
30/09/2013

1

© Yves.Ledru@imag.fr 2013 Page 1

An introduction to formal
specifications and JML

Advanced JML concerns

Yves Ledru
Université Grenoble-1

Laboratoire d’Informatique de Grenoble

Yves.Ledru@imag.fr

2013

© Yves.Ledru@imag.fr 2013

Offensive vs Defensive
programming

Page 2

30/09/2013

2

© Yves.Ledru@imag.fr 2013

Preconditions vs exceptions

• Many applications adopt a defensive
programming style:
– The precondition is true, i.e. the operation may be

called in any state with arbitrary parameter values

– But checks are performed inside the code to
prevent unauthorized use!

– Exceptions are raised if the operation is called
with illegal parameters or from an illegal state.

Page 3

© Yves.Ledru@imag.fr 2013

Example: Integer Square Root

• The argument is first checked before
computing its square root:

• An exception is raised if the argument is
negative.

Page 4

public static int isqrt2(int x){
if(x<0){throw new IllegalArgumentException(“Illegal”+x);}
else { int res = 0;

for (int i = 0; i*i <= x; i++){res = i; };
return res;}

}

30/09/2013

3

© Yves.Ledru@imag.fr 2013

Defensive programming

• In defensive programming, the inputs are
systematically checked.

• This makes the code more robust…

• … at the cost of (a) writing and (b) executing
the checks.

• Robustness has a cost and slows down the
program!

Page 5

© Yves.Ledru@imag.fr 2013

Offensive programming

• In offensive programming, a contract is given
for the use of the method.

• The contract may be defined in terms of JML
assertions (pre, post, invariants)

• The method trusts the caller.

• It is the responsability of the caller to perform
the checks, if needed.

• Less robust but potentially more efficient!

Page 6

30/09/2013

4

© Yves.Ledru@imag.fr 2013

In practice

• The borders of the software must be robust, because the
outside world can’t be trusted

• The internal calls come from trusted pieces of code and don’t
need to be robust

Page 7

Software product

Visible
method

Visible
method

Internal
method Internal

method
Internal
method

Untrusted call (defensive programming is needed)
Trusted call (offensive programming is prefered)

Outside world

© Yves.Ledru@imag.fr 2013

In practice

• A software component is a mixture of
defensive (outside) and offensive (inside)
programming!*

• So JML must support both styles…

* Some software editors adopt a defensive style all over their
software (outside and inside). Internal exceptions are used as
oracle for structural tests.

Page 8

30/09/2013

5

© Yves.Ledru@imag.fr 2013

Defensive programming in JML

Page 9

© Yves.Ledru@imag.fr 2013

Specifying exceptions in JML

• The offensive programming code

• becomes

Page 10

//@ requires x >= 0;
//@ ensures \result*\result <= x
//@ ensures (\result+1)*(\result+1)>x;
public static int isqrt(int x){…}

//@ requires true;
//@ ensures \result*\result <= x ;
//@ ensures (\result+1)*(\result+1)>x;
//@ signals (IllegalArgumentException e) x < 0;
public static int isqrt2(int x){
if(x<0){throw new IllegalArgumentException(“Illegal”+x);}
…}

30/09/2013

6

© Yves.Ledru@imag.fr 2013

The signals clause

• The signals clause defines an exceptional post-
condition

• //@ signals (Exception e) condition;

• Keyword exsures may be used instead of signals

• condition may involve the initial and the final
states/parameters

• When the code raises exception e, the condition is
checked by JML.
– If the condition is false, a JML exception is raised denoting an

incorrect implementation
– If the condition is true, exception e is propagated to the caller.

• If another exception is raised, it is propagated to the caller
Page 11

© Yves.Ledru@imag.fr 2013

Testing invariants and
specifications

Page 12

30/09/2013

7

© Yves.Ledru@imag.fr 2013

Assertions also may be incorrect!

• Playing a test simply compares java code to
its JML specification.

• When the test raises a JML exception, it
simply means that the code and its
executable specification disagree!
– The code may be erroneous

– The specification may be erroneous.

• Even if they agree, they may be both
erroneous!

Page 13

© Yves.Ledru@imag.fr 2013

Testing JML specifications

• It is strongly recommended to test JML
specifications in order to increase confidence
in the specification.

• Positive tests are nominal tests which should
not raise a JML exception.

• Negative tests are robustness tests which
should raise a JML exception.

Page 14

30/09/2013

8

© Yves.Ledru@imag.fr 2013

Testing invariants (1)

• It is recommended to cut the invariant into more
elementary assertions on separate lines.

