
18/09/2013

1

© Yves.Ledru@imag.fr 2013 Page 1

An introduction to formal
specifications and JML

Concluding remarks

Yves Ledru
Université Grenoble-1

Laboratoire d’Informatique de Grenoble

Yves.Ledru@imag.fr

2013

© Yves.Ledru@imag.fr 2013

Missing elements

• More should be said about:
– How JML handles inheritance

– How to specify interfaces

– How to specify interfaces of classes with a hidden
state

– How to support different abstraction levels in 
specifications

• Moreover JML provides its own
implementation of some data structures (e.g. 
JMLcollection)

Page 2



18/09/2013

2

© Yves.Ledru@imag.fr 2013

Quality vs cost

• JML assertions are a way to improve quality of java 
programs, by associating them to precise
specifications.

• This comes at the cost of writing specifications: 
should we write the same things twice (in Java and 
JML)?
– No, if the JML spec is too close to the Java code

– Yes if they are at different abstraction/complexity levels

– Yes if you write a property once (e.g. invariant) and it is
checked at lots of places in the program!

Page 3

© Yves.Ledru@imag.fr 2013

Multi-person developments

• Most successful sofware are built by several distinct 
developers:
– Either working simultaneously (development team)

– Or working on subsequent versions in time

• It is difficult to make sure that everybody is aware of 
the expected properties of the software or its data 
structures.

• JML assertions provide an active documentation of 
these properties, which can be checked by a 
conventional testing activity.

Page 4



18/09/2013

3

© Yves.Ledru@imag.fr 2013

Subcontractors

• The JML specification provides a precise
reference which can be unambiguously
checked by both parties!

• When a problem arises:
– It means that specification and code disagree

– It is often easier to decide whether the code or the 
spec is wrong.

Page 5

© Yves.Ledru@imag.fr 2013

Difficulties in the expression of a 
specification

• Find the right abstraction level for the 
specification, in order to keep implementation
freedom.

• Write cost-efficient specifications, e.g. write
invariants and history constraints which apply
to all methods of the class.

• An objective could be to produce 5 to 10% of 
JML code in the program. (this shows that
everything was not written twice!)

Page 6



18/09/2013

4

© Yves.Ledru@imag.fr 2013

Use assertions and contract-based
specifications!

• JML 5.6 is old, but it is a nice language to illustrate numerous
constructs for contract-based specifications.

• Other languages support the same approach, for Java and 
for other programming languages (e.g. Code Contracts for 
C#)

• It is also possible to use the Java assert mechanism, but it
makes it more difficult to express invariants, or to refer to the 
old state.

• Let us hope that the lightweight specification mechanisms of 
JML will eventually find their way in the daily practice of 
software engineers!

Page 7


