
18/09/2013

1

© Yves.Ledru@imag.fr 2013 Page 1

An introduction to formal
specifications and JML

Invariant properties

Yves Ledru
Université Grenoble-1

Laboratoire d’Informatique de Grenoble

Yves.Ledru@imag.fr

2013

© Yves.Ledru@imag.fr 2013

Invariant properties

• Invariants are properties that should be true at
« visible » instants in the execution of the
class.

• Here, we expect that the 5 properties of
SetAsTree are invariant!

• Invariant properties are expressed in JML as
meaningful comments.

Page 2

18/09/2013

2

© Yves.Ledru@imag.fr 2013

JML syntax

• JML assertions (invariants, but also pre- and
post-conditions, …) are expressed as
– //@ JML text of the assertion

– /*@ JML text of the assertion @*/

• They appear as java comments and are
ignored by the java compiler.

• But the JML compiler (jmlc) recognizes them
and processes them adequately.

• JML assertions are based on the Java syntax.

Page 3

© Yves.Ledru@imag.fr 2013

Invariants for SetAsTree

Page 4

public class SetAsTree{
public Integer val;
public SetAsTree ltree;
public SetAsTree rtree;

/*@ public invariant
@((val != null) || (ltree == null && rtree == null));
@*/

/*@ public invariant
@((ltree == null) ||
@ (!ltree.emptySet() && (ltree.max() < val.intValue())));
@*/

/*@ public invariant
@((rtree == null) ||
@ (!rtree.emptySet() && (rtree.min() > val.intValue())));
@*/

//@ public invariant (* no cycle in the tree *);

Val may only be null if ltree and rtree
are null (definition of the empty set)

Property 2: Elements in the left tree
are less than val

Property 3: Elements in the right tree
are greater than val

Non executable, natural language,
assertion (for documentation purposes)

18/09/2013

3

© Yves.Ledru@imag.fr 2013

Checking the properties

• When compiled with jmlc the assertions will
be checked at run-time:
– before and after the execution of any method of

the class

– after the execution of any constructor

Page 5

© Yves.Ledru@imag.fr 2013

Example of a failing test

Page 6

@Test
public void testSequence_1() {
try{
SetAsTree s5=new SetAsTree(5);
SetAsTree s1=new SetAsTree(1);
s5.setRtree(s1);
} catch (…

}
}

There was 1 failure:
1) testSequence_1(FailingTestSetAsTreeJUnit4)
junit.framework.AssertionFailedError:

by method SetAsTree.setRtree@post<File "SetAsTree.java",
line 45, character 11> regarding specifications at

File "SetAsTree.java", line 9, character 26 when
'val' is 5
'rtree' is 1
'this' is 5 1

18/09/2013

4

© Yves.Ledru@imag.fr 2013

Invariants express a « contract »

• Each method must establish the invariant on exit

• It relies on the invariant on entry

• The invariant may be false inside the method.

• Just like the rules of the classroom:
– Chairs and tables must be aligned when leaving the room,

at the end of the lesson

– It is guaranteed that they will be aligned when entering the
room

– Alignment may be broken during the lesson, for
pedagogical purposes!

Page 7

© Yves.Ledru@imag.fr 2013

A trade-off between quality and cost

• Invariants are written once…

• … and apply to all methods of the class

• As will be seen in exercise 2, it is easier to
express an invariant that constraints the tree
than to write operations which comply with the
invariant.

Page 8

18/09/2013

5

© Yves.Ledru@imag.fr 2013

« Pure » functions (1)

• The assertions make use of methods of class
SetAsTree(): emptySet(), max(), min()

• Since the assertions are executed at run-time,
care must be taken that they should not
modify the behaviour of the class!

• Therefore, only « pure functions » may be
used in the JML assertions.

Page 9

/*@ public invariant
@((ltree == null) ||
@ (!ltree.emptySet() && (ltree.max() < val.intValue())));
@*/

© Yves.Ledru@imag.fr 2013

« Pure » functions (2)

• A « pure » function is a method that is not side-
effecting, i.e. which does not modify the state of the
object where it is executed.

