
25/09/2013

1

© Yves.Ledru@imag.fr 2013 Page 1

An introduction to formal
specifications and JML

Operation specification

Yves Ledru
Université Grenoble-1

Laboratoire d’Informatique de Grenoble

Yves.Ledru@imag.fr

2013

© Yves.Ledru@imag.fr 2013

Specifying an operation

• It is often the case that operations are
specified by snapshots of the states before
and after the operation

• This way of specifying operations seems
rather intuitive!

Page 2

Before After

25/09/2013

2

© Yves.Ledru@imag.fr 2013

Design by Contract TM (Bertrand Meyer)

• The specification of an operation is seen as a
contract which includes two conditions:
– The post-condition describes a condition that the

operation should establish in the final state

– The pre-condition (optional) describes under
which condition the operation should establish the
post-condition

• If the pre-condition is not verified, the contract is not
valid, and nothing is guaranteed in the post-state.

Page 3

« Design by Contract » is a registrated trademark of Eiffel Software in the USA.

© Yves.Ledru@imag.fr 2013

Contracts with invariants

• Invariants are implicitly added to the pre- and
post-conditions.

• In the following example, the post-condition
refers to « contains » which itself returns a
correct result only if the invariant is true.

Page 4

25/09/2013

3

© Yves.Ledru@imag.fr 2013

Postcondition: ensures

• The postcondition uses keyword ensures

• Here, the post-condition of insert(v)
guarantees that v will be an element of the
set at the end of the operation!

• Moreover, the invariant will also be true!
Page 5

//@ ensures contains(v);
public void insert(int v){…}

//@ ensures !contains(v);
public void delete(int v){…}

© Yves.Ledru@imag.fr 2013

Contains(v)

• contains(v) is a pure boolean method
which checks that v is an element of the tree.

• It assumes that the tree is sorted, as
described in the invariant.

Page 6

public /*@ pure @*/ boolean contains(int v){
if (val == null) {return false;}
else if (v == val.intValue()) {return true;}
else if (v > val.intValue() && (rtree!= null))

{return rtree.contains(v);}
else if (v < val.intValue() && (ltree!= null))

{return ltree.contains(v);}
else {return false;}

}

25/09/2013

4

© Yves.Ledru@imag.fr 2013

Incomplete post-conditions

• As will be experimented in the exercises, the
specifications of insert and delete are
correct but incomplete.

• Additional properties will be specified later.

Page 7

© Yves.Ledru@imag.fr 2013

Pre-condition: requires

• Some operations cannot be applied in any initial
state:
– Because they would be unable to produce a result

– Because they would end in an infinite loop or a run-time
error.

• It is the case for min() and max()which only return
a result if the set is not empty.

• The pre-condition uses keyword requires

Page 8

//@ requires !emptySet();
public /*@ pure @*/ int max(){…}

25/09/2013

5

© Yves.Ledru@imag.fr 2013

What means a pre-condition?

• It means that the operation expects the property to
be true.

• If the property is false, nothing is guaranteed!

• For example, when refueling your car, it is forbidden
to:
– Smoke

– Let your engine run

– Give a phone call

• If you don’t obey these rules, it is not guaranteed
that the refueling will proceed safely.

Page 9

© Yves.Ledru@imag.fr 2013

Inconclusive tests

• What do we learn from a test case which
calls an operation without verifying its pre-
condition?

• Nothing!

• For example, if you call max() on an empty
set, you will get a run-time error!

• If you compile max() with jmlc, it will not
execute the code, but raises an exception
inside the pre-condition

Page 10

25/09/2013

6

© Yves.Ledru@imag.fr 2013

Example of such a test

• The following test raises an EntryPrecondition
error. The code of max() was not executed!

Page 11

@Test
public void testSequence_0() {

SetAsTree s=new SetAsTree();
int m = s.max();

}
1) testSequence_0(…)
org.jmlspecs.jmlrac.runtime.JMLEntryPreconditionError:
by method SetAsTree.max regarding specifications at
File "SetAsTree.java", line 111, character 29 when

'this' is null
at SetAsTree.checkPremaxSetAsTree(SetAsTree.java:2713)
at SetAsTree.max(SetAsTree.java:2807)

© Yves.Ledru@imag.fr 2013

EntryPrecondition error

• Tests with an EntryPrecondition error are
inconclusive, i.e. they neither reveal an error
in the code nor in the specification.

• Inconclusive tests are simply useless test
cases!

• For example, if you test
your car under water,
you will learn nothing
about its conformance
to its specification!

Page 12

25/09/2013

7

© Yves.Ledru@imag.fr 2013

InternalPrecondition error

• Precondition errors may also result from an erroneous use of
max() in the code of another operation (e.g. delete).

• If the programmer forgets to test that the ltree is not empty,
this code may result in a false precondition for max().

• In this case, it corresponds to a programming fault!

