18/09/2013

An introduction to formal
specifications and JML

Invariant properties

Yves Ledru
Université Grenoble-1
Laboratoire d’'Informatique de Grenoble

Université

Yves.Ledru@imag.fr Joseph
Fourier
2 O l 3 GRENOBLE
© Yves.Ledru@imag.fr 2013 Page 1

Invariant properties

 Invariants are properties that should be true at
« visible » instants in the execution of the
class.

* Here, we expect that the 5 properties of
SetAsTree are invariant!

 Invariant properties are expressed in JML as
meaningful comments.

© Yves.Ledru@imag.fr 2013 Page 2

JML syntax

» JML assertions (invariants, but also pre- and
post-conditions, ...) are expressed as
— /@ JML text of the assertion
—*@ JML text of the assertion @*/

* They appear as java comments and are
ignored by the java compiler.

* But the JML compiler (jmic) recognizes them
and processes them adequately.

« JML assertions are based on the Java syntax.

© Yves.Ledru@imag.fr 2013 Page 3

Invariants for SetAsTree

public class SetAsTree{
public Integer val;
public SetAsTree ltree;
public SetAsTree rtree; | Val may only be null if Itree and riree

_are null (definition of the empty set)

/*@ public invariant
@(Cval 1= null) || (Itree == null && rtree == null));

/*g gubl ic invariant Property 2: Elements in the left tree
@((Itree == null) || —L9re less than val
@ (Mltree.emptySet() && (Itree.max() < val.intvalueQ)));
@*/ . .

/*@ public invariant Property 3: Elements in the right tree
@((rtree == null) || —|are greater than val

@ (Irtree.emptySet() && (rtree.min() > val.intValue(Q))):

0/
//@ public invariant (* no cycle in the tree *);

Non executable, natural language,
© Yves.Ledru@imag.fr 2013 assertion (for documentation purposes)

18/09/2013

18/09/2013

Checking the properties

* When compiled with jmic the assertions will
be checked at run-time:

— before and after the execution of any method of
the class

— after the execution of any constructor

© Yves.Ledru@imag.fr 2013 Page 5

Example of a failing test

@Test

public void testSequence 1) {
try{
SetAsTree s5=new SetAsTree(5);
SetAsTree sl=new SetAsTree(l);
s5.setRtree(sl);

) } catch (. \\

} There was 1 failure:

1) testSequence_1(FailingTestSetAsTreeJUnit4)
junit.framework.AssertionFailedError:
by method SetAsTree.setRtree@post<File "SetAsTree.java",
line 45, character 11> regarding specifications at
File "SetAsTree.java", line 9, character 26 when
'val'is 5
‘rtree’is 1
© Yves.Ledru@ 'this'is 5 1

Invariants express a « contract »

Each method must establish the invariant on exit
It relies on the invariant on entry
The invariant may be false inside the method.

Just like the rules of the classroom:

— Chairs and tables must be aligned when leaving the room,
at the end of the lesson

— Itis guaranteed that they will be aligned when entering the
room

— Alignment may be broken during the lesson, for
pedagogical purposes!

© Yves.Ledru@imag.fr 2013 Page 7

A trade-off between quality and cost

* Invariants are written once...
... and apply to all methods of the class

» As will be seen in exercise 2, it is easier to
express an invariant that constraints the tree
than to write operations which comply with the
invariant.

© Yves.Ledru@imag.fr 2013 Page 8

18/09/2013

« Pure » functions (1)

* The assertions make use of methods of class
SetAsTree(): emptySet(), max(), min()

/*@ public invariant

@((ltree == null) ||
@ ("tree.emptySet() && (Itree.max() < val.intValueQ))):

@*/

» Since the assertions are executed at run-time,
care must be taken that they should not
modify the behaviour of the class!

» Therefore, only « pure functions » may be
used in the JML assertions.

© Yves.Ledru@imag.fr 2013 Page 9

«Pure » functions (2)

* A « pure » function is a method that is not side-
effecting, i.e. which does not modify the state of the
object where it is executed.

