
25/09/2013

1

© Yves.Ledru@imag.fr 2013 Page 1

An introduction to formal
specifications and JML

1. Why use (formal) specifications?

Yves Ledru
Université Grenoble-1

Laboratoire d’Informatique de Grenoble

Yves.Ledru@imag.fr

2013

© Yves.Ledru@imag.fr 2013

Why do we need specifications?

• To make a distinction between:
– What a program does. (specification)

– How the program does it. (implementation)

• To provide a basis for the validation/verification
(V&V) of the program: 
you need a reference to decide on the conformance
of the program to this reference!

• V&V can proceed in different ways:
– Informal reasoning

– Testing

– Formal proof (using proof tools)

Page 2



25/09/2013

2

© Yves.Ledru@imag.fr 2013

Why do we need specifications? (2)

• To provide a concise description of the program (not 
always the case)

• Example : concise specification of sort(l)

Forall i,j in 0...len(Result)-1. i<j => l(i) <= l(j)
and
Result is a permutation of l

• This specification:
– Is concise, mixing formal and informal languages

– Applies to all variants of sort (bubble sort, quicksort,…)
Page 3

© Yves.Ledru@imag.fr 2013

Specifications and Components

• When you buy a component (black box), you
only need to read the specification to 
understand:
– what it does

– Under which assumptions

• You don’t need to test it to understand what it
does, …

• …, but you may test it to evaluate its quality.

Page 4



25/09/2013

3

© Yves.Ledru@imag.fr 2013

Sub-contractors

• In a global world, it may the case that the V 
cycle is shared between a main contractor
and its sub-contractor(s).

Page 5

Requirements
and Specifications

Design

Detailed design

Coding

Unit Testing

Integration and
System Testing

Main contractor

Sub-contractor(s)

Specifications
make sense here!

© Yves.Ledru@imag.fr 2013

Sub-contractors and specification

• The specification is the reference document 
between the main and the sub contractors!

• The main contractor is responsible to provide
a correct specification!

• The sub-contractor is responsible to provide
code which conforms to the specification!

• When a problem arises, the specification
helps to clarify the responsibilities of each
stake-holder.

Page 6



25/09/2013

4

© Yves.Ledru@imag.fr 2013

Implementation freedom and evolution

• The specification tells « what » but not 
« how »: it leaves implementation freedom!

• Implementation freedom allows
– To quickly release a first unefficient

implementation

– To optimize implementation in release 2

– To allow evolution of every unspecified feature

• Unveiling the code may block evolution: the 
code does not distinguish what is fixed and 
what may evolve!

Page 7

© Yves.Ledru@imag.fr 2013

Limits of natural language

• Formal specifications can be written in natural
language…

• … but natural language is often ambiguous!

Page 8



25/09/2013

5

© Yves.Ledru@imag.fr 2013

Ambiguity 1 : « sorted »

• « the list of names is sorted » 
looks like a precise specification.

• Can you use the Unix sort command?

• How do you sort uppercases and lowercases?

• E.g. « Dupont » and « du Pont »

• What about special characters? 
« é » vs « e », « ç » vs « c »

• « the list of names is sorted in alphabetical order » 
is more precise!

• Have a look at the Wikipedia page on « Alphabetical
Order » for more examples…

Page 9

© Yves.Ledru@imag.fr 2013

Ambiguity 2: Opening hours

• Taken from a real example:
– The super-market is opened

from 8:30 till 20:30 
during summer

– Otherwise it is opened
every day from 9:00 to 19:30

– It is opened on Sunday morning, 
during the whole year

• When does it close on Sunday (incomplete
and incorrect specification)?

Page 10



25/09/2013

6

© Yves.Ledru@imag.fr 2013

Ambiguity 3: Airport Security

article 4.1, 4th chapter of Annex 17 of ICAO
Each Contracting State shall establish 
measures to prevent weapons, explosives 
or any dangerous devices which may be 
used to commit an act of unlawful interference, the 
carriage or bearing of which is not authorized, from 
being introduced, by any means whatsoever, on board 
an aircraft engaged in international civil aviation.

• This sentence is ambiguous ! Are all weapons not 
authorized? Are there weapons that are authorized?