• Therefore JML will return an InternalPrecondition error.
Page 13

public void delete(int v){
…
if (!ltree.emptySet()){

int newVal = ltree.max();
// take the largest element of the left tree
ltree.delete(newVal);
// remove it from the left tree

…}

© Yves.Ledru@imag.fr 2013

Declarative specification

• The pre- and post-condition specify what
should be done, but not how to do it.

• The code is responsible to fulfill the
specification.

• Several codes are acceptable, provided that
the pre/post conditions are verified.

• This allows evolutions and optimisations of
the code, provided they conform to the
specification.

Page 14

25/09/2013

8

© Yves.Ledru@imag.fr 2013

Towards more complete post-
conditions

Page 15

© Yves.Ledru@imag.fr 2013

Incomplete post-conditions

• The current post-condition of insert and delete
does only express that v is or is not in the tree.

• But it does not tell what happened to the other
values in the tree!

• So the following trivial implementation of insert
conforms to the specification!

Page 16

//@ ensures contains(v);
public void insert(int v){
val =new Integer(v);
ltree = null;
rtree = null;

}

25/09/2013

9

© Yves.Ledru@imag.fr 2013

An informal but more complete
specification

• A more complete specification:

« The set contains v and the other elements of the set
remain in the set »

• This specification expresses a property which links
two states:
– The initial state where the operation started

– The final state where the operation ended

• The post-condition is expressed in the final state.

• We need a construct to refer to the initial state in the
post-condition!

Page 17

© Yves.Ledru@imag.fr 2013

\old(expression)

• The JML \old construct returns the value of
its expression in the initial state.

• \old may only be used in post-conditions.

Page 18

25/09/2013

10

© Yves.Ledru@imag.fr 2013

Evolution of the number of elements (1)

• insert and delete modify the number of
elements in the tree

• Let us define a size()method:

Page 19

public /*@ pure @*/ int size(){
int size = 1;
if (val==null){return 0;}
else {if (ltree != null){size+=ltree.size();};

if (rtree != null){size+=rtree.size();};
return size;
}

}

© Yves.Ledru@imag.fr 2013

Evolution of the number of elements (2)

• Inserting an element will increase the number of
elements by one or leave it unchanged (if the
element was already in the tree).

• We can thus express the following post-condition for
insert

• This condition forbids some trivial implementations
of the specification.

Page 20

//@ ensures contains(v);
/*@ ensures size() == \old(size())+1
@ || size() == \old(size());
@*/

public void insert(int v){…}

25/09/2013

11

© Yves.Ledru@imag.fr 2013

Evolution of the number of elements (3)

• The post-condition may even be more
precise.

• A ==> B means that A implies B,
it is equivalent to !A || B

Page 21

//@ ensures contains(v);
//@ ensures \old(contains(v)) ==> size() == \old(size());
//@ ensures \old(!contains(v))==> size() == \old(size())+1;
public void insert(int v){…}

© Yves.Ledru@imag.fr 2013

Limits of the current specification

• The post-condition simply constrains the
number of elements in the tree,…

• …, but not the values of these elements.

• The following specification keeps the values
of old elements.

Page 22

25/09/2013

12

© Yves.Ledru@imag.fr 2013

Converting to another set…

• The following method converts the tree to a
HashSet

Page 23

public /*@ pure @*/ HashSet toHashSet(){
HashSet hs = new HashSet();
if (val==null){return hs;}
else { hs.add(val) ;

if (ltree != null){hs.addAll(ltree.toHashSet());};
if (rtree != null){hs.addAll(rtree.toHashSet());};
return hs;

}
}

© Yves.Ledru@imag.fr 2013

Post-condition based on HashSet

• The following post-condition ensures that
– The new value is in the set

– The old values remain in the set

– No other value is added to the set

• This specification is complete, but relies on an
equivalent data structure (HashSet).

Page 24

//@ ensures contains(v);
//@ ensures \old(contains(v)) ==> size() == \old(size());
//@ ensures \old(!contains(v))==> size() == \old(size())+1;
//@ ensures toHashSet().containsAll(\old(toHashSet()));

public void insert(int v){…}

25/09/2013

13

© Yves.Ledru@imag.fr 2013

Computing the sum of elements

• The value of each element of the tree
contributes to the sum of its elements.

Page 25

public /*@ pure @*/ int sum(){
if (val==null){return 0;}
else { int s = val.intValue() ;

if (ltree != null){s+=ltree.sum();};
if (rtree != null){s+=rtree.sum();};
return s;

}
}

© Yves.Ledru@imag.fr 2013

Postcondition based on the sum

• The following specification is not complete,
but rather constraining and does not rely on
an equivalent data structure.

Page 26

//@ ensures contains(v);
//@ ensures \old(contains(v)) ==> size() == \old(size());
//@ ensures \old(!contains(v))==> size() == \old(size())+1;
//@ ensures \old(contains(v)) ==> sum() == \old(sum());
//@ ensures \old(!contains(v))==> sum() == \old(sum())+v;
public void insert(int v){…}

25/09/2013

14

© Yves.Ledru@imag.fr 2013

\old and references to objects

• Take care that \old takes an expression as
argument.