* It must be declared as /7*@ pure @*/

» Examples:
public /7*@ pure @*/ boolean emptySet(){
return val == null;
3

public /7*@ pure @*/ int max({
if (rtree !'= null
&& rtree.getval().intvalue() > val.intvalue())
{return rtree.max();}
else return val.intvalue();

}

© Yves.Ledru@imag.fr 2013 Page 10

18/09/2013

18/09/2013

Other restrictions in assertions

» Side-effecting java constructs, such as
=, +=, ++ may not be used inside JML
assertions.

© Yves.Ledru@imag.fr 2013 Page 11

Invariants and assertions

Please note that the invariant is not checked
inside an assertion!

E.g. it is not checked when entering max()
inside the invariant.

(otherwise it would loop)

But it is checked when entering max() inside
the code of a method.

© Yves.Ledru@imag.fr 2013 Page 12

The jmlc compiler

» Jmlc instruments the methods of the class by

adding code on entry and exit of each
method.

* It then compiles this instrumented code into

java bytecode.

* The compiled code checks the assertions at

run-time and raises a JML exception when

they are violated.

* In this course, we always use the —O option

(old semantics).

© Yves.Ledru@imag.fr 2013

Page 13

Checking that methods are pure

* The jmlc compiler performs some static

checks that a method declared as « pure » is

actually pure.

© Yves.Ledru@imag.fr 2013

Page 14

18/09/2013

Development process

» First compile your java class with jmic

» Then test it until you are confident that it is
correct.

 Finally, recompile your class with javac.
Invariants will no longer be checked at
execution time, but the class will keep the
same (validated) behaviour.

© Yves.Ledru@imag.fr 2013 Page 15

Performance

» Adding JML assertions slows down the execution of
the code and increase memory consumption.

* This is one of the reasons for recompiling the
validated class in Java.

 Itis sometimes tempting to write more « efficient »
assertions, to speed up the evaluation of invariants.

» But efficiency may be at the cost of readibility, and
complex assertions are error-prone!

© Yves.Ledru@imag.fr 2013 Page 16

18/09/2013

© Yves.Ledru@imag.fr 2013

Null objects

Numerous run-time errors are due to the use of null
objects.

JML is able to check that an object includes a null
value and raises an exception.

For data structures such as SetAsTree, this would
be a problem because the fields of the class may
become null.

Therefore, the class is marked as
/*@ nullable by default @*/

Individual variables may also be marked as /7*@
nullable @*/ or /7*@ non_null @*/

Page 17

© Yves.Ledru@imag.fr 2013

Tools used in this course

Page 18

18/09/2013

JML5.6

JML5.6 is available at the following address:
http://sourceforge.net/projects/imispecs/files/imispecs/5.6 _rc4/
To install it under windows:

— download file JML.5.6_rc4.tar.gz

— Extract it under C:\JML

— And add C:\JML\bin# a to your path

A more complete documentation on JML is available at the
following address:

http://[mlspecs.org

Or at http://www.eecs.ucf.edu/~leavens/IML/jmIrefman/

© Yves.Ledru@imag.fr 2013 Page 19

Junit4

Is a test driver for Java

A test case is a java method of a test class
annotated by @test

JUnit discovers the test methods of the class and
executes them sequentially.

If test execution does not raise an exception, the test
succeeds.
If test execution raises an exception, the test:

— Is a failure, if the default was anticipated (e.g. detected by
an assert)

— Is an error, if the default was not expected (e.g. run-time
exception).

© Yves.Ledru@imag.fr 2013 Page 20

18/09/2013

10

JUnit4 (2)

» Often all test cases start with the same code or end
with the same code. In JUnit4 it is possible to
annotate methods as
— @Before
— @After

In order to execute these before/after every test.

e Static methods annotated as
— @BeforeClass
— @AfterClass

Are executed once at the beginning or at the end of
the tests.

© Yves.Ledru@imag.fr 2013 Page 21

18/09/2013

11