Page 11

© Yves.Ledru@imag.fr 2013

Limits of natural language

• Ambiguities lead to diverging interpretations
of the reference document!

• Difficult to establish who is right/wrong? Both
stakeholders (main and subcontractor) may
be right but not agree!

• Even more difficult when the document is
written in a foreign language (english) for both
stakeholders!

Page 12



25/09/2013

7

© Yves.Ledru@imag.fr 2013

The need for a precise specification
language

• Natural language is unsufficient!

• Formal languages, whose semantics is
defined unambiguously by mathematical
notions are a solution!

• Several languages exist. This course uses 
JML…

Page 13

© Yves.Ledru@imag.fr 2013

Why JML (Java Modeling Language)?

• Based on the syntax of Java and close to 
code (Evolution and not Revolution)

• Because the RAC (Run-time Assertion 
Checking) can be used in a testing approach

• Because a lot of work has been dedicated to 
its definition, and the identification of useful
constructs.

Page 14



25/09/2013

8

© Yves.Ledru@imag.fr 2013

Similar languages

• JML is based on « Design By Contract »TM

• Other languages use similar concepts:
– OCL (Object Constraint Language), part of UML2

– Spec# and Code Contracts (.NET)

– Modern Jass for Java

– Overture/VDM

Page 15

© Yves.Ledru@imag.fr 2013

Variants of JML

• This course uses JML5.6, an older version of 
JML which only supports the concepts of Java 
1.4

• OpenJML is a more recent version, which
supports more recent constructs of Java.

• There exist other variants, with varying levels
of tool support, documentation, and 
maintenance!

Page 16



25/09/2013

9

© Yves.Ledru@imag.fr 2013

A first example : 
implementing a set as a tree

Page 17

© Yves.Ledru@imag.fr 2013

SetAsTree data structure

• Consider the following Java Class

• Give several instantiations of objects of this
class.

Page 18

public class SetAsTree{
public Integer val;
public SetAsTree ltree;
public SetAsTree rtree;

…

val

ltree rtree



25/09/2013

10

© Yves.Ledru@imag.fr 2013

Here are some examples…

Page 19

-7

15

10

20

5

20

3

-1

3

61

4

8

9

© Yves.Ledru@imag.fr 2013

… and some other examples

Page 20

-7

15

10

20

20

15

30

1

4

8

9



25/09/2013

11

© Yves.Ledru@imag.fr 2013

Intended use of the class…

• The class is intended to represent a set of 
Integers, stored in a sorted tree.

• Consequences:
– Integer values may only appear once in the tree

– Elements in the left tree are less than the value

– Elements in the right tree are greater than the 
value

Page 21

© Yves.Ledru@imag.fr 2013

Valid and invalid examples (1)

Page 22

-7

15

10

20

5

20

3

-1

3

61

4

8

9



25/09/2013

12

© Yves.Ledru@imag.fr 2013

Valid and invalid examples (2)

Page 23

-7

15

10

20

20

15

30

1

4

8

9

© Yves.Ledru@imag.fr 2013

The case of the empty set

• May val take value null?

• Yes, because the set may be empty!

• But only at the root of the tree
(to minimize the data structure)

Page 24Page 24

1

4

8

9



25/09/2013

13

© Yves.Ledru@imag.fr 2013

The properties of SetAsTree

1. Integer values may only appear once in the tree
(this property can be deduced from properties 2 and 3)

2. Elements in the left tree are less than val

3. Elements in the right tree are greater than val

4. val may only be null at the root of an empty set

5. There are no loops in the structure and only one 
way from the root to a given element
(this property can be deduced from properties 2 and 3)

Page 25

© Yves.Ledru@imag.fr 2013

(incorrect) Operations can invalidate
these properties

Page 26

3

61

4

8

Page 26

61

4

8

Insert(8) 3

61

4

8

8

delete(3)



25/09/2013

14

© Yves.Ledru@imag.fr 2013

How can we make sure that these 5 
properties will always be fulfilled?

• It should be documented somewhere
(otherwise, it will be rapidly forgotten and 
maintenance operations might introduce
defects in operations).

• It should be covered by regression tests:
– But you need to express an appropriate « assert » 

for each test

• It may be expressed in JML and checked
at run-time! 

Page 27


