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Avoiding impossible missions

• A specification may be unfeasible:

• It is impossible to find an implementation for 
the constructor!

Page 2

public class UnfeasibleSpec {

public int x;

//@ public invariant x > 0 && x < 0;

public UnfeasibleSpec(){
x=1;

}
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Solutions of a quadratic equation

• In mathematics, finding the roots of a 
quadratic equation is a well-known problem:

• Equation : ax2 + bx +c = 0

• Solutions : (-b + sqrt(b2-4ac))/2a 
and (-b - sqrt(b2-4ac))/2a 

• Some of these equations have no solution. 
They correspond to an unsolvable problem.

• These unsolvable equations can be detected
by checking that b2-4ac >= 0
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Can we detect that a specification is not 
implementable?

• Yes, this can be achieved by mathematical
proofs.

• In this course, we will briefly consider two
proof obligations associated to a JML class 
specification.
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Let us consider the following class

• s corresponds to all state variables, and i to all input 
parameters of Op

• The invariant only refers to s

• The pre-condition refers to s (in the old state) and i

• The post-condition refers to \old(s), s, i and  \result
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public class C{
public State s;
//@ public invariant Inv(s);

//@ requires pre_Op(s,i);
//@ ensures post_Op(\old(s),s,i,\result);
public Output Op(Input i){…}
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First proof obligation: state 
implementability

• The first proof obligation checks that there
exists at least one value for s satisfying the 
invariant.

\exists State s; true; Inv(s)
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Discharging the proof obligation

• It is rather easy to prove this first proof 
obligation: 

• in order to prove an existential expression, 
you only need to provide one witness, i.e. one 
value of s satisfying Inv(s).

• Actually, the constructor of the class 
computes such a value. 

• So if you can execute the constructor without
raising an exception, you actually discharge
this first obligation!
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A simple example
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public class SimpleCounter {
public int c;
//@ public invariant c >= 0;

public SimpleCounter(){
c = 0;

}

//@ requires c+x >= 0;
//@ ensures c == \old(c)+x && \result == c;
public int addToC(int x){

c += x;
return c;

}

State s

Inv(s)

pre_Op(s,i)

Input i
Output

post_Op(\old(s),s,i,\result)
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State implementability of SimpleCounter

• The proof obligation is
\exists State s; true; Inv(s)

• Replacing State s and Inv(s) by their
instantiation results in:

\exists int c; true; c>=0;

• The constructor gives a potential witness:
public SimpleCounter(){c = 0;}

• Choosing c==0 proves the theorem
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First conclusion

• The first proof obligation is actually trivial:
there must exist one execution of the 
constructor whose resulting state fulfills the 
invariant!

• The proof obligation is established by a single 
test execution!
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2nd proof obligation: Operation
implementability

• The 2nd proof obligation checks that
– If the operation started in an acceptable state

(i.e., which fulfills the pre-condition and the invariant)

– It is possible to find a result and a final state which fulfill the post-
condition and the invariant

• In other words, the specification can be implemented.

• This proof obligation gives the actual semantics of the 
« contract », and checks that the contract makes sense.

• The difficulty is to prove that this is true for all acceptable 
initial states!
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More formally

• The proof obligation is quantified forall initial 
states and inputs…

• It requires the existence of at least one final 
state and result.
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(\forall State old_s; Inv(old_s);
(\forall Input i; pre_Op(old_s,i);

(\exists State s; Inv(s);
(\exists Output result; true;

post_Op(old_s,s,i,result) ))))
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2nd proof obligation applied to addToC

• The proof is easy to establish:
– The witnesses for c and result are both \old(c)+x

(replacing c and result by this value fulfills the 
post-condition)

– It remains to establish that \old(c)+x satisfies the 
invariant, which follows from the pre-condition!
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(\forall int \old(c); \old(c) >= 0;
(\forall int x; \old(c)+x >= 0;

(\exists int c; c >= 0;
(\exists int \result; true;

c == \old(c)+x && \result == c ))))
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The 2nd proof obligation in practice…

• It is rarely the case that the software engineer will
compute the proof obligation, and discharge it by a 
proof…

• But the proof obligation may be used to help deduce
the pre-condition, given a postcondition.
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(\forall int \old(c); \old(c) >= 0;
(\forall int x; ???FIND pre_Op(\old(c),x)???;

(\exists int c; c >= 0;
(\exists int \result; true;

c == \old(c)+x && \result == c ))))
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2nd proof obligation in practice (Ctd)

• The second proof obligation means that the pre-
condition should be chosen to forbid inputs for which
the operation breaks the invariant.

• A practical process is to 
– Start with a true precondition

– Find examples which break the invariant 

– Design a new precondition

– Replay the tests and check that they are blocked by the 
pre-condition! 

• Designing the test before the pre-condition is a form
of TDD (Test Driven Development)!
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• Set true as pre-condition

• Design a test

• Design a precondition

• Replay the test

Page 16

public int c;
//@ public invariant c >= 0;

//@ requires true;
//@ ensures c == \old(c)+x 

&& \result == c;
public int addToC(int x){
c += x; return c;}

public int c;
//@ public invariant c >= 0;

//@ requires c+x >= 0;
//@ ensures c == \old(c)+x 

&& \result == c;
public int addToC(int x){
c += x; return c;}

SimpleCounter sc = 
new SimpleCounter();

sc.addToC(-1); 

JMLInvariantError

SimpleCounter sc = 
new SimpleCounter();

sc.addToC(-1); 

JMLEntryPreconditionError
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Conclusion

• Proof obligations give semantics to the contracts
defined by the JML specification.

• They can be used in a formal development process, 
using proof tools… (not covered here)

• They also guide the testing process:
– Write a test which successfully calls the constructor

– Design tests for each operation potentially breaking the 
invariant, and add appropriate pre-conditions.
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