weaknesses of the approaches used

The combination of content expertise and textual analysis capacity represented a strength

of our approach. Sole reliance upon automated tools for the detection of misconduct seems

dangerous for many reasons, including the fact that such tools may be used to define

boundaries between acceptable and unacceptable practices. A more valuable approach is to

employ automatic and mining tools to help to identify novelty, spot errors or highlight

inconsistencies, and to combine these approaches with the identification of real and

understandable facts. However, the identification of such facts required the visual

inspection of articles, and this undoubtedly limited throughput and risked introducing bias.

As such, we did not attempt to conduct exhaustive searches for publications that were

highly similar to index cases. We also recognise that as there is presently no definitive

explanation for the similarity between the studies that we have identified (Tables 3, 5),

more extensive searches could be considered to be unwarranted at this point.

Future directions

If future investigations confirm the widespread existence of gene knockdown studies

containing education/biotechnology company-derived data, it will be vitally important to

be able to robustly identify such publications, in order to measure their prevalence within

the research literature, distinguish them from genuine contributions, and deter their future

publication. As a first step, the broader application of the methods that we describe is

predicted to identify other very similar papers, and our own analyses support this (data not

shown). However, we noted that intertextual distance analyses (Fig. 2; Table 5) did not

identify the very high level of similarity identified between SCIgen articles (Labbé and
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Labbé 2013), possibly because SCIgen works with a limited vocabulary, creating greater

degrees of similarity between SCIgen papers. This suggests that the robust detection of

articles containing biotechnology or education company-produced data may be more

challenging, and may require new search algorithms to be developed. Another key feature

of the papers identified was the similar appearance of their figures (Tables 3, 5), and

development of algorithms to reliably identify similar figures may be useful.

In the shorter term, the development of particular algorithms may help to identify

potentially suspect papers for further analysis. Automated extraction of control nucleotide

sequences from papers combined with nucleotide sequence homology searches could

identify additional publications that have employed negative control siRNA/shRNA

sequences with homology to known genes. However, RNA interference publications often

also describe control RT-PCR primer sequences that show high levels of homology to

known genes. Matches between control nucleotide sequences and genes could therefore

identify large numbers of falsely-positive manuscripts. Another source of error is the

splitting of DNA sequences between text lines, which can prevent their identification. As

evidence of this problem, Google Scholar searches did not identify every instance of

sequences A, B, D or F that we could visually identify within the 5 TPD52L2 publications

(Table 4).

All of the papers identified also employed human cancer cell lines, and one index

publication (He et al. 2015) was ultimately retracted because some experiments were

performed in a mis-identified cell line (He et al. 2016). Computational approaches could be

designed to automatically identify papers that include cell lines that have been flagged as

contaminated and/or mis-identified. However, variations in cell line identifier use could

again lead to both falsely-positive and -negative results. Furthermore, performing exper-

iments in contaminated or mis-identified cell lines may be unintentional, as opposed to a

hallmark of misconduct.

Conclusions

In summary, we report preliminary evidence that education/biotechnology companies may

be providing content pertaining to gene knockdown experiments in human cancer cell lines

to researchers based in China, who then publish these results without disclosing their

origin. A driving force behind these publications could be imposed publication quotas,

which may be particularly difficult for Chinese medical doctors to meet, given their limited

time for research (Hvistendahl 2013; Tian et al. 2016). The possibility that ‘‘assisted’’

manuscripts may be produced on a large scale supports the inadvisability of employing

publication quotas for performance management or career progression (Djuric 2015; Lin

2013), and of considering research to be a career necessity for physicians (Altman 2002).

The future detection and deterrence of such fraudulent manuscripts will be of vital

importance, to ensure that such results do not mis-direct future cancer research efforts, or

reduce broader trust in science and research.
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