• It must be declared as /*@ pure @*/

• Examples:

Page 10

public /*@ pure @*/ boolean emptySet(){
return val == null;

}
public /*@ pure @*/ int max(){
if (rtree != null

&& rtree.getVal().intValue() > val.intValue())
{return rtree.max();}

else return val.intValue();
}

18/09/2013

6

© Yves.Ledru@imag.fr 2013

Other restrictions in assertions

• Side-effecting java constructs, such as
= , += , ++ may not be used inside JML
assertions.

Page 11

© Yves.Ledru@imag.fr 2013

Invariants and assertions

• Please note that the invariant is not checked
inside an assertion!

• E.g. it is not checked when entering max()
inside the invariant.

• (otherwise it would loop)

• But it is checked when entering max() inside
the code of a method.

Page 12

18/09/2013

7

© Yves.Ledru@imag.fr 2013

The jmlc compiler

• Jmlc instruments the methods of the class by
adding code on entry and exit of each
method.

• It then compiles this instrumented code into
java bytecode.

• The compiled code checks the assertions at
run-time and raises a JML exception when
they are violated.

• In this course, we always use the –O option
(old semantics).

Page 13

© Yves.Ledru@imag.fr 2013

Checking that methods are pure

• The jmlc compiler performs some static
checks that a method declared as « pure » is
actually pure.

Page 14

18/09/2013

8

© Yves.Ledru@imag.fr 2013

Development process

• First compile your java class with jmlc

• Then test it until you are confident that it is
correct.

• Finally, recompile your class with javac.
Invariants will no longer be checked at
execution time, but the class will keep the
same (validated) behaviour.

Page 15

© Yves.Ledru@imag.fr 2013

Performance

• Adding JML assertions slows down the execution of
the code and increase memory consumption.

• This is one of the reasons for recompiling the
validated class in Java.

• It is sometimes tempting to write more « efficient »
assertions, to speed up the evaluation of invariants.

• But efficiency may be at the cost of readibility, and
complex assertions are error-prone!

Page 16

18/09/2013

9

© Yves.Ledru@imag.fr 2013

Null objects

• Numerous run-time errors are due to the use of null
objects.

• JML is able to check that an object includes a null
value and raises an exception.

• For data structures such as SetAsTree, this would
be a problem because the fields of the class may
become null.

• Therefore, the class is marked as
/*@ nullable_by_default @*/

• Individual variables may also be marked as /*@
nullable @*/ or /*@ non_null @*/

Page 17

© Yves.Ledru@imag.fr 2013

Tools used in this course

Page 18

18/09/2013

10

© Yves.Ledru@imag.fr 2013

JML 5.6

• JML5.6 is available at the following address:
http://sourceforge.net/projects/jmlspecs/files/jmlspecs/5.6_rc4/

• To install it under windows:
– download file JML.5.6_rc4.tar.gz

– Extract it under C:\JML

– And add C:\JML\bin# à to your path

• A more complete documentation on JML is available at the
following address:
http://jmlspecs.org

• Or at http://www.eecs.ucf.edu/~leavens/JML/jmlrefman/

Page 19

© Yves.Ledru@imag.fr 2013

JUnit4

• Is a test driver for Java
• A test case is a java method of a test class

annotated by @test
• JUnit discovers the test methods of the class and

executes them sequentially.
• If test execution does not raise an exception, the test

succeeds.
• If test execution raises an exception, the test:

– Is a failure, if the default was anticipated (e.g. detected by
an assert)

– Is an error, if the default was not expected (e.g. run-time
exception).

Page 20

18/09/2013

11

© Yves.Ledru@imag.fr 2013

JUnit4 (2)

• Often all test cases start with the same code or end
with the same code. In JUnit4 it is possible to
annotate methods as
– @Before

– @After

In order to execute these before/after every test.

• Static methods annotated as
– @BeforeClass

– @AfterClass

Are executed once at the beginning or at the end of
the tests.

Page 21

