
30/09/2013

1

© Yves.Ledru@imag.fr 2013 Page 1

An introduction to formal
specifications and JML

Proof obligations

Yves Ledru
Université Grenoble-1

Laboratoire d’Informatique de Grenoble

Yves.Ledru@imag.fr

2013

© Yves.Ledru@imag.fr 2013

Avoiding impossible missions

• A specification may be unfeasible:

• It is impossible to find an implementation for
the constructor!

Page 2

public class UnfeasibleSpec {

public int x;

//@ public invariant x > 0 && x < 0;

public UnfeasibleSpec(){
x=1;

}

30/09/2013

2

© Yves.Ledru@imag.fr 2013

Solutions of a quadratic equation

• In mathematics, finding the roots of a
quadratic equation is a well-known problem:

• Equation : ax2 + bx +c = 0

• Solutions : (-b + sqrt(b2-4ac))/2a
and (-b - sqrt(b2-4ac))/2a

• Some of these equations have no solution.
They correspond to an unsolvable problem.

• These unsolvable equations can be detected
by checking that b2-4ac >= 0

Page 3

© Yves.Ledru@imag.fr 2013

Can we detect that a specification is not
implementable?

• Yes, this can be achieved by mathematical
proofs.

• In this course, we will briefly consider two
proof obligations associated to a JML class
specification.

Page 4

30/09/2013

3

© Yves.Ledru@imag.fr 2013

Let us consider the following class

• s corresponds to all state variables, and i to all input
parameters of Op

• The invariant only refers to s

• The pre-condition refers to s (in the old state) and i

• The post-condition refers to \old(s), s, i and \result

Page 5

public class C{
public State s;
//@ public invariant Inv(s);

//@ requires pre_Op(s,i);
//@ ensures post_Op(\old(s),s,i,\result);
public Output Op(Input i){…}

© Yves.Ledru@imag.fr 2013

First proof obligation: state
implementability

• The first proof obligation checks that there
exists at least one value for s satisfying the
invariant.

\exists State s; true; Inv(s)

Page 6

30/09/2013

4

© Yves.Ledru@imag.fr 2013

Discharging the proof obligation

• It is rather easy to prove this first proof
obligation:

• in order to prove an existential expression,
you only need to provide one witness, i.e. one
value of s satisfying Inv(s).

• Actually, the constructor of the class
computes such a value.

• So if you can execute the constructor without
raising an exception, you actually discharge
this first obligation!

Page 7

© Yves.Ledru@imag.fr 2013

A simple example

Page 8

public class SimpleCounter {
public int c;
//@ public invariant c >= 0;

public SimpleCounter(){
c = 0;

}

//@ requires c+x >= 0;
//@ ensures c == \old(c)+x && \result == c;
public int addToC(int x){

c += x;
return c;

}

State s

Inv(s)

pre_Op(s,i)

Input i
Output

post_Op(\old(s),s,i,\result)

30/09/2013

5

© Yves.Ledru@imag.fr 2013

State implementability of SimpleCounter

• The proof obligation is
\exists State s; true; Inv(s)

• Replacing State s and Inv(s) by their
instantiation results in:

\exists int c; true; c>=0;

• The constructor gives a potential witness:
public SimpleCounter(){c = 0;}

• Choosing c==0 proves the theorem
Page 9

© Yves.Ledru@imag.fr 2013

First conclusion

• The first proof obligation is actually trivial:
there must exist one execution of the
constructor whose resulting state fulfills the
invariant!

• The proof obligation is established by a single
test execution!

Page 10

30/09/2013

6

© Yves.Ledru@imag.fr 2013

2nd proof obligation: Operation
implementability

• The 2nd proof obligation checks that
– If the operation started in an acceptable state

(i.e., which fulfills the pre-condition and the invariant)

– It is possible to find a result and a final state which fulfill the post-
condition and the invariant

• In other words, the specification can be implemented.

• This proof obligation gives the actual semantics of the
« contract », and checks that the contract makes sense.

• The difficulty is to prove that this is true for all acceptable
initial states!

Page 11

© Yves.Ledru@imag.fr 2013

More formally

• The proof obligation is quantified forall initial
states and inputs…

• It requires the existence of at least one final
state and result.

Page 12

(\forall State old_s; Inv(old_s);
(\forall Input i; pre_Op(old_s,i);

(\exists State s; Inv(s);
(\exists Output result; true;

post_Op(old_s,s,i,result)))))

30/09/2013

7

© Yves.Ledru@imag.fr 2013

2nd proof obligation applied to addToC

• The proof is easy to establish:
– The witnesses for c and result are both \old(c)+x

(replacing c and result by this value fulfills the
post-condition)

– It remains to establish that \old(c)+x satisfies the
invariant, which follows from the pre-condition!

Page 13

(\forall int \old(c); \old(c) >= 0;
(\forall int x; \old(c)+x >= 0;

(\exists int c; c >= 0;
(\exists int \result; true;

c == \old(c)+x && \result == c))))

© Yves.Ledru@imag.fr 2013

The 2nd proof obligation in practice…

• It is rarely the case that the software engineer will
compute the proof obligation, and discharge it by a
proof…

• But the proof obligation may be used to help deduce
the pre-condition, given a postcondition.

Page 14

(\forall int \old(c); \old(c) >= 0;
(\forall int x; ???FIND pre_Op(\old(c),x)???;

(\exists int c; c >= 0;
(\exists int \result; true;

c == \old(c)+x && \result == c))))

30/09/2013

8

© Yves.Ledru@imag.fr 2013

2nd proof obligation in practice (Ctd)

• The second proof obligation means that the pre-
condition should be chosen to forbid inputs for which
the operation breaks the invariant.

• A practical process is to
– Start with a true precondition

– Find examples which break the invariant

– Design a new precondition

– Replay the tests and check that they are blocked by the
pre-condition!

• Designing the test before the pre-condition is a form
of TDD (Test Driven Development)!

Page 15

© Yves.Ledru@imag.fr 2013

• Set true as pre-condition

• Design a test

• Design a precondition

• Replay the test

Page 16

public int c;
//@ public invariant c >= 0;

//@ requires true;
//@ ensures c == \old(c)+x

&& \result == c;
public int addToC(int x){
c += x; return c;}

public int c;
//@ public invariant c >= 0;

//@ requires c+x >= 0;
//@ ensures c == \old(c)+x

&& \result == c;
public int addToC(int x){
c += x; return c;}

SimpleCounter sc =
new SimpleCounter();

sc.addToC(-1);

JMLInvariantError

SimpleCounter sc =
new SimpleCounter();

sc.addToC(-1);

JMLEntryPreconditionError

30/09/2013

9

© Yves.Ledru@imag.fr 2013

Conclusion

• Proof obligations give semantics to the contracts
defined by the JML specification.

• They can be used in a formal development process,
using proof tools… (not covered here)

• They also guide the testing process:
– Write a test which successfully calls the constructor

– Design tests for each operation potentially breaking the
invariant, and add appropriate pre-conditions.

Page 17