• Because JMLexceptions include the line number
corresponding to the violated invariant.

Page 15

//@ invariant A && B && C;

Should be rewritten as

//@ invariant A;
//@ invariant B;
//@ invariant C;

© Yves.Ledru@imag.fr 2013

Testing invariants (2)

• Use public variables, or setters without pre-
condition to position the state variables.

• Force the evaluation of the invariant by calling
skip(){ }

Page 16

/*@ public invariant
@((val != null) || (ltree == null && rtree == null));
@*/

@Test
public void test_1() {
SetAsTree s=new SetAsTree();
s.ltree = s;
s.skip();
}

@Test
public void test_0 () {
SetAsTree s=new SetAsTree();
} Nominal test

Robustness test

30/09/2013

9

© Yves.Ledru@imag.fr 2013

Testing invariants (3)

• The error message tells us that the exception
was raised:
– In the pre-state of skip()

– Regarding specifications at line 7

Page 17

junit.framework.AssertionFailedError:
by method SetAsTree.skip@pre<File "SetAsTree.java", …>

regarding specifications at
File "SetAsTree.java", line 7, character 26 when

'val' is null
'ltree' is SetAsTree@570522265
'rtree' is null
'this' is SetAsTree@570522265

© Yves.Ledru@imag.fr 2013

Testing invariants (4)

• Make sure that you test all lines of the
invariant:
– A positive test passed through all lines

– A negative test stops at the first failure

Page 18

30/09/2013

10

© Yves.Ledru@imag.fr 2013

Testing pre-conditions

• Here the robustness test must raise a
JMLEntryPreconditionError

Page 19

@Test
public void test_3() {
SetAsTree s=new SetAsTree();
int m = s.max();
}

//@ requires !emptySet();
public /*@ pure @*/ int max(){..}

@Test
public void test_2() {
SetAsTree s=new SetAsTree(5);
int m = s.max();
} Nominal test Robustness test

© Yves.Ledru@imag.fr 2013

Testing post-conditions

• This kind of tests are more difficult to perform.
– Provided you have an implementation, you can

write nominal test the post-condition and the
exceptional post-condition

– In order to write robustness tests for the post-
conditions, you need to seed errors in the code
(more difficult to automate).

Page 20

30/09/2013

11

© Yves.Ledru@imag.fr 2013

History constraints

Page 21

© Yves.Ledru@imag.fr 2013

Invariants vs history constraints

• Invariants express properties that don’t
change.

• History constraints express dynamic
properties.

• History constraints are post-conditions which
apply to all methods of the class.

• History constraints express a property relating
the initial and final state of each method.

Page 22

30/09/2013

12

© Yves.Ledru@imag.fr 2013

Managing tickets in a queue

Page 23

Serving nb:
4242

43
44

display

last_ticket

© Yves.Ledru@imag.fr 2013

Class Ticket, invariant and history
constraints

• The class has two variables, and an invariant:
the display may not exceed the value of the last ticket issued.

• History constraints express that these variables may only
grow

• A more precise constraint may be expressed for last_ticket

Page 24

public class Ticket {
public int display;
public int last_ticket;
//@ public invariant display <= last_ticket;

//@ public constraint \old(display) <= display;
//@ public constraint \old(last_ticket) <= last_ticket;

/*@ public constraint \old(last_ticket) == last_ticket
@ || \old(last_ticket)+1 == last_ticket;
@*/

30/09/2013

13

© Yves.Ledru@imag.fr 2013

Operation

• serve_next() modifies the display

• It implicitly includes the constraint that display (and
last_ticket) may only grow or remain the same!

• The pre-condition guarantees invariant preservation.

Page 25

//@ requires display < last_ticket;
//@ ensures display != \old(display);
public int serve_next(){
display++;
return display;
}

Serving nb:
42

Serving nb:
43

© Yves.Ledru@imag.fr 2013

Another operation on the display

• serve_all() also modifies the
display…

• No constraint prescribes display to increase
by one unit!

• Here no pre-condition is needed to preserve
the invariant.

Page 26

//@ requires true;
public int serve_all(){
display=last_ticket;
return display;

}

Serving nb:
42

Serving nb:
44

30/09/2013

14

© Yves.Ledru@imag.fr 2013

More on history constraints

• History constraints don’t apply to constructors
(because state variables are not yet created
in the initial state of the constructor).

• Like invariants, history constraints are written
once and apply to all methods of the class.

Page 27