• If the expression is the name of an object, it
returns the address of the object, and not its
value!

• The address of the object is the same in the
initial and final state: \old(s)==s

• If the postcondition needs to compare the
value of the object, make sure you return its
value, and not its address!

Page 27

© Yves.Ledru@imag.fr 2013

Example of wrong use of \old

• Calling duplicate() changes s to « abcabc »

• Correct specification:
//@ ensures s.length() == \old(s.length())*2;

• Incorrect specification:
//@ ensures s.length() == \old(s).length()*2;

Page 28

Exception … JMLInternalNormalPostconditionError:
by method DuplicateStringBuffer.duplicate … when

'\old(s)' is abcabc

public static StringBuffer s = new StringBuffer("abc");

public static void duplicate(){
s.append(s);

}

25/09/2013

15

© Yves.Ledru@imag.fr 2013

Specifying methods with a return value

• The post-condition specifies the final state, but also
the result of a method.

• \result can be used in the post-condition to refer to
the result of the method.

• For example, here is a specification of min (taking
into account that min is computed recursively)

• The third line forbids the trivial case where the value
of the root is returned.

Page 29

//@ requires !emptySet();
//@ ensures contains(\result) && \result <= val.intValue();
//@ ensures ltree != null ==> \result != val.intValue();

public /*@ pure @*/ int min(){…}

© Yves.Ledru@imag.fr 2013

Some JML abbreviations

• The following notations can be used in JML
assertions:

==> implication

<== inverse implication

<==> if and only if

<=!=> not if and only if

• Other keywords can be found in the JML
reference manual.

Page 30

25/09/2013

16

© Yves.Ledru@imag.fr 2013

Quantifiers (1)

• JML provides several quantifiers for
assertions.

• They can be used to express a property on
several objects.

• Without quantifiers, this would be expressed
in the code of an iterative Java method.

Page 31

public int[] table = {1,2,3,4,5};

/*@ public invariant
@ (\forall int i; 0<=i && i<table.length; table[i] > 0);
@*/

© Yves.Ledru@imag.fr 2013

Quantifiers (2)

• A quantified expression is of the form:

• (\quantifier declaration ; boolean expr ;
boolean expr)
– The quantifier is one of (\forall, \exists, \num_of)

– The declaration introduces the quantified variable

– The first boolean expression constrains the range
of the quantified variable

– The second boolean expression is evaluated on
all elements of the range

Page 32

25/09/2013

17

© Yves.Ledru@imag.fr 2013

Non-executable quantification

• Please note that the range expression must be of the form
A<i && i<B (< may be replaced by <=)

or JMLCollection.has(i)

to be executable.

• Other boolean expressions used as range expressions are
syntactically correct but will not be used by the run-time
assertion checks.

• Example of non executable quantification

Page 33

File "Quantifiers.java", line 12, character 30 warning:
This quantifier is not executable.

//@ public invariant (\forall int i; true; i!=0);

© Yves.Ledru@imag.fr 2013

Other examples of quantifiers

• Existential quantifier

• Number of elements satifying a property

Page 34

/*@ ensures
@ (\exists int i; 0 <= i && i < table.length;
@ table[i] == \result);
@*/

public int choose_one(){…}

/*@ ensures
@ \result == (\num_of int i; 0 <= i && i < table.length;
@ table[i]%2 == 0);
@*/

public int nb_even(){…}

25/09/2013

18

© Yves.Ledru@imag.fr 2013

Other JML keywords

• There exist other JML keywords for boolean
expressions and quantifiers.

• They will not be used in this course.

• Please refer to the JML Reference manual for
a more complete information.

Page 35

© Yves.Ledru@imag.fr 2013

Visibility of assertions and
variables

Page 36

25/09/2013

19

© Yves.Ledru@imag.fr 2013

Visibility of variables and assertions

• In Java, variables and methods can be
declared as public, protected or
private

• JML specifications are usually public but may
refer to private variables.

• Such private variables must be declared as
/*@ spec_public @*/

Page 37

© Yves.Ledru@imag.fr 2013

Private invariants

• There are not many cases where invariants
should be kept private.

• The main case is
– when there is an inheritance relation between two

classes

– Private invariants are not inherited

– So, choose private invariants to express a
property on public variables that should not be
inherited.

Page 38

25/09/2013

20

© Yves.Ledru@imag.fr 2013

Example of spec_public variable

Page 39

public class Visibility {
private /*@ spec_public @*/ int x;
//@ public invariant x > 0;

//@ requires v > 0;
//@ ensures x == v;
public Visibility(int v){
x = v;
}

//@ ensures \result == x;
public int getX(){
return x;
}

x is declared private
to restrict its access

to getters and setters

x is used in the public
specification of public

operations. It must
thus be visible in JML

(spec_public)